Wildfire: Evolving Databases for New-Gen Big Data Applications

IBM
What are these New-Gen Big Data Applications?

- World has changed a lot since the 70s
 - Automating business processes → AI everywhere
- But databases are still hot
What are these New-Gen Big Data Applications?

• World has changed a lot since the 70s
 • Automating business processes ➞ AI everywhere
• But databases are still hot

And the apps want even more from the database!
 -- Higher ingest and update rates
 -- Versioning, time-travel
 -- Ingest and Update anywhere, anytime (“AP” system)
 -- More real-time analytics (HTAP)
 -- Tons of analytics

 ==> database cannot hold data in proprietary store
What are these New-Gen Big Data Applications?

- World has changed a lot since the 70s
 - Automating business processes → AI everywhere
- But databases are still hot

And the apps want even more from the database!
- Higher ingest and update rates
- versioning, time-travel
- Ingest and Update anywhere, anytime ("AP" system)
- More real-time analytics (HTAP)
- tons of analytics
 ==> database cannot hold data in proprietary store

But still want the traditional database goodies:
- Updates
- Transactions (not eventual consistency)
- Point Queries / Indexes
- complex queries (joins, optimizer, ..)
Example: Health Care

Convergence of Prevention/Monitoring (sensors on healthy people) and Cure (healthcare setting)
Example: Health Care

Convergence of Prevention/Monitoring and Cure
(sensors on healthy people)
(healthcare setting)

- High ingest rates
- Want analytics on latest readings
- Complex queries, joins, ..
- Looking for outliers => cannot drop data, need durability
- AP: cannot wait for mothership to be reachable
- Eventual consistency is a pain
 \[V_1 \leftarrow \text{lookup}(k1); \]
 \[V_2 \leftarrow \text{lookup}(k1); \]
 // if V1 finds match and V2 doesn’t, how to test this app?

- Lots of point queries
Wildfire Goals

HTAP: transactions & queries on same data
- Analytics over latest transactional data
- Analytics over 1-sec old snapshot
- Analytics over 10-min old snapshot

Open Format
- All data and indexes in Parquet format on shared storage
 - No LOAD
 - Directly accessible by platforms like Spark

Leapfrog transaction speed, with ACID
- Millions of inserts, updates / sec / node
 - Multi-statement transactions
 - With async quorum replication (sync option)
- Full primary and secondary indexing
 - Millions of gets / sec / node

Multi-Master and AP
- disconnected operation
- Snapshot isolation, with versioning and time travel
 - Conflict resolution based on timestamp
Wildfire Goals

HTAP: transactions & queries on same data
- Analytics over latest transactional data
- Analytics over 1-sec old snapshot
- Analytics over 10-min old snapshot

Open Format
- All data and indexes in Parquet format on shared storage
 - No LOAD
 - Directly accessible by platforms like Spark

Leapfrog transaction speed, with ACID
- Millions of inserts, updates / sec / node
 - Multi-statement transactions
 - With async quorum replication (sync option)
- Full primary and secondary indexing
 - Millions of gets / sec / node

Multi-Master and AP
- disconnected operation
- Snapshot isolation, with versioning and time travel
 - Conflict resolution based on timestamp

Challenge: getting all of these simultaneously
Wildfire architecture

Applications

analytics
- can tolerate slightly stale data
- requires most recent data

high-volume transactions

spark executor

Applications

wildfire engine

shared file system

spark executor

wildfire engine

SSD/NVM
Data lifecycle

Grooming: take consistent snapshots
resolve conflicts
Postgrooming: make data efficient for queries

- ORGANIZED zone (PBs of data)
- GROOMED zone (~10 mins)
- LIVE zone (~1sec)

OLTP nodes

TIME

Replication

Inserts, Updates, Dels
Data lifecycle

OLTP nodes
- HTAP (see latest: snapshot isolation)
- 1-sec old snapshot
- Optimized snapshot (10 mins stale)

Analytics nodes
- Bulk Load
- Lookups
- BI
- ML, etc (Spark)

Time Zones
- **ORGANIZED zone** (PBs of data)
- **GROOMED zone** (~10 mins)
- **LIVE zone** (~1 sec)

LIVE zone
- (~1 sec)
- Inserts, Updates, Dels
- OLTP nodes
- Replication

GROOMED zone
- (~10 mins)
- postgroom
- OLTP nodes
- Replication

ORGANIZED zone (PBs of data)
- HTAP (see latest: snapshot isolation)
- 1-sec old snapshot
- Optimized snapshot (10 mins stale)

Analytics nodes
Live Zone

What happens at Commit

1. append xsac deltas (Ins/Del/Upd) to common log; replicated in background
2. flush to local SSD
3. status-check if changes are quorum-visible (via heartbeats)
 -- can time-out

AP: Commit does not wait for other nodes; conflicts are resolved *after* commit
 (have syncwrite option for higher durability)

Read monotonicity: Queries always read quorum-visible state
 - Hence, *later* queries see a superset of what prior queries saw
• **Grooming is when conflicts are resolved**
 -- take quorum-visible deltas, form data blocks, and publish to shared file system
 -- groomed zone is always a consistent snapshot
• All deltas (insert/delete/update) are **upserts**: `key, (values)*, beginTime`
 • `beginTime` initialized at commit as `(localTime | nodeID)`
• No assumption about clock synchronization or speed of replication
 -- yet, we get read monotonicity
 • Idea: groom sets `beginTime ← groomTime | localTime | nodeID`
• **Conflict resolution**: versioning, based on `beginTime`
Postgrooming

Queries should run fast (BI and point)
- Compute endTime and prevRID
 - And deal with immutable storage system!
- Partition (along multiple dimensions)
- Build primary and secondary indexes

Want ready access to latest version (for the simple readers)
- Separate latest and priors

<table>
<thead>
<tr>
<th>TIME</th>
<th>ORGANIZED zone (PBs of data)</th>
<th>GROOMED zone (~10 mins)</th>
<th>LIVE zone (~1sec)</th>
</tr>
</thead>
</table>

- LATEST (key, vals*, beginTime, prevRID)
- PRIORS (key, vals*, beginTime, endTime, prevRID)

Queries should run fast (BI and point)
- Compute endTime and prevRID
 - And deal with immutable storage system!
- Partition (along multiple dimensions)
- Build primary and secondary indexes

Want ready access to latest version (for the simple readers)
- Separate latest and priors
OLAP queries via SparkSQL

- Extensions to both Catalyst Optimizer and Data Source API
- A new Spark context for SQL
- Catalyst Optimizer
 - Query HCatalog for table schemas
 - Identify plan to send to Wildfire
 - Compose a compensation plan (if needed)
- Data Source API
 - SparkSQL Logical plan → Wildfire plan
 - Plan submission to Wildfire & result passing
- Compensation plan (if needed) executed in SparkSQL
- Paper has details about pushdown analysis
POST-TRUTH
• Big data needs updates, indexes, complex queries, transactions
• AP is the reality
• PB databases will not live in proprietary storage
• It is possible to do ACID with AP
• DBMS can adopt open data formats and immutable stores – while still being fast

POST-ER-TRUTH
• Multi-shard transactions
• Serializability with AP