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Motivation

Modern data apps combine many disjoint
processing libraries & functions

» Relational, statistics, machine learning, ...

» E.g. PyData stack

+ Great results leveraging work of 1000s of authors

— No optimization across these functions



How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string) ‘parse—cs"
filtered = pandas.dropna(data) ldropna I
avg = numpy.mean(filtered) 1h ~

5-30x slowdowns in NumPy, Pandas, TensorFlow, etc



How We Solve This
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Runtime API

Uses lazy evaluation to collect work across libraries
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Weld IR

Designed to meet three goals:

1. Library composition: support complete
workloads such as nested parallel calls

2. Ability to express optimizations: e.g. loop
fusion, vectorization, loop tiling

3. Explicit parallelism



Weld IR

Small, powerful design inspired by “monad
comprehensions”

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.9. append items to a list, compute a sum
» Can be implemented differently on different hardware

Captures relational algebra, functional APIs like
Spark, linear algebra, and composition thereof



Examples

Implement functional operators using builders

def map(data, f):
builder = new vecbuilder[int]
for x 1n data:
merge (builder, f(x))
result(builder)

def reduce(data, zero, func):
builder = new merger[zero, func]
for x 1n data:
merge (builder, x)
result(builder)



Example Optimization: Fusion

squares = map(data, x => X * X)
sum = reduce(data, 0, +)

bldl = new vecbuilder[int]
bld2 = new merger[0, +]
for x 1n data:
merge(bldl, x * x)
merge(bld2, x)

Loops can be merged into one pass over data



Implementation

Prototype with APIs in Scala and Python
» LLVM and Voodoo for code gen

Integrations: TensorFlow, NumPy, Pandas, Spark



Results: Individual Workloads
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Results: Existing Frameworks
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Integration effort: 500 lines glue, 30 lines/operator



Results: Cross-Library Optimization
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Conclusion

The way we compose software
to efficiently use modern hardware

Weld is our first attempt at such a design — lots of
open questions!
» Optimization, specialized hardware, domain info, ...
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