Weld: A Common Runtime
for Data Analytics

Shoumik Palkar, James Thomas, Anil Shanbhag®, Deepak Narayanan,
Malte Schwarzkopf*, Holger Pirk*, Saman Amarasinghe*, Matei Zaharia

Stanford InfoLab, *MIT CSAIL

N Gl

TYTT CSAIL

INFOLAB

Motivation

Modern data apps combine many disjoint
processing libraries & functions

» Relational, statistics, machine learning, ...

» E.g. PyData stack

+ Great results leveraging work of 1000s of authors

— No optimization across these functions

How Bad is This Problem?

Growing gap between memory/processing makes
traditional way of combining functions worse

data = pandas.parse_csv(string) ‘parse—cs"
filtered = pandas.dropna(data) ldropna I
avg = numpy.mean(filtered) 1h ~

5-30x slowdowns in NumPy, Pandas, TensorFlow, etc

How We Solve This

machine graph

SQL . .
learning algorithms

Common Runtime

How We Solve This

SQL

T

Weld
runtime

machine
learning

graph
algorithms

/ mme API

Weld IR

Backends

> Optimizer

N
on N
€Ssor [|

Runtime API

Uses lazy evaluation to collect work across libraries

User Application Weld Runtime
= __._—-—--"“’_"""-__“-___—>
data (data O : IR fragments
| item => (item) — for each function
Runtime
AP

Combined IR

program

Data in o111010 Optimized

1101111

application machine code

Weld IR

Designed to meet three goals:

1. Library composition: support complete
workloads such as nested parallel calls

2. Ability to express optimizations: e.g. loop
fusion, vectorization, loop tiling

3. Explicit parallelism

Weld IR

Small, powerful design inspired by “monad
comprehensions”

Parallel loops: iterate over a dataset

Builders: declarative objects for producing results
» E.9. append items to a list, compute a sum
» Can be implemented differently on different hardware

Captures relational algebra, functional APIs like
Spark, linear algebra, and composition thereof

Examples

Implement functional operators using builders

def map(data, f):
builder = new vecbuilder[int]
for x 1n data:
merge (builder, f(x))
result(builder)

def reduce(data, zero, func):
builder = new merger[zero, func]
for x 1n data:
merge (builder, x)
result(builder)

Example Optimization: Fusion

squares = map(data, x => X * X)
sum = reduce(data, 0, +)

bldl = new vecbuilder[int]
bld2 = new merger[0, +]
for x 1n data:
merge(bldl, x * x)
merge(bld2, x)

Loops can be merged into one pass over data

Implementation

Prototype with APIs in Scala and Python
» LLVM and Voodoo for code gen

Integrations: TensorFlow, NumPy, Pandas, Spark

Results: Individual Workloads

SQL (TPC-H)

1 4 12
Number of threads

HyPer mm Weld =
H.o.

Q1

o
w

0.25

o
(V)

o -
N

0.05
0

Runtime [secs]
o
o

1 4 12
Number of threads
HyPer mmm Weld mmm

H.o.

Q6

—_
- o

Runtime [secs]
O O O O

oM PO

1 4 12
Number of threads

HyPer mm Weld =
H.o.

Q3

]
9,04
0}

£ 0.3
€02
>

Z 0.1
0

1 4 12
Number of threads
HyPer mm Weld mm

H.o.

Q12

Runtime [secs]

- a2 NN
o O

O 01 O O

Runtime [secs]

PageRank

B GFaphMat —
Hand-opt
Weld e -

1 2 4 8 1
Number of threads

Word2Vec

TF-Op = C++ operator

Results: Existing Frameworks

—_
o
o
o

T T 0.2 E
—40 | SparkSQL e _ . 0.18 =) TE — |
3 35 Weld 8 8-12 S 100 Hand-opt
230 %0:12 <] Weld mmm—
@25 E 0.8 8 10
£ 20 € 0.06 o
=15 =y 2,
S 10 0.02 o I
C 5 0 £ .
0 = 0.1
TPC-HQ1 TPC-HQ6 NP = Weld mm e 1Core 12 Cores
NExpr
‘% ' ! PN
Spark™ saL & NumPy F Tensor
TPC-H Vector Sum Logistic Regression

Integration effort: 500 lines glue, 30 lines/operator

Results: Cross-Library Optimization

Pandas + NumPy Spark SQL UDF
100 H Current 2.0 B Scala UDF
= Weld, no CLO = \Weld
= \Weld, CLO
S 10 m\Weld, 12 core o 1.5
@) K2
< ©
; =
©) =
ig/ 1 *%' 1.0 -
) A
£
S 0.1 - 0.5
C
14X
0.01 - 0.0 -

Conclusion

The way we compose software
to efficiently use modern hardware

Weld is our first attempt at such a design — lots of
open questions!
» Optimization, specialized hardware, domain info, ...

ﬁ_\.i

