
READY:
Completeness is in the

Eye of the Beholder
B. Chandramouli, J. Gehrke, J. Goldstein, M. Hofmann,

D. Kossmann, J. Levandoski, R. Marroquin, W. Xin
ETH Zurich, Facebook, Microsoft

Observations
• Observation 1: We produce data in silos (OLTP databases)

• rich update functionality (SQL)
• transactions (concurrency & durability)
• integrity constraints in silo
• principle: maximum control and isolation for high data quality

• Observation 2: We consume data across silos (analytics in data lake)
• rich query functionality (SQL)
• snapshots across silos
• integrity constraints across silos
• principle: the more data, the merrier

ETL: Implement Producer / Consumer Pipeline

DB
DB

Files

Data Lake

ERP CRM

Data Producers (OLTP) Data Consumers (OLAP)

PowerBI

ETL

ETL: Implement Producer / Consumer Pipeline

DB
DB

Files

Data Lake

ERP CRM

Data Producers (OLTP) Data Consumers (OLAP)

PowerBI

ETL

SQL,
concurrency,

integrity

SQL
snapshots,

integrity

What if we produce data in the data lake…?

• One (logical) copy of data
• lower cost to move data
• higher freshness

• One (logical) system
• higher agility & productivity
• lower cost (optimization)

DB

DB Files

Files

DB

ERP CRM PowerBI

What if we produce data in the data lake…?

We need to add integrity
constraints to data lake!

DB

DB Files

Files

DB

ERP CRM PowerBI

SQL,
concurrency,

integrity

Agenda

• READY: Basic Concepts
• READY 1.0: Implementation (see paper)
• Experiments & Results

READY Goals and „CAP Theorem“

• Custom Integrity
• every app defines its own set

of integrity constraints

• Sharing
• one (logical) copy of data

• Decoupling
• No application blocked by

constraints of another app

• Can only have two of three!
DB

DB Files

Files

DB

ERP CRM PowerBI

READY Goals

• Custom Integrity
• every producer and every consumer defines own set of constraints

• Sharing
• there is only one logical copy of the data

• Decoupling
• producers are not blocked by consumers
• consumers are not blocked by other consumers

• „CAP Theorem“: Easy to achieve two of these three goals
• DW + ETL achieves „custom integrity“ and „decoupling“ goals. But, not „sharing“.
• Data Lake achieves „sharing“ and „decoupling“. But, not „custom integrity“.

Example: Why is it difficult?

● USA Analyst
○ queries on USA orders
○ report only when all USA

orders have shipped

● Toys Analyst
○ queries on Toys orders
○ report only when all Toys

orders have shipped

Timeline of Order Process.
1. Enter(1, car, USA)
2. Enter(2, ball, Germany)
3. Ship(1)
4. Enter(3, ball, Germany)
5. Enter(4, car, USA)
6. Ship(2, 3)
7. Enter(5, ball, Germany)
8. Ship(4)

● USA Analyst
○ queries on USA orders
○ report only when all USA

orders have shipped

● Toys Analyst
○ queries on Toys orders
○ report only when all Toys

orders have shipped

Example: Why is it difficult?

Timeline of Order Proc.
1. Enter(1, car, USA)
2. Enter(2, ball, Germany)
3. Ship(1)
4. Enter(3, ball, Germany)
5. Enter(4, car, USA)
6. Ship(2, 3)
7. Enter(5, ball, Germany)
8. Ship(4)

Database states
that meet

USA Analyst‘s
constraint: 3, 4, 8.

Example: Why is it difficult?

• USA Analyst
• queries on USA orders
• report only when all USA

orders have shipped

• Toys Analyst
• queries on Toys orders
• report only when all Toys

orders have shipped

Timeline of Order Proc.
1. Enter(1, car, USA)
2. Enter(2, ball, Germany)
3. Ship(1)
4. Enter(3, ball, Germany)
5. Enter(4, car, USA)
6. Ship(2, 3)
7. Enter(5, ball, Germany)
8. Ship(4)

Database States
that meet

Toys Analyst’s
constraints: 1, 6

READY Approach

• Each update creates a new version of the data lake
• efficient implementation of update batches via „delta materialization“ (see paper)

• All applications run in a sandbox
• sandbox defines a set of integrity constraints
• (sandbox also determines concurrency control policy)

• Consumers: sandbox controls which versions are visible
• non-compliant versions are not visible to consumer, but possibly to other consumers
• query annotation determines which visible version to use (next, last, continuous)

• Producers: sandbox controls which versions are legal
• non-compliance results in abort of transactions, just as in regular RDBMS
• In READY 1.0, there is only one producer sandbox

READY Approach: Temporal Data Lake

Producer

V1 V2 V3 V4 V5
all versions of data lake

• Producer generates new versions independent of consumers
• Only requirement: each version meets producers integrity constraints

READY Approach: Visibility of Versions

Producer

V1 V2 V3 V4 V5
all versions of data lake

Consumer1 all versions visible to C1
(versions meet C1’s constraints)

• Consumer1 only sees those versions that meets its constraints
• does not block producer if producer creates version that is not compliant

READY Approach: Query Annotations

Producer

V1 V2 V3 V4 V5
all versions of data lake

Consumer1 all versions visible to C1
(versions meet C1’s constraints)

• Consumer1 only sees those versions that meets its constraints
• Last: use latest visible version to process query

query (last)

READY Approach: Query Annotations

Producer

V1 V2 V3 V4 V5
all versions of data lake

Consumer1 all versions visible to C1
(versions meet C1’s constraints)

• Consumer1 only sees those versions that meets its constraints
• Last: use latest visible version to process query
• Next: wait for next visible version to process query

query (next)

READY Approach: Decoupling

Producer

V1 V2 V3 V4 V5
all versions of data lake

Consumer1 all versions visible to C1
(versions meet C1’s constraints)

• Consumer2 only sees those versions that meet its constraints
• may or may not overlap with C1 or any other consumer

Consumer2 all versions visible to C2
(versions meet C2’s constraints)

Related Work and Concepts

• Views
• Pro: sandbox is like a view that filters the right version of a record
• Con: sandboxes are updateable (producers run in sandboxes)
• Con: simpler view definition

• Materialized Views, Incremental Maintenance & Streaming
• a great way to implement sandboxes

• DataHub, Version Control Systems (git), Temporal Databases
• right way to think about data lake and visibility of versions

Agenda

• READY: Basic Concepts
• READY 1.0: Implementation
• Experiments & Results

READY 1.0
● Sandboxes

○ Each transaction / query runs in a sandbox

○ Sandboxes Define:

■ which snapshots of data lake are visible

■ which business objects are visible

21

READY 1.0: Sandbox Syntax

CREATE SANDBOX sandboxName (argname argtype)*
[FOR UPDATES]
[WHEN predicate]
[WITH (relationName: predicate)*];

READY 1.0: Sandbox Example

CREATE SANDBOX noOpenOrderSandbox()
WHEN
NOT EXISTS (SELECT * FROM Order o

WHERE o.o_status = "Open")

READY 1.0: Parameterized Sandbox

CREATE SANDBOX completeByNation(:nationId INT)
WHEN
FORALL (SELECT o.status as s

FROM Order o, Customer c
WHERE o.o_custkey == c.c_custkey

AND c.c_nationkey == :nationId)
SATISFY s = "Verified"

BEGIN USING completeByNation("Germany")
NEXT;

SELECT c.name, count(*)
FROM Order o, Customer c
WHERE o.o_custkey = c.c_custkey
AND c.c_nationkey = "Germany"

GROUP BY c.name
COMMIT;

READY 1.0: Sandbox Usage

READY 1.0: System Overview

READY 1.0: Version Management

READY 1.0: Delta Materialization

READY 1.0: Version Selection (integrity checks)

• Batch processing whenever needed

• Incremental processing with every new version of data lake

• Constraint checks can be expressed as tuple counting

Exists: count(S) > 0
FORALL: count(S) = count(p(S))

• Transform constraint checking into:

count(post(S)) = count(pre(S)) + count(delta(S))

Agenda

• READY: Basic Concepts
• READY 1.0: Implementation (see paper)
• Experiments & Results

READY Prototype (Runtime System)

TPC-H on READY

TPC-H
Update

Functions

No
constraints

TPC-H
Queries

Synthetic
Integrity

Constraints

READY 1.0: Version Management

READY 1.0: Delta Materialization

Experimental Set-Up and Goals

• Experiment 1: Measure Cost
• study „sharing“ goal
• vary number of applications (sandboxes) with synthetic integrity constraints

• Experiment 2: Measure Data Freshness
• study „decoupling“ goal
• vary number of applications (sandboxes) with synthetic integrity constraints

• Baselines for all experiments
• Global: data warehouse in which all consumers run on single data mart

• (conjunction of all sandboxes)
• Personal: one data mart for each consumer

Baseline 1: Global Data Warehouse

DB

Producer

ETL
DB

Consumer1 Consumer2

Sandbox1 AND Sandbox2

Baseline 2: Personal Data Warehouse

DB

Producer

ETL2

DB

Consumer1

Sandbox1

DB

Consumer1

Sandbox1

ETL1

Exp 1: Cost of TPC-H Update Functions
• Cost of Delta Materialization

• 8 Sandboxes, vary TPC-H Scaling Factor

Exp 2: Data Freshness (vary SF, sandboxes)

SF1 SF10

Conclusion & Future Work

• Thought experiment: What if DBMS supports multiple sets of IC?
• semantics make use of all classic DB concepts: snapshots, views, temporal
• nice implementation on top of Spark possible

• Future Work
• Generalize READY model: multiple producer sandboxes (think git & branching)

• need a way to „merge“ branches

