=

The Myria Big Data Management
and Analytics System
and Cloud Service

Jingjing Wang, Tobin Baker, Magdalena Balazinska, Daniel Halperin,
Brandon Haynes, Bill Howe, Dylan Hutchison, Shrainik Jain, Ryan Maas,
Parmita Mehta, Dominik Moritz, Brandon Myers, Jennifer Ortiz, Dan
Suciu, Andrew Whitaker, Shengliang Xu

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIVERSITY OF WASHINGTON
http://myria.cs.washington.edu

UNIVERSITY of WASHINGTON
eScience Institute
ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

I Acknowledgments

The Myria Team!
Our science collaborators!!

 Andrew Connolly, Tom Quinn, Sarah Loebman, Ariel
Rokem, Ginger Armbrust, Yejin Choi

Our sponsors!!|

 National Science Foundation, Moore & Sloan
Foundations, Washington Research Foundation,
eScience Institute, ISTC Big Data, Petrobras, EMC,
Amazon, and Facebook

Big Data

Management

Analytics

Science Apps

Magdalena Balazinska - University of Washington

| (@ Myria

Goals of the Myria stack

e Advance state-of-the-art in big data systems

* Focus on efficiency and productivity

* Test on real applications and support real users

Deliverables:
* Built a new big data mgmt & analytics system
* Deployed and operate Myria as a service

 Source code and demo service:
http://myria.cs.washington.edu

Magdalena Balazinska - University of Washington

UNIVERSITY of WASHINGTON

eScience Institute

ADVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Myria has been developed and is operated by

* Database Group in the Computer Science &
Engineering Department at UW

e UW eScience Institute

Co-Pls: Dan Suciu and Bill Howe

Magdalena Balazinska - University of Washington

Myria Demo

Magdalena Balazinska - University of Washington

PR

00 / @, Overview X \\

Nhsitisnal)

> C "D myria.cs.washington.edu Se rVice avallable

Myria Cloud Service

@ Myria People Papers & Projects v+ Use Cases t h rou g h p roj ect we bs |te

Myria Big Data as a Service

Myria is a distributed, shared-nothing Big Data management system and
Cloud service from the University of Washington. We derive requirements
from real users and complex workflows, especially in science.

Try the free tier Myria service

Deploy your own Myria cluster

Magdalena Balazinska - University of Washington 7

Analysis in the Browser with Myria

0O /@ Myria Web Frontend x \UR - Magdalen:
o C' | demo.myria.cs.washington.edu/editor @Yy =
(@ Myria o
Write your code here, perhaps starting from one of the examples at Examples Datasets Query Plan Results
the right. e

Visualization of the logical and optimized physical query

= scan(Twitterk); plan

1
T2 = scan(Twitterk);
Joined = [from T1l, T2 .

where T1.$1 = T2.50 Code parsed as Relational Algebra ¢

emit T1.$0 as src, T1l.$1 as link, T2.$1 as dst];
store(Joined, TwoHopsInTwitter);

Relational algebra converted and optimized
©@Parse X Myria JSON into a Myria Physical Plan

T F 2 7 F 3)
X ragment ragment
Query Language Myrial v
Scan(public:adhoc:TwitterK) } T Scan(public:adhoc: TwitterK) }
/ Developer Options 1
T ShuffleProducer(h($1))] T ShuffleProducer(h($0))]
\\ Y, J
O
f \ Fragment 1 {)

Declarative-imperative analysis [emoemm) [Coteomen
with Myrial and Python ? LN

SymmetricHashJoin(($1 = $2); $0,$1,$3))

v

O
SplitProducer

Magdalena Balazinska - University of Washingtor / 8

Myria Operates Directly on Data in S3

Write your code here, perhaps starting from one of the examples at
the right. s

"4

L' 171 = load("https://s3-us-west-
2.amazonaws.com/uwdb/sampleData/TwitterK.csv",

2 ecsv(schema(a:int, b:int),skip=0));

3 store(Tl, TwitterK, [a, b]);

For efficient processing, caches query
results internally in cluster

Magdalena Balazinska - University of Washington

Myrial is Imperative+Declarative

with lterations

Write your code here, perhaps starting from one of the examples at

the right. e
E = scan(Twitterk);
V = select distinct E.$0 from E;
CC = [from V emit V.$0 as node id, V.$0 as component id];

do
new CC = [from E, CC where E.$0 = CC.$0 emit E.S1,
CC.$1] + CC;
new CC = [from new CC emit new CC.$0, MIN(new CC.$1)1];
delta = diff(CC, new CC);
CC = new CC;
while [from delta emit count(*) > 0];
comp = [from CC emit CC.$1 as id, count(CC.$0) as cnt];
store(comp, TwitterCC);

» Execute the Query

© Parse X Myria JSON

Magdalena Balazinska - University of Washington 10

Physical Query Plan:

Myria Provides Details

of Query Execution

o0

Fragment 2

~

Fragment 3

T Scan(public:adhoc: TwitterK)]

T Scan(public:adhoc: TwitterK)]

1

y

[

ShuffleProducer(h($1))]

[

ShuffleProducer(h($0))]

J

.

[

~

\ Fragment 1

o0
@
ShuffleConsumer] ShuffleConsumer

SplitProducer

/)

Overview /' Operators inside fragment 1

Query time contribution collapse/expand

O O
oSpI SymmetricHashJoin(($1 = $2); $0,$1,$3) SHShi
4% 92 % 2029

Detailed execution

| 1 A A

2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18 ms 20ms 22ms 24 ms 26 ms
4 —
o -
£ 34
o
=
© _
- 2
1 -
0 l I l Tim!
2ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 18 ms 20ms 22ms 24 ms 26 ms

Magdalena Balazinska - University of Washington 11

Myria Service includes
Jupyter Notebook

\\

Nehuttridus)

," o A [N .
/ Home X/ __ myria

C' || demo.myria.cs.washington.edu:8888/notebooks/myria.ipynb

ZJu pyte I myria (ead only) .

Fle Edit View Insert Cell Kemel Help @ | Python2 O

+ x @@ B 4 v M B C Markdown 0 CellToolbar

In [45]: Slide Type Fragment §

%$%query --Embed MyriaL in Jupyter notebook by using the "%$%query" prefix

insurance = scan(insurance);

descriptives = [from insurance emit min(eq_site_ deductible) as min_deductible,
max(eq_site_deductible) as max deductible,
avg(eq_site_deductible) as mean_deductible,
stdev(eq site deductible) as stdev_deductible];

store(descriptives, descriptives);

Out[45]: max_deductible | mean_deductible | min_deductible | stdev_deductible

014112 89.045455 0 989.204846

Jupyter notebook available directly

with Myria service

Magdalena Balazinska - University of Washington 12

Myria Supports Python
User-Defined Functions

#define python function
def denoise(dt):
from dipy.denoise import nlmeans
from dipy.denoise.noise estimate import estimate sigma
image = dt[0]
mask = dt[1]
sigma = estimate sigma(image)
denoised data = nlmeans.nlmeans(image, sigma=sigma, mask=mask)
return denoised data

Data from the Human
Connectome project

#register python functions
connection.create function("denoise",inspect.getsource(denoise),inSchema, outType, py,denoise

#this query takes 2.40 mins
query = MyriaQuery.submit (
"""Tl=scan(public:blob operator:binarydata);
imgs = [from Tl emit PYUDF(denoise, Tl.images, Tl.mask) As denoised];
store(imgs, Denoised imgs);""")
print query.status

Python UDFs enable running legacy code

and complex analytics beyond SQL/Myrial 13

| Users Can Deploy Own Service

plp 1nstall myria-cluster

myria-cluster create [OPTIONS] CLUSTER NAME

myria-cluster stop/start/destroy [..]

Magdalena Balazinska - University of Washington

14

Example Myria Apphcatlons

Natural Language Processing

4 o A

f

| b ro Ught away one unicorn

PRP VBD RB CD NN
Picture from Leila Zilles

. ASt ro n O my MyMergerTree Screenshot
Neuroscience
8 Nanoplankton ~
)
P Ultraplankton / _
0 o .
g Picoplankton ©
o /4
nd ; *’31 *”?é‘§§_‘::rF e Metocclar & Cal Bokog
I5rochlorococcus ‘
FSC ® A4
Oceanograph - .
Data from the Human g p y BlbllomEtrlcs 15

Connectome project

Myria Internals

Magdalena Balazinska - University of Washington

16

‘ Myria Polystore Stack

| - ! <€
r» l 1 MyMergerTree

Browser Python/Jupyter Specialized Services

Query Translation, Optimization,
and Orchestration

MyriaX

Parallel, lterative,
and Elastic Query
Execution

Myria’s Data Model and Query Interface

Relational Algebra Compiler (RACO)
— Myria’s query optimizer and federator
 RACO core: relational algebra extended with
— |terations for multi-pass algorithms
— Flatmap to explode non-1NF attribute values into many tuples
— Stateful apply for windowed and neighborhood functions
 Query language: Myrial (Imperative+Declarative)
— Each statement is declarative (SQL, comprehensions, function calls)

— Statements are combined with imperative constructs
* Variable assignment
* |teration

 Python UDFs/UDAs
— Minimize barriers to adoption and run legacy code

e Python API
— Fluent API with Python lambda functions

Magdalena Balazinska - University of Washington 18

Polystore Optimization

* Rule-based opt. with three types of rules
— Optimize logical Myria algebra plans
— Translate logical plans into back-end specific physical plans
— Optimize back-end specific physical plans

 To add a new back-end, developer must specify
— Tree representation of query language
— Rules that translate Myria algebra into this representation
— Administrative functions including one to submit queries

 Data model independence
— Myria hides the existence of various back-ends
— Users write Myrial scripts assuming relational model
— Back-ends include select array, graph, and key-value systems

Magdalena Balazinska - University of Washington

19

Federated Query Execution

User or Opt.

............ | ol [S
Source :i[1] 2] : Target
DBMS t = scan(data) X = import('db://Source’)E DBMS

Work - x = distances(t,t) u = cluster(x) : 3
OFKery | export(x, 'db://Target") Worker,
. " .

([J ®
[o
[: : o

Worlker,, |: Worker Directory | Worker,,

0 source.w, = target.w,, 0

Federated plans require fast data movement

Magdalena Balazinska - University of Washington

Data Movement with PipeGen

PipeGen: Data Pipe Generator for Hybrid Analytics

Brandon Haynes, Alvin Cheung, and Magdalena Balazinska. SOCC 2016.

DBMS 4) Pipegen-Enabled DBMS
Bytecode‘ , N 7
Pi peG en # NN
. R BN\
ol -
Tests ~ /
pgms DBMS with
bytecode Data Pipe optimized
o yee data pipe
IORedirect: I/O Redirector
Identify Inject
Instrument File Open Conditional
Unit Tests . . .
Expressions Redirection
" Augmented |
_Types |
FormOpt: Format Optimizer
Instrument Data Flow Type > Plp?ye”.fy:
Unit Tests Analysis Substitution Verification
21

PipeGen’s Performance

File System versus PipeGen Performance (CSV)

Runtime File System / PipeGen
\S)

Hadoop Giraph Spark Myria Derby
Destination DBMS: ® Hadoop ™ Giraph ®Spark ™ Myria ™ Derby

.S‘por‘l'zZ

16-node cluster with 16 workers/tasks
Transfer 1079 tuples with 4 ints and 3 doubles

@Myria Ahatzlmmp

F;i /& Fl; |_E| Apache Derby "

Magdalena Balazinska - University of Washington 22

‘ Myria Polystore Stack

| - ! <€
r» l 1 MyMergerTree

Browser Python/Jupyter Specialized Services

Query Translation, Optimization,
and Orchestration

MyriaX

Parallel, lterative,
and Elastic Query
Execution

MyriaX Engine and Cloud Deployment

JSON query plans & API calls
1

(4)
REST Interface

Coordinator

YARN Container

¥ Amazon EC2 Instance —/

YARN Container

(")

\ Amazon EC2 Instance /

YARN Container YARN Container

J

Amazon EC2 Instance

Magdalena Balazinska - University of Washington

MyriaX Overview

 Data storage
— Read data from S3, HDFS, local files
— Parse CSV, TSV, and various scientific file formats
— Store data in local relational DBMS instances
* Fast storage with physical tuning (indexing, hash-partitioning)
* Query execution

— Fundamentally a parallel DBMS
* Fast, pipelined query execution

— But scheduling more flexible to support elasticity
— Novel features: Multiway joins and iterations

* Resource management
— Executes on top of the YARN resource manager

Magdalena Balazinska - University of Washington

25

I Efficient Iterative Processing

Asynchronous and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines
Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. PVLDB 8(12): 1542-1553 (2015)

* User specifies query declaratively
— Subset of Datalog with aggregation

* Generate efficient, shared-nothing query plan
— Small extensions to existing shared-nothing systems

* Plan amenable to runtime optimizations
— Synchronous vs asynchronous
— Different processing priorities

* Optimizations significantly affect performance

Myria’s Optimized Iterations Example

Asynchronous and Fault-Tolerant Recursive Datalog Evaluation in Shared-Nothing Engines
Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. PVLDB 8(12): 1542-1553 (2015)

Declarative Query

E = scan(jwang:cc:graph) ;
V = select distinct E.SO from E;
do

CC := [$0, MIN($1)] <-

[from V emit V.$S0 as x, V.$0 as y] +
[from E, CC where E.$0 = CC.$0 emit E.$1, CC.S1];

until convergence;
store (CC, CC);

Compiled to a Distributed Query Plan

// Can have multiple relations
// with recursive dep. seanEeked) |
~
- IDBController(CC)

Magdalena Balazinska - University of Washington 27

Performance Comparison with Spark

Declarative Query
(subset of Datalog with agg.)
v Synchronous
Shared-Nothing Query Plan
In-Memory Processing %
Prioritize New Data Prioritize Base Data
of Workers
8 16 32 64

250
’_8‘ Connected Components — Twitter subgraph
S 200 221 million edges and 5 million vertices
(&)
O
? 150 I
(]
S
=100
e I I
S 50
<]

: B n n
®m Spark Myria, Sync ® Myria, Async

(GraphX) 28

‘ Myria Polystore Stack

| - ! <€
r» l 1 MyMergerTree

Browser Python/Jupyter Specialized Services

Query Translation, Optimization,
and Orchestration

MyriaX

Parallel, lterative,
and Elastic Query
Execution

Cloud Operation in Myria

Start Page / Select a Service Tier / Begin the Query Session / Scaling Algorithms / Replay

Upload data

2 Upload TPCH-SSB Dataset

Or point to data in Amazon S3

Magdalena Balazinska - University of Washington

Myria’s Personalized
Service Level Agreements

Changing the Face of Database Cloud Services with Personalized Service Level Agreements

Jennifer Ortiz, Victor T. Almeida, and Magdalena Balazinska. CIDR 2015

Tier #1
Runtime
Query Template (seconds)
SELECT (17 attributes) FROM (lineitem) WHERE (1% of data selected) 10
SELECT (9 attributes) FROM (part) WHERE (100% of data selected)
SELECT (9 attributes) FROM (customer) WHERE (100% of data selected)
SELECT (17 attributes) FROM (date) WHERE (100% of data selected)
SELECT (35 attributes) FROM (3 TABLES) WHERE (100% of data selected) 60
SELECT (48 attributes) FROM (5 TABLES) WHERE (10% of data selected)
SELECT (60 attributes) FROM (5 TABLES) WHERE (1% of data selected)
SELECT (49 attributes) FROM (5 TABLES) WHERE (100% of data selected) 300
SELECT (60 attributes) FROM (5 TABLES) WHERE (10% of data selected)
SELECT (60 attributes) FROM (5 TABLES) WHERE (100% of data selected) 600
% Purchase @ $0.16/hour
Workload Runtime
Generation Prediction

Magdalena Balazinska - University of Washington

Tier #2
Runtime
Query Template (seconds)
SELECT (26 attributes) FROM (2 TABLES) WHERE (100% of data selected) 10
SELECT (60 attributes) FROM (5 TABLES) WHERE (10% of data selected)
SELECT (60 attributes) FROM (5 TABLES) WHERE (100% of data selected) 300
% Purchase @ $0.64/hour
[] ’ [
Myria’s SLA generation
Workload Compression into PSLA
Quer Template Cross-Tier
y pla _ L > pSLA
CIusterlngGeneratlon Pruning
31

Myria’s PerfEnforce Subsystem

PerfEnforce Demonstration: Data Analytics with Performance Guarantees

Jennifer Ortiz, Brendan Lee, and Magdalena Balazinska. SIGMOD 2016.

Query Session

Write a Query...

SELECT *
FROM "public:adhoc:lineitem" AS L
WHERE 1 linenumber = 7;

® See SLA Runtime

Query Information
Expected Runtime (from SLA): 11.756 seconds

status: SUCCESS
seconds elapsed: 1.168460994

Cluster is using 12 workers

Previous Queries Log

Query: SELECT * FROM "public:adhoc:lineitem" AS L WHERE |_linenumber = 7;
Actual Runtime: 1.168460994

Expected Runtime: 11.756

Cluster Size Ran: 12

Magdalena Balazinska - University of Washington

32

Myria’s PerfEnforce Subsystem

PerfEnforce Demonstration: Data Analytics with Performance Guarantees
Jennifer Ortiz, Brendan Lee, and Magdalena Balazinska. SIGMOD 2016.

Q u e ry S es S i O n How can the cloud provider guarantee these runtimes?
Write a Query...
SELECT * grow

FROM "public:adhoc:lineitem" AS L
WHERE 1 linenumber = 7;

/|

Query Information .
Expected Runtime (from SLA): 11.756 seconds
status: RUNNING -

seconds elapsed: 1.048921161 .
shrink

Cluster is using 6 workers

Previous Queries Log Cluster size changes
Query: SELECT * FROM "public:adhoc:lineitem" AS L WHERE |_linenumber = 7; duri ng query session

Actual Runtime: 1.168460994
Expected Runtime: 11.756
Cluster Size Ran: 12

Magdalena Balazinska - University of Washington 33

Myria’s Innovations Summary

/ Myria Polystore \

Efficient Processing & \
Complex Analytics with MyriaX Federated Analytics
Efficient Multi-Join Iterative Queries
Automatic Data Pipes

Data Summaries

Image Processing perf. Debugging

\&

~/

Myria Cloud Operation

Cloud PSLAs Performance Guarantees Elastic Memory

Magdalena Balazinska - University of Washington 34

| Conclusion

* Highly expressive
— Myrial (RA+iterations) & Python
e Polystore with hybrid analytics
* High performance on variety of queries

* Available as a service
— Focus on low barrier to entry
— And turning users into self-sufficient experts
— Also focus on the service provider: Operate Myria

e Source code and more info (includes videos)
http://myria.cs.washington.edu/

Magdalena Balazinska - University of Washington 35

