
Jingjing Wang,	Tobin	Baker,	Magdalena	Balazinska,	Daniel	Halperin,	
Brandon	Haynes,	Bill	Howe,	Dylan	Hutchison,	Shrainik Jain,	Ryan	Maas,	
Parmita Mehta,	Dominik	Moritz,	Brandon	Myers, Jennifer	Ortiz,	Dan	

Suciu,	Andrew	Whitaker,		Shengliang Xu
DEPARTMENT OF COMPUTER SCIENCE &	ENGINEERING

UNIVERSITY OF WASHINGTON
http://myria.cs.washington.edu

The	Myria Big	Data	Management	
and	Analytics	System
and	Cloud	Service

Acknowledgments

The	Myria Team!
Our	science	collaborators!!
• Andrew	Connolly,	Tom	Quinn,	Sarah	Loebman,	Ariel	
Rokem,	Ginger	Armbrust,	Yejin Choi

Our	sponsors!!!
• National	Science	Foundation,		Moore	&	Sloan	
Foundations,	Washington	Research	Foundation,	
eScience Institute,	ISTC	Big	Data,	Petrobras,	EMC,	
Amazon,	and	Facebook

2Magdalena	Balazinska	- University	of	Washington

Big	Data

Magdalena	Balazinska - University	of	Washington 3

Management

Analytics

Efficient Easy

Science	Apps

Goals	of	the	Myria stack
• Advance	state-of-the-art	in	big	data	systems
• Focus	on	efficiency	and	productivity
• Test	on	real	applications	and	support	real	users

Deliverables:
• Built	a	new	big	data	mgmt &	analytics	system
• Deployed	and	operate	Myria as	a	service
• Source	code	and	demo	service:	
http://myria.cs.washington.edu

4Magdalena	Balazinska	- University	of	Washington

5Magdalena	Balazinska	- University	of	Washington

Myria has	been	developed	and	is	operated	by
• Database	Group	in	the	Computer	Science	&	
Engineering	Department	at	UW

• UW	eScience Institute

Co-PIs:	Dan	Suciu and	Bill	Howe

6

Myria Demo

Magdalena	Balazinska	- University	of	Washington

Myria Cloud	Service

Magdalena	Balazinska	- University	of	Washington 7

Service	available	
through	project	website

Analysis	in	the	Browser	with	Myria

Magdalena	Balazinska	- University	of	Washington 8

Declarative-imperative	analysis
with	MyriaL and	Python

Myria Operates	Directly	on	Data	in	S3

Magdalena	Balazinska	- University	of	Washington 9

For	efficient	processing,	caches	query	
results	internally	in	cluster

MyriaL is	Imperative+Declarative
with	Iterations

Magdalena	Balazinska	- University	of	Washington 10

Myria Provides	Details
of	Query	Execution

Magdalena	Balazinska	- University	of	Washington 11

Myria Service	includes
Jupyter Notebook

Magdalena	Balazinska	- University	of	Washington 12

Jupyter notebook	available	directly	
with	Myria service

Myria Supports	Python
User-Defined	Functions

Magdalena	Balazinska	- University	of	Washington 13

Data	from	the	Human
Connectome	project

MRI	data	analysis

Python	UDFs	enable	running	legacy	code	
and	complex	analytics	beyond	SQL/MyriaL

Users	Can	Deploy	Own	Service

pip install myria-cluster

Magdalena	Balazinska	- University	of	Washington 14

myria-cluster create [OPTIONS] CLUSTER_NAME

myria-cluster stop/start/destroy […]

Example	Myria Applications

15

Neuroscience
Astronomy

Natural	Language	Processing

Picture	from	Leila	Zilles
MyMergerTree Screenshot

Data	from	the	Human
Connectome project

Oceanography

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

ps3.fcs…subset

FSC

6
9
2
-4
0

R
ED

 fl
uo

re
sc

en
ce

FSC

Picoplankton

Nanoplankton

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

P35-surf

FSC Small Stuff

5
8

0
-3

0

IS

Ultraplankton

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

P35-surf

FSC Small Stuff

6
9

2
-4

0
 l
itt

le
 s

tu
ff

Phytoplankton

Prochlorococcus

Bibliometrics

16

Myria Internals

Magdalena	Balazinska	- University	of	Washington

Myria Polystore Stack

Browser Specialized	Services

RACO

MyMergerTree

Query	Translation,	Optimization,
and	Orchestration

Python/Jupyter

Parallel, Iterative,
and Elastic Query

Execution

MyriaX
MPI

SciDB

Graphs

NoSQL

Magdalena	Balazinska	- University	of	Washington 17

Myria’s Data	Model	and	Query	Interface
• Relational	Algebra	Compiler	(RACO)

– Myria’s query	optimizer	and	federator	
• RACO	core:	relational	algebra	extended	with

– Iterations for	multi-pass	algorithms
– Flatmap to	explode	non-1NF	attribute	values	into	many	tuples
– Stateful apply for	windowed	and	neighborhood	functions

• Query	language:	MyriaL (Imperative+Declarative)
– Each	statement	is	declarative	(SQL,	comprehensions,	function	calls)
– Statements	are	combined	with	imperative	constructs

• Variable	assignment
• Iteration

• Python	UDFs/UDAs
– Minimize	barriers	to	adoption	and	run	legacy	code

• Python	API
– Fluent	API	with	Python	lambda	functions

Magdalena	Balazinska	- University	of	Washington 18

Polystore Optimization
• Rule-based	opt.	with	three	types	of	rules

– Optimize	logical	Myria algebra	plans
– Translate	logical	plans	into	back-end	specific	physical	plans
– Optimize	back-end	specific	physical	plans

• To	add	a	new	back-end,	developer	must	specify
– Tree	representation	of	query	language
– Rules	that	translate	Myria algebra	into	this	representation
– Administrative	functions	including	one	to	submit	queries

• Data	model	independence
– Myria hides	the	existence	of	various	back-ends
– Users	write	MyriaL scripts	assuming	relational	model
– Back-ends	include	select	array,	graph,	and	key-value	systems

Magdalena	Balazinska	- University	of	Washington 19

Federated	Query	Execution

Federated	plans	require	fast	data	movement

Magdalena	Balazinska	- University	of	Washington 20

Worker1

Worker"

Source	
DBMS	

User

t = scan(data)
x = distances(t,t)
export(x,'db://Target')

x = import('db://Source')
u = cluster(x)

Worker	Directory
source.w1à target.wm
source.wnà target.w1

[1] [2]

[3]

[4]

Worker1

Worker#

Target
DBMS	

…

User	or	Opt.

Data	Movement	with	PipeGen

A+

DBMS	
Bytecode

Unit	
Tests

PipeGen

Pipegen-Enabled	DBMS

21

PipeGen:	Data	Pipe	Generator	for	Hybrid	Analytics
Brandon	Haynes,	Alvin	Cheung,	and	Magdalena	Balazinska.	SOCC	2016.	

DBMS
bytecode

DBMS with
optimized
data pipe

PipeVerify:
Verification

IORedirect: I/O Redirector
Identify

File Open
Expressions

Inject
Conditional
Redirection

Instrument
Unit Tests

Instrument
Unit Tests

Data Flow
Analysis

Type
Substitution

FormOpt: Format Optimizer

Data Pipe
Type

Augmented
Types

PipeGen’s Performance

Magdalena	Balazinska	- University	of	Washington 22

16-node	cluster	with	16	workers/tasks
Transfer	10^9	tuples	with	4	ints and	3	doubles

Myria Polystore Stack

Browser Specialized	Services

RACO

MyMergerTree

Query	Translation,	Optimization,
and	Orchestration

Python/Jupyter

Parallel, Iterative,
and Elastic Query

Execution

MyriaX
MPI

SciDB

Graphs

NoSQL

Magdalena	Balazinska	- University	of	Washington 23

MyriaX Engine	and	Cloud	Deployment

Magdalena	Balazinska	- University	of	Washington 24

Amazon	EC2	Instance	

JSON	query	plans	&	API	calls	

Coordinator	
REST Interface

Worker	

HDFS	
Amazon	EBS	Volumes	and/or	Local	Storage	

RDBMS	

Amazon	S3	

Worker	

YARN	Container	

Worker	

YARN	Container	

YARN	Container	

… …

YARN	Container	

Amazon	EC2	Instance	

RDBMS	 RDBMS	

Amazon	EC2	Instance	

… …

MyriaX Overview

25Magdalena	Balazinska	- University	of	Washington

• Data	storage
– Read	data	from	S3,	HDFS,	local	files
– Parse	CSV,	TSV,	and	various	scientific	file	formats
– Store	data	in	local	relational	DBMS	instances

• Fast	storage	with	physical	tuning	(indexing,	hash-partitioning)

• Query	execution
– Fundamentally	a	parallel	DBMS

• Fast,	pipelined	query	execution
– But	scheduling	more	flexible	to	support	elasticity
– Novel	features:	Multiway	joins	and	iterations

• Resource	management
– Executes	on	top	of	the	YARN	resource	manager

Efficient	Iterative	Processing

• User	specifies	query	declaratively
– Subset	of	Datalog with	aggregation

• Generate	efficient,	shared-nothing	query	plan
– Small	extensions to existing	shared-nothing	systems

• Plan	amenable	to	runtime	optimizations
– Synchronous	vs	asynchronous
– Different	processing	priorities

• Optimizations	significantly	affect	performance
Magdalena	Balazinska	- University	of	Washington 26

Asynchronous	and	Fault-Tolerant	Recursive	Datalog	Evaluation	in	Shared-Nothing	Engines
Jingjing Wang,	Magdalena	Balazinska,	and	Daniel	Halperin.	PVLDB 8(12):	1542-1553	(2015)

Myria’s Optimized	Iterations	Example

Declarative Query
E = scan(jwang:cc:graph);
V = select distinct E.$0 from E;
do
CC := [$0, MIN($1)] <-
[from V emit V.$0 as x, V.$0 as y] +
[from E, CC where E.$0 = CC.$0 emit E.$1, CC.$1];

until convergence;
store(CC, CC);

Magdalena	Balazinska - University	of	Washington 27

Asynchronous	and	Fault-Tolerant	Recursive	Datalog	Evaluation	in	Shared-Nothing	Engines
Jingjing Wang,	Magdalena	Balazinska,	and	Daniel	Halperin.	PVLDB 8(12):	1542-1553	(2015)

//	Can	have multiple relations
//	with recursive dep.

IDBController(CC) Scan(Edges)

Join

Scan(Edges)

Compiled to a Distributed Query Plan

Performance	Comparison	with	Spark
Declarative	Query

(subset	of	Datalog with	agg.)

Shared-Nothing	Query	Plan
In-Memory	Processing

Synchronous

Asynchronous

Prioritize	New	Data Prioritize	Base	Data

28

of Workers
8 16 32 64

0

50

100

150

200

250

Q
ue

ry
 T

im
e

(S
ec

on
ds

)

Spark Myria, Sync Myria, Async

(GraphX) 28

Connected	Components	– Twitter	subgraph
221	million	edges	and	5	million	vertices	

Myria Polystore Stack

Browser Specialized	Services

RACO

MyMergerTree

Query	Translation,	Optimization,
and	Orchestration

Python/Jupyter

Parallel, Iterative,
and Elastic Query

Execution

MyriaX
MPI

SciDB

Graphs

NoSQL

Magdalena	Balazinska	- University	of	Washington 29

Magdalena	Balazinska	- University	of	Washington 30

Cloud	Operation	in	Myria

Or	point	to	data	in	Amazon	S3

Myria’s Personalized
Service	Level	Agreements

31

Changing	the	Face	of	Database	Cloud	Services	with	Personalized	Service	Level	Agreements
Jennifer	Ortiz,	Victor	T.	Almeida,	and	Magdalena	Balazinska.	CIDR	2015

Magdalena	Balazinska	- University	of	Washington

Workload	Compression	into	PSLA

Workload	
Generation

Query
Clustering

Template	
Generation

Cross-Tier	
Pruning PSLASchema

Runtime	
Prediction

Myria’s SLA	generation

Myria’s PerfEnforce Subsystem

32

PerfEnforce	Demonstration:	Data	Analytics	with	Performance	Guarantees
Jennifer	Ortiz,	Brendan	Lee,	and	Magdalena	Balazinska.	SIGMOD	2016.

Magdalena	Balazinska	- University	of	Washington

Magdalena	Balazinska - University	of	Washington

Myria’s PerfEnforce Subsystem

33

Cluster	size	changes
during	query	session

PerfEnforce	Demonstration:	Data	Analytics	with	Performance	Guarantees
Jennifer	Ortiz,	Brendan	Lee,	and	Magdalena	Balazinska.	SIGMOD	2016.

Automatic	Data	Pipes

Image	Processing
Perf.	Debugging

Cloud	PSLAs

Myria Cloud	Operation

Performance	Guarantees Elastic	Memory

Efficient	Multi-Join Iterative	Queries

Efficient	Processing	&
Complex	Analytics	with	MyriaX

Data	Summaries

Myria’s Innovations	Summary

Myria Polystore

Federated	Analytics	

Magdalena	Balazinska	- University	of	Washington 34

Conclusion
• Highly	expressive

– MyriaL (RA+iterations)	&	Python
• Polystore with	hybrid	analytics
• High	performance	on	variety	of	queries
• Available	as	a	service	

– Focus	on	low	barrier	to	entry
– And	turning	users	into	self-sufficient	experts
– Also	focus	on	the	service	provider:	Operate	Myria

• Source	code	and	more	info	(includes	videos)
http://myria.cs.washington.edu/

35Magdalena	Balazinska	- University	of	Washington

