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ABSTRACT
As data processing evolves towards large scale, distributed plat-
forms, the network will necessarily play a substantial role in achiev-
ing efficiency and performance. Increasingly, switches, network
cards, and protocols are becoming more flexible while programma-
bility at all levels (aka, software defined networks) opens up many
possibilities to tailor the network to data processing applications
and to push processing down to the network elements.

In this paper, we propose DPI, an interface providing a set of
simple yet powerful abstractions flexible enough to exploit features
of modern networks (e.g., RDMA or in-network processing) suit-
able for data processing. Mirroring the concept behind the Message
Passing Interface (MPI) used extensively in high-performance com-
puting, DPI is an interface definition rather than an implementation
so as to be able to bridge different networking technologies and
to evolve with them. In the paper we motivate and discuss key
primitives of the interface and present a number of use cases that
show the potential of DPI for data-intensive applications, such as
analytic engines and distributed database systems.

1 INTRODUCTION
The computer networks available in data centers and clusters
are evolving rapidly, increasingly providing sophisticated capa-
bilities such as RDMA (Remote Direct Memory Access), in-network
processing, and customizable communication protocols. Once the
province of specialized, expensive networks, the new functionality
is becoming available in off-the-shelf networks as well. An example
of how these advances can help with data intensive applications is
RDMA, the ability to directly read or write the memory of remote
machines without involving the remote CPU. RDMA makes data
transfer more efficient, and it frees up computing capacity, which
can lead to substantial performance gains [6–9, 16, 17, 20–23, 27, 28].
Unfortunately, using RDMA is complicated because it lacks higher-
level abstractions [10]. Recent work on using RDMA in relational
databases has shown that the design involves many low-level, yet
significant, decisions around connection management, memory
allocation, and the choice of which RDMA operations to use [1, 3].

This fragile dependency on low-level design aspects and lack
of portability across networks is not unique to RDMA; it affects
other technologies like smart NICs (Network Interface Cards) and
programmable switches as well [11]. This is concerning because
modern networks are increasingly software-defined, and there is
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a growing need to tailor them to data processing, e.g., through
load balancing and skew detection at the switch level, data parti-
tioning on the NIC, and content based routing. Although recent
results [4, 25] have shown that smart NICs and programmable
switches can improve the performance of distributed data process-
ing systems, the hand-tuning of low level details remains a problem.
Not only is the programming of the devices complex, it also creates
resource management problems such as deciding when to offload
computation into the network.

In this paper, we propose the Data Processing Interface (DPI) as
a way to address these problems. DPI’s goal is to make it easier for
applications to exploit current and emerging capabilities of modern
networks. Accordingly, DPI defines abstractions and interfaces
suited to a broad class of data-intensive applications, yet simple
enough for practical implementation with predictable performance
and low overhead relative to “hand-tuned”, ad hoc alternatives.
In designing an interface tailored to data processing, we adopt
the approach taken by other high-level interfaces, such as MPI
(Message Passing Interface) [13] and PGAS (Partitioned Global
Address Space), which have been designed for other application
domains and which, consequently, have seen only limited adoption
for data processing [2]. Like MPI, DPI defines an interface that
provides compatibility and portability across different networking
technologies.

In brief, the main idea of DPI is that data movements are repre-
sented as flows. DPI flows are an abstraction providing primitives
for efficient network communication. These primitives are intended
to be used as a foundation for building data-intensive systems and
abstractions. By lifting the level of abstraction, DPI flows factor
out much of the low-level complexity of network communication
and make it easier for developers to declaratively express how data
should be routed to accomplish a given distributed data processing
task. Moreover, DPI flows allow developers to declaratively spec-
ify optimization hints; e.g., to maximize bandwidth-utilization or
minimize network latency of transfers. That way, DPI can support
a wide variety of applications ranging from bandwidth-sensitive
distributed data analytics and machine learning to more latency-
sensitive workloads such as distributed transactions or stream pro-
cessing. Finally, flows can be active, meaning application-specified
transformations can be applied to the data as it is in transit from
source to destination. Thus, flows encapsulate both data movement
and data processing. Ultimately, by exposing network flows and
transformations explicitly, DPI will enable cost-aware optimiza-
tion of applications’ use of modern programmable networks, e.g.,
by deciding what functions to offload and when/where to offload
them. In the rest of the paper, we present an initial sketch of DPI,
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and illustrate application opportunities through a set of potential
data-intensive use cases.

2 PITFALLS OF EXISTING INTERFACES
Existing interfaces for programmable networks tend to be either
too low-level to exploit data semantics or overly symmetrical and
synchronous, limiting their applicability to data processing.

2.1 RDMA Verbs
RDMA provides access to a remote node’s main memory with-
out involving the CPU in the data transmission; RDMA is widely
deployed at scale via InfiniBand or RDMA over Converged Eth-
ernet (RoCE) [26, 29]. Applications use RDMA via the two types
of operations found in the verbs interface. One-sided verbs (READ-
/WRITE/atomics) provide remote memory access semantics and by-
pass the CPU of the remote node. Two-sided verbs (SEND/RECEIVE)
provide messaging semantics and actively invoke the remote CPU
on message receipt.

The two types of verbs have trade-offs. One-sided verbs have
very low latency but often require multiple network round trips
to implement complex operations. Two-sided verbs can be used to
perform arbitrarily complex operations on multiple remote memory
locations in a single round trip using an RPC-style approach [9, 17],
but then logic must be executed by the remote CPU. The corre-
sponding message handoff between the network card and the host
CPU adds overhead, and the remote CPU must pay the cost of per-
forming the operation. The suitability of each approach depends
on whether an application is network or CPU bound [10].

RDMA verbs are fixed in hardware, therefore applications cannot
specialize them (e.g., to support APPEND rather than just WRITE)
to simplify algorithms or to offload work to network cards. Fur-
thermore, RDMA verbs represent low-level operations requiring
applications to choose connection types (reliable vs. unreliable),
communication queue sizes, as well as manually handle remote
buffer allocation and management. For example, a simple RDMA
ping-pong requires over 1,000 lines of code.1 Worse, implementa-
tion details intricately depend on these choices, making it difficult
to evolve code as requirements change.

2.2 Other Network Interfaces
Some interfaces support higher-level abstractions for building dis-
tributed applications, and exploit RDMA as well. MPI [13] and the
PGAS programming model are two prominent examples. MPI is
widely used in HPC clusters; it has a network-independent interface
similar to what we envision for DPI. MPI is primarily focused on
message passing (MPI_Send, MPI_Recv), but extensions can make
use of one-sided primitives (MPI_Put, MPI_Get) and collectives
(MPI_Reduce). Mellanox’s SHARP can push individual MPI collec-
tive operations to InfiniBand switches.2

DPI’s approach is similar to MPI’s, but it differs in several im-
portant ways. First, DPI raises the abstraction further, allowing
applications to handle and accelerate the transfer of more irregular

1See https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/examples/rc_
pingpong.c
2http://www.mellanox.com/blog/tag/sharp-scalable-hierarchical-aggregation-and-
reduction-protocol/
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Figure 1: Positioning of the DPI APIs

data, such as records on a table heap. Second, MPI assumes tightly
coupled processes working mostly synchronously (e.g., workers
processing a matrix partition in time step), whereas DPI works well
for many concurrent but dissimilar flows of data between loosely co-
ordinated processes (e.g., migrating shards of a distributed database
and performing distributed joins). Third, MPI does not provide good
mechanisms to support a dynamic sets of processes communicating
with each other (e.g., to implement fault-tolerance and elasticity on
the application level), which are two important properties for data
processing solutions in cloud environments.

PGAS is sometimes used as an alternative to MPI to provide a
shared memory abstraction over a cluster of nodes. PGAS hides
the complex details such as connection setup and buffer allocation,
but it has no visibility into data. This makes it hard to accelerate
operations with in-network processing. Both PGAS and MPI have
seen limited adoption for distributed data-intensive applications,
in part due to these shortcomings [2].

2.3 Smart NICs and Switches
Pushing computation into the network today requires program-
ming explicitly for each unique type of network devices. Net-
work switches must be programmed with constrained match-action
rules [5]; smart NICs have different programming models depend-
ing on the type of on-device compute they support (e.g., FPGAs,
multi-core CPUs). There are a handful of proposed APIs for this
type of offload including sPIN [14], FlexNIC [18], and Portals [12].
Programming languages for SDN such as P4 tend to focus on net-
work operations. For instance, P4 has been used to performance
load balancing on caching architectures through the introduction
of small caches on the network switches [15]. DPI is orthogonal to
such efforts given its focus on an application level API but it can
benefit from these platforms as a way to implement a richer API.

3 THE DPI VISION
DPI is intended to simplify the development of distributed data
processing systems by abstracting out and implementing a useful
set of commonly needed network-centric operations. The aim of
DPI is thus to provide abstractions to enable a better exploitation of
capabilities in modern networks. Specific goals for DPI include (1)
enabling simple and efficient use of RDMA by raising the level of ab-
straction and (2) to enable distributed data-intensive applications to

https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/examples/rc_pingpong.c
https://github.com/linux-rdma/rdma-core/blob/master/libibverbs/examples/rc_pingpong.c
http://www.mellanox.com/blog/tag/sharp-scalable-hierarchical-aggregation-and-reduction-protocol/
http://www.mellanox.com/blog/tag/sharp-scalable-hierarchical-aggregation-and-reduction-protocol/
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transparently leverage in-network processing capabilities by push-
ing the DPI abstractions down into networking hardware. Since
DPI defines only abstractions and interfaces, it can have multiple
implementations for different network technologies (InfiniBand,
Omni-Path, RoCE, ...) and implementations that use different types
of smart network devices. DPI defines two interfaces, as we discuss
next: a high-level flow-based API and a lower-level memory-based
API, as shown in Figure 1.

Flow-based API. The flow-based API allows applications to define
data movements of tuples across a network. Applications define
different properties of the flow declaratively. Tuples may undergo
application-defined manipulations within the flow. We describe the
flow-based API in more detail in Section 4.

Our vision is that in-network processing should require only
a minimal adaptation of the software stack. To this end, the flow-
based API forces applications to expose important characteristics
of flows, such as routing behavior and tuple manipulations. These
characteristics can be further used for optimization and scheduling.
In particular, given suitably capable NICs or switches, a DPI imple-
mentation can push tuple routing decisions, transformations, filters
and aggregations into the network. Although we do not discuss it
in this paper in detail, our vision for DPI also includes a cost-based
optimizer for decisions such as which, whether, and when to push
operations into the network.

Memory-based API. The memory-based API is a lower-level API
that is intended to enable simple and effective use of RDMA. As
shown in Figure 1, the memory-based API is used to implement
the higher-level flow-based API. Moreover, it may also be used
directly by applications for which flows do not completely satisfy
application requirements (e.g., controlling tuple memory layout).
The memory-based API allows applications to transfer raw data
over the network and is thus closer to the level of abstraction
provided by the native network interfaces such as RDMA verbs.
However, unlike RDMA verbs, the memory-based API hides much
of the complexity around connection establishment, memory
management, etc. The memory-based API also provides more
expressive operations like a remote APPEND.We describe the
memory-based API in more detail in Section 5.

What is important to note is that DPI’s main goal is to provide ab-
stractions for efficient network communication that can be used to
build data-intensive systems and abstractions on top. For example,
flows can be used to implement not only shuffling operations for dis-
tributed joins but also other applications such as key/value-stores
(e.g., to implement a parameter server) that require a bidirectional
RPC-style communication. Some of these applications are discussed
in more detail in Section 6.

4 DPI FLOWS
A DPI flow defines a coordinated migration of tuples from a set of
senders (called sources) to a set of receivers (called targets). Each
source and target represents a communication endpoint on a server
in a distributed system.

4.1 Flow API Overview
Flows are intended to simplify the design and development of a
broad class of distributed data-intensive applications, examples of
which we discuss in Section 6. Specifically, DPI flows can help with
the following aspects:

Data Routing: Distributed applications often move data between
nodes, e.g., to bring matching tuples together when performing a
distributed join. A DPI flow defines such a data movement, allow-
ing the application to control how tuples are routed, filtered, and
distributed.
Data Transformation: In addition to moving data, applications
may wish to transform it. For example, flows can use a transfor-
mation that is defined as an encryption function which is applied
before a tuple is injected (i.e., pushed) into a flow.
Synchronization and Coordination: A DPI flow defines
whether and when tuple delivery is acknowledged to the source
node(s). For example, a DPI flow can be used to distribute an
update log from a master server to a set of slaves, while controlling
when the master receives acknowledgements from slaves.
Network Optimization: Flows allow applications to provide
hints of what the optimization goals of data transfers are. In a
first version, applications can declare a flow either to optimize for
latency or optimize for bandwidth utilization. This is important
to support a wide variety of applications from more analytical
workloads that are more bandwidth-sensitive to latency-sensitive
workloads such as distributed transactions.
Resource Management: RDMA and other high-performance net-
working mechanisms place the burden of resource management
(i.e., memory and connection handling) at the sources and tar-
gets to the application. DPI flows relieve the application of this
responsibility.

Once a flow has been initialized, the application can use the
API to inject tuples into the flow through the sources. DPI routes
and transforms the injected tuple according to the flow definition,
ultimately distributing the transformed tuple to one or more targets.
For consuming tuples, each target defines a (pull-based) iterator,
which the application can use to retrieve delivered tuples from the
flow. Flows may be finite, eventually terminating, or they may be
long-lived and potentially infinite (e.g. for stream processing).

4.2 Flow Characteristics
A DPI flow is defined with the following characteristics:

• R [mandatory]: The set of targets, specified at flow creation
time and fixed for the duration of the flow.

• S [mandatory]: The set of sources, which may change over
the duration of the flow.

• Fдroup (t) → k [mandatory]: The grouping function, a func-
tion that maps a tuple t to a grouping key k .

• Fdist (k) → R′ [mandatory]: The distribution function, a
function that maps a grouping keyk to a set of targetsR′ ⊆ R.

• Fmap (t) → t ′ [optional]: Themap function, a transformation
function that maps a tuple t into a new tuple t ′.

• Fr educe (T ) → t ′ [optional]: This function is a transforma-
tion that is applied to a list of tuplesT with the same grouping
key. The result is a new tuple t ′.
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• Fack (t) → a [optional]: The acknowledgement function
maps a tuple t to an acknowledgement key a.

• Hints [optional]: This allows applications to provide opti-
mization hints (e.g., if flows should be latency- or bandwidth-
optimized).

Together, Fдroup and Fdist define how items are routed from
sources to targets by DPI. Conceptually, each injected item is first
mapped to a DPI grouping key using Fдroup . Each grouping key
is then mapped to a set of targets by Fdist . The injected tuple is
delivered to each of these targets, i.e., tuple t is delivered to each
target in Fdist (Fдroup (t)).

A DPI flow can be made to filter (groups of) tuples by defining
Fdist to be empty for some grouping keys. Similarly, the flow will
replicate items if Fdist is defined to be one-to-many. Tuples injected
at a given source are delivered in injection order to each specific
target determined by Fdist and Fдroup . DPI makes no guarantees
about the delivery ordering of a source’s tuples with respect to
items that are injected at different sources.

Tuples can be modified by DPI as they flow from sources to
targets using map and reduce-style transformation functions (Fmap
and Fr educe ). These functions can be used to compose transfor-
mation pipelines that are executed at the sender before injecting
a tuple or at the target after receiving a tuple. Depending on the
nature of these functions, they can be pushed into a smart NIC at
the sender / receiver node or even further into the network into a
switch. Details about these functions are discussed next in §4.3.

Finally, a DPI flow can optionally be configured to provide deliv-
ery acknowledgements for tuples that have been injected into the
flow. When acknowledgements are used, an acknowledgement key
a is generated at each target for each tuple that it receives. These
acknowledgement keys are returned to the originating source. Thus,
acknowledgements can be viewed as forming a reverse flow of data,
from targets to sources.

4.3 Data Transformations
The Fmap transformation function takes one tuple as input and
returns one tuple as output. Thus, mapping functions can be used to
encrypt/decrypt tuples, for compression/decompression, for apply-
ing projections, or for other application-defined transformations.

In addition to Fmap , Fr educe functions can be applied as a trans-
formation function at the sender/target. As discussed before, Fдroup
is used for both grouping and routing. More precisely, when tuple
t is injected, DPI uses Fдroup (t) to determine t ’s grouping key and
Fdist to determine the destination. A reducer function is applied
to all tuples with the same grouping key (given by Fдroup (t)). The
Fr educe function can be used to specify aggregations on flows, e.g.,
to compute aggregates across tuples such as SUM or COUNT. Using
Fr educe functions, applications like distributed aggregation or a pa-
rameter server can be implemented (see §6). Further extensions for
window-based aggregations that are required for stream processing
is an interesting avenue of future work.

To transform tuples, map and reduce functions can be composed
into transformation pipelines. For each pipeline it must be defined
where in the flow the pipeline is being applied: either before tuples
are injected at the sender or after tuples are received at the target.
Moreover, for each function in a pipeline, the application can specify

whether the function can be pushed further down/upstream into
the network (e.g. a programmable switch) or whether it must be
executed at the sender/receiver node. For example, while a Fmap
for encryption/decryption has to be executed at the sender/receiver
and should not be pushed into a switch, for an Fr educe function
that aggregates tuples with the same grouping it might make sense
to push it into a switch to avoid congestion in the network as shown
in [4].

In a first version, DPI will provide a default set of mappers/reduc-
ers only; e.g., using standard aggregate functions such as SUM for
the reducer.. A future research challenge is to allow user-defined
mappers and reducers in DPI as we discuss in Section 7.

5 DPI MEMORY API
As shown in Figure 1, DPI’s memory API provides a lower-level
interface that is used to implement flows, and that can also be used
directly by applications that require control of the memory layout
of the transferred data. In the following, we first give an overview
of the memory API and then briefly discuss its use.

5.1 Memory API Overview
Operations of the memory API allow applications to transfer raw
data (rather than tuples) between source and targets. The oper-
ations are thus more similar to the semantics of native network
APIs (e.g., RDMA verbs) which also allow transfer raw data over
the network. However, the memory API simplifies connection and
memory management, and provides applications with more expres-
sive abstractions and operations for data processing beyond simple
reads and writes to implement (potentially) long-running flows.
The memory API provides the following key features:

Connection Handling: When using RDMA verbs, connections
are hard to establish since the application must take care of many
details involving the setup of queues for communication, as well
as the orchestration of event handling to ensure queues don’t
completely fill (or in some cases, drain). The memory API hides
this from the application. Instead, connections are established
transparently using the cluster specification provided to DPI.
Memory Management: A similar observation holds for the mem-
ory management. When using RDMA verbs, applications have to
explicitly manage local and remote memory regions that can be
used for RDMA by registering them on the NIC and keeping track
of which parts of the memory regions are already being used. In
contrast, the memory API provides higher-level abstractions that
hide this complexity. For example, the main abstraction provided
by the memory API are remote buffers into which producers can
easily append data, and from which consumers can consume data.
Buffers can be accessed by a single or multiple producers as dis-
cussed below. Important is that the memory required for accessing
buffers is transparently allocated/de-allocated by DPI.
One-to-one Operations: One-to-one operations can be used to
transfer data between a pair of nodes. Examples for those op-
erations include DPI_Read and DPI_Write operations to/from a
remote buffer. These operations are similar to RDMA verbs but
hide many of the complex details of memory management as
mentioned before.
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1 string buffer_name = "buffer";
2 char data1[] = "Hello ";
3 char data2[] = "World!";
4 int rcv_node_id = 0; //ID is mapped to a concrete node in cluster spec
5 DPI_Context context;
6 DPI_Init(context);
7 DPI_Create_Buffer(buffer_name , rcv_node_id , context);
8 DPI_Append(buffer_name , (void*)data1 , sizeof(data1), context);
9 DPI_Flush_Buffer(buffer_name);
10 DPI_Append(buffer_name , (void*)data2 , sizeof(data2), context);
11 DPI_Flush_Buffer(buffer_name);

Listing 1: DPI Append Example

One-to-many Operations: The operations in this category allow
one source node to read/write data from/to one or multiple remote
nodes. Examples for operations of this category are DPI_Scatter
and DPI_Gather to append/read to/from multiple buffers.
Many-to-one Operations: The many-to-one operations allow
multiple source nodes to access the same remote memory at one
target node. In this category, the memory API provides calls such
as a DPI_Append to allow multiple source nodes to append data
to a remote buffer in one target node.
One important factor of the memory API is that it is just an

abstraction and does not define how the data transfer operations
(one-to-one, one-to-many, many-to-one) are actually implemented.
To that end, the underlying DPI implementation can decide what
the most optimal implementation of an operation of the memory-
based API is (e.g. by using either one- or two-sided RDMA verbs or
even other primitives if RDMA is not available).

5.2 Using the Memory API
Usage by Applications. In the following, we provide a short ex-

ample of how the memory API’s DPI_Append operation can be
used in a distributed application. This example shows the behavior
of DPI_APPEND, and also illustrates the level of abstraction that
the memory API provides. Listing 1 shows how a source can use
DPI_Append to append data to a remote memory buffer created in
a target node. DPI’s remote memory buffers significantly simplify
remote memory management by keeping track of write offsets and
managing (re-)allocation of memory (which would need to be done
manually if RDMA verbs would be used). As a result, the remote
append can be implemented in only a few lines of code as shown in
Listing 1, while a similar application which uses RDMA verbs spans
more than 1,000 of lines of code. Although it is not illustrated in
this example, DPI_Append allows multiple sources to append data
to the same remote buffer concurrently.

Implementing Flows. As previously noted, the memory API is be-
ing used to implement the core functions of DPI flows. For example,
in our initial DPI prototype we are using remote memory buffers
to move data between sources and targets of a flow. Depending on
the distribution function specified by a flow, different data transfer
operations (one-to-one, one-to-many, many-to-one) are being used
to actually ship the data when tuples are being ingested into a flow.

6 POTENTIAL APPLICATIONS
In this section, we discuss how to use DPI to implement a variety
of applications through three examples. However, there are many
more not discussed in this section. For instance, stream processing is
a clear candidate that would benefit fromDPI. Furthermore, many of
the applications below can be further enhanced by more advanced

in-network processing capabilities such as sampling, conversion,
type casting, normalization, etc. We will explore such use cases as
part of future work.

6.1 Distributed Hash-Joins
A distributed hash-join can be implemented using DPI flows. Alter-
natively, the memory-based API could be used if more control is
needed over tuple layout. We briefly discuss both options.

Two flows would be required to implement the join using the
flow-based API, one flow for each input table. For both flows, the
grouping key is the join key and the distribution function uses a
hash function to map join keys to target identifiers. Targets use an
iterator to consume the incoming tuples. That way pipelining at
the targets can be done by consuming tuples as they arrive while
adding them into a hash table for the inner table or probing into
the hash table for the outer table. When using flows, the distributed
DPI-based hash-join can also benefit from in-network processing
in different ways. For example, a transformation can be defined
that applies on-the-fly compression/decompression to reduce the
memory footprint. Moreover, the join can also benefit from a cost-
aware DPI flow optimizer in that uses SDN functionality to precisely
load-balance traffic over available network routes between sources
and targets. This can avoid congestion in the network that, for
example, can result from attribute-value skew on the join keys.

As an alternative to the flow-based API, the memory-based API
can also be used to implement a classical data shuffling operation. A
direct way to do so is to use one remote memory buffer for each tar-
get node. Each source scans over its part of the input table, applies
the hash-partitioning function to determine the target where the
tuple should be routed, and adds the tuple to a local memory buffer
for the target. Whenever a local buffer becomes full, DPI_APPEND
can be used to move the local buffer to the target node. The join
could benefit from in-network-processing if DPI_APPEND is imple-
mented directly within the network card instead of using multiple
RDMA verbs (e.g., an atomic operation and a RDMAWRITE) for
each append call.

6.2 Parameter Servers
The parameter server architecture [19] has become a popular way
to structure large-scale distributed machine learning systems. The
parameter server architecture distinguishes servers, which maintain
the model being learned, and workers, which use training data to
compute model updates. At a very high level, servers distribute the
model to the workers, the workers compute model changes and
send them back to the servers, and the servers update the model by
aggregating the workers’ changes. This process iterates until the
model converges.

DPI flows can be used to implement the parameter server archi-
tecture. Large models are normally partitioned across servers. A
one-to-many DPI model flow, with servers as sources and workers
as targets, can allow the servers to jointly broadcast the current
model to the workers on each iteration. A second update flow, in
the reverse direction, can be used to move model updates from the
workers to the servers. By using the model parameters as grouping
keys in the update flow, the workers can ensure that each param-
eters’ updates are routed to the server responsible for storing it.
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By defining an appropriate reducing function on the update flow,
aggregation of parameter updates can be pushed off of the servers
and into the network, potentially allowing the servers to support
larger numbers of workers.

6.3 Log Shipping
DPI flows work well for multi-producer primary/backup log repli-
cation. Primaries act as DPI sources, backups act as DPI targets. A
primary can multicast log records to multiple backups by config-
uring Fdist and Fдroup . This can even be driven by the content of
the log records, for example to partition log records into different
physical buffers at the targets based on an application-level key.
Transformations can also offload some replication overhead to the
network. For example, before and after Fmap functions can serialize
and deserialize log records.

DPI’s control over acknowledgements lets primaries inform
clients when updates have been safely replicated. For example,
a primary can enforce quorum replication by configuring acknowl-
edgement aggregation and waiting for the aggregated acknowl-
edgement. One challenge in DPI is defining a fault-tolerance model
that is useful and practical; exposing faults to DPI applications is
complicated and fragile, but masking faults can force DPI to include
costly recovery mechanisms, which is beyond what DPI should
provide. As a result, our thoughts on fault tolerance in DPI are
preliminary until we have enough experience with it to strike the
right balance.

7 RESEARCH CHALLENGES
DPI opens up many possibilities and enables the efficient use of
modern networks by a wide-range of applications. Yet, many re-
search challenges remain open. We now comment on some of these
challenges for the database research community and outline initial
ideas on how to address them.

Network Monitoring and Optimization: Since DPI is aware of
network flows, a DPI implementation can provide a component
that collects flow statistics. This opens up new avenues to build
a cost-aware optimizer that uses the capabilities of modern pro-
grammable networks (i.e., SDNs) to better load-balance all traffic
across the available network routes from senders to receivers.
Moreover, a cost-aware optimizer could also make decisions about
which DPI transformation functions are pushed into the network
in order to avoid overloading network devices. We believe that
this not only lowers contention in the network and thus prevents
typical shortages like network incast, but also leads to a better
utilization of networking resources.
Moreover, in data centers, different applications share the same
network infrastructure. To that end, another challenge is to de-
velop strategies that can make optimal decisions in the presence
of multiple data-intensive applications with different workloads
and potentially conflicting requirements. Implementing network
monitoring and cost-aware optimizers for different network de-
vices and transformation functions is another research challenge
for future work.

Fault-tolerance and Elasticity: Unlike MPI, DPI is assumed to
support data processing applications not only in on-premises clus-
ters designed for static deployments but also in cloud environ-
ments. In the cloud, data processing applications often need to
be able to efficiently provide elasticity and deal with failures. For
DPI flows, we thus envision that they can transparently deal with
node failures or with situations where nodes join/leave a flow. For
example, if a flow could survive the failure of individual sources
and targets, then it would not be necessary to handle flow-level
exceptions or to establish new flows after failovers.
One idea is to leverage the fact that logical targets are separated
from the physical targets of a flow. Flows are defined in terms of a
set of logical targets (R) drawn from the range of Fdist . Logical
targets are bound to specific physical nodes when a flow is estab-
lished. To handle failures or reconfigurations (e.g., for elasticity),
a logical target could be bound to a new physical target without
disrupting the rest of the flow or different logical targets that were
mapped to the same physical node can be split up. For example,
for replicated databases using log shipping, a backup that takes
over after a primary failure could unbind itself as a flow target
and rejoin as a source. A new backup could be bound as a target to
take over the new primary’s backup role. It will likely make sense
to leave state transfer during reconfigurations in the hands of ap-
plications (e.g., reshuffling hash partitioned log records on group
size change), to avoid the need for costly built-in fault-tolerance
mechanisms.
Moreover, DPI allows data transformation functions to be pushed
into network components (e.g., switches). If these transforma-
tion functions hold state, then providing fault-tolerance for flows
becomes non-trivial. Recovering from failures of network compo-
nents thus requires either that lineage needs to be kept in DPI to
recompute the “lost” state or that state is replicated across multiple
network devices.
User-defined In-Network Processing: As discussed before, DPI
flows allow users to define data transformation functions (e.g.,
reduce functions such as SUM and COUNT). These functions can
either be executed by the CPU of the source/target but, more
importantly, can also be pushed into network devices (e.g., into a
smart NIC or a switch). While we currently only support a small
set of pre-defined transformation functions, in the longer term,
we envision that users can also implement data transformations
as user-defined transformation functions.
To allow user-defined functions to be pushed into network de-
vices, we want to provide a higher-level language that allows ap-
plications to implement map- and reduce-based transformations
that can automatically be compiled into programs for in-network-
processing (e.g., in P4 or other available languages as discussed in
Section 2.2). Defining such a higher-level language that suits data-
processing needs and can efficiently be compiled into different
network components is a research challenge for future work.
Applications and Benchmarks: Finally, we believe that DPI will
only see a high adoption if a wide range of data processing applica-
tions can be efficiently implemented on top of it. Therefore, we aim
to open-source a first implementation of DPI as soon as possible
so that different groups in research and industry can leverage DPI
to build applications but also benchmark DPI.
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Figure 2: Throughput of DPI Append

8 EARLY RESULTS
As a proof-of-concept, we have implemented a first version of
DPI’s memory-based API for InfiniBand and RDMA to illustrate
(1) the complexity reduction that can be achieved by using DPI
and (2) that the abstractions do not lead to a decreased perfor-
mance when compared to the use of native interfaces such as
RDMA verbs. The code of the initial DPI version is available at
https://github.com/DataManagementLab/dpi_library. While the ini-
tial prototype does not yet push functions into network devices, it
enables applications to make use of RDMA in the way illustrated
in Listing 1. As discussed before, this example already shows that a
significant reduction of complexity from more than 1,000 of lines
of native RDMA code to a few lines of DPI code.

To show that the efficiency of DPI is comparable to native RDMA
verbs, despite the added abstraction, we performed a small bench-
mark in which DPI_APPEND was used by multiple DPI nodes to
append concurrently to a single remote memory buffer. For the ex-
periment, we used two machines connected by an InfiniBand FDR
4× network. On the first machine we were running the senders (us-
ing different threads) and on the second machine we were running
one receiver where the remote memory buffer was located.

The results are shown in Figure 2. The graph shows the through-
put of DPI_APPEND achieved when appending different sized data
chunks to a remote buffer (as indicated on the x-axis). As a main
observation, we can see that DPI_APPEND can leverage the full band-
width of the InfiniBand FDR 4× network used in this experiment
(see Figure 2a). This indicates that using DPI can be as efficient as
using plain RDMA verbs while raising the level of abstraction at
the same time. Furthermore, using multiple appenders concurrently
does not affect the throughput in a negative way (see Figure 2b)
showing the efficiency of DPI’s concurrency handling scheme.

9 CONCLUSIONS
We have presented our vision for DPI, a way to better exploit mod-
ern networks, including RDMA and in-network processing. DPI
should foster a new line of research and serve as the basis for a
standard interface for distributed data-intensive applications.
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