
SQALPEL: A database performance platform
DEMO PAPER

M.L. Kersten
CWI

Amsterdam

P. Koutsourakis
MonetDB Solutions

Amsterdam

S. Manegold
CWI

Amsterdam

Y. Zhang
MonetDB Solutions

Amsterdam

ABSTRACT
Despite their popularity, database benchmarks only high-
light a small fraction of the capabilities of any given DBMS.
They often do not highlight problematic components en-
countered in real life database applications or provide hints
for further research and engineering.

To alleviate this problem we coined discriminative perfor-
mance benchmarking as the way to go. It aids in exploring
a larger query search space to find performance outliers and
their underlying cause. The approach is based on deriving
a domain specific language from a sample complex query to
identify and execute a query workload.

The demo illustrates sqalpel, a complete platform to col-
lect, manage and selectively disseminate performance facts,
that enables repeatability studies, and economy of scale by
sharing performance experiences.

1. INTRODUCTION
Standard benchmarks have long been a focal point in busi-

ness to aid customers to make an informed decision about a
product’s expected performance. The Transaction Process-
ing Counsel (TPC) currently supports several benchmarks
ranging from OLTP to IoT. An overview of their active set
is shown in Table 1. Surprisingly, the number of publicly
accessible results remains extremely low. Just a few ven-
dors go through the rigorous process to obtain results for
publication.

In a product development setting, benchmarks provide a
yardstick for regression testing. Each new DBMS version
or deployment on a new hardware platform ideally shows
a better performance. Open-source systems are in that re-
spect not different from commercial products. Performance
stability and quality assurance over releases are as critical.

State of affairs. In database research TPC-C and TPC-
H are also commonly used to illustrate technical innovation.
Partly because their description is easy to follow and the
data generators easy to deploy.

However, after almost four decades of database perfor-
mance assessments the state of affairs can be summarized as

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

benchmark reports systems reported
TPC-C 368 Oracle, IBM DB2, MS SQLserver,

Sybase, SymfoWARE
TPC-DI 0
TPC-DS 1 Intel
TPC-E 77 MS SQLserver
TPC-H ≤ SF-300 252 MS SQLserver, Oracle, EXASOL,

Action Vector 5.0, Sybase, IBM
DB2, Informix, Teradata, Paraccel

TPC-H SF-1000 4 MS SQLserver,
TPC-H SF-3000 6 MS SQLserver, Actian Vector 5.0
TPC-H SF-10000 9 MS SQLserver
TPC-H SF-30000 1 MS SQLserver
TPC-VMS 0
TPCx-BB 4 Cloudera
TPCx-HCI 0
TPCx-HS 0
TPCx-IoT 1 Hbase

Table 1: TPC benchmarks (http://www.tpc.org/)

follows: 1) standard benchmarks are good in underpinning
technical innovations, 2) standard benchmarks are hardly
representative for real-life workloads [11], and 3) most bench-
marking results are kept private unless it is a success story.

sqalpel addresses 2) using a new way of looking at perfor-
mance benchmarking and 3) by providing a public repository
to collect, administer, and share performance reports.

Discriminative performance benchmarking. In a
nutshell, we believe that database performance evaluation
should step away from a predefined and frozen query set.
For, consider two systems A and B, which may be different
altogether or merely two versions of the same system. Sys-
tem B may be considered an overall better system, beating
system A on all benchmarked TPC-H queries. This does not
mean that no queries can be handled more efficiently by A.
These queries might simply not be part of the benchmark
suite. Or the improvement is just obtained in the restricted
cases covered by the benchmark.

Therefore, the key questions to consider are “what queries
perform relatively better on A”? and “what queries run rel-
atively better on B”? Such queries give clues on the side-
effects of new features or identify performance cliffs. We
coined the term discriminative benchmark queries [6] and
the goal is to find them for any pair of systems quickly.

Performance repositories. The second hurdle of data-
base benchmarking is the lack of easy reporting and shar-
ing knowledge on experiments conducted. Something akin
to a software repository for sharing code. A hurdle to in-
clude product results is the “deWitt” clause in most end-

http://www.tpc.org/


user-license agreements, which seemingly prohibits publish-
ing benchmark results for study and research, commentary,
and professional advice1 and which is, in our laymen’s opin-
ion, certainly not intended by the Copyright Laws2 for shar-
ing consumer research information.

Wouldn’t we save an awful lot of energy if experimen-
tal design and performance data was shared more widely to
steer technical innovations? Wouldn’t we reduce the cost
of running proof-of-concept projects by sharing experiences
within larger teams or the database community at large?

Contributions. In the remainder of this paper we intro-
duce sqalpel, a SaaS solution to develop and archive per-
formance projects. It steps away from fixed benchmark sets
into queries taken from the application and turning them
into a grammar as a description of a much larger query space.
The system explores this space using a guided random walk
to find the discriminative queries. It leads to the following
contributions:

• We extend the state of the art in grammar based data-
base performance evaluation.

• We provide a full fledge database performance reposi-
tory to share information easily and publicly.

• We bootstrap the platform with a sizable number of
OLAP cases and products.

sqalpel takes comparative performance assessment to a
new level. It is inspired by a tradition in grammar based
testing of software [7]. It assumes that the systems be-
ing compared understand more-or-less the same SQL dialect
and that a large collection of queries can conveniently be de-
scribed by a grammar. Minor differences in syntax are easily
accommodated using dialect sections for the lexical tokens
in the grammar specification.

A complete software stack is needed to manage perfor-
mance projects and to deal with sharing potentially confi-
dential information. We are standing on the shoulders of
GitHub3 in the way they provide such a service. This in-
cludes overall organization of projects and their legal struc-
ture to make a performance platform valuable to the re-
search community.

Outline. In the remainder of this paper we focus on
the design of sqalpel. Section 2 outlines related work. In
Section 3 we give an overview of the performance benchmark
generation. Section 4 addresses access control and legalities.
Section 5 summarizes the demo being presented.

2. BACKGROUND
Grammar based testing has a long history in software en-

gineering, in particular in compiler validation, but it also
remained a niche in database system testing. In grammar-
based testing [7, 12] the predominant approach is to anno-
tate a grammar with probabilistic weights on the produc-
tions. It is primarily used to generate test data geared at
improved coverage tests for the target system, e.g., a com-
piler [4], or to capture a user interaction with a web-based

1https://academia.stackexchange.com/questions/28511/has-
the-dewitt-clause-which-prevents-researchers-for-
publishing-db-benchmarks-e
2https://en.wikipedia.org/wiki/Copyright
3https://github.com/

application. These approaches can be considered static and
labor intensive, as they require the test engineer to provide
weights and hints up front.

Another track pursued is based on genetic algorithms. A
good example is the open-source project SQLsmith4, which
provides a tool to generate random SQL queries by directly
reading the database schema from the target system. It
has been reported to find a series of serious errors, but often
using very long runs. Unlike randomized testing and genetic
processing, sqalpel guides the system through the search
space by morphing the queries in a stepwise fashion.

Unlike work on compiler technology [8], grammar based
experimentation in the database arena is hindered by the
relatively high cost of running a single experiment. Some
preliminary work has focused on generating test data with
enhanced context-free grammars [5] or based on user defined
constraints in the intermediate results [1]. A seminal work
is [10], where massive stochastic testing of several SQL data-
base systems was undertaken to improve their correctness.

A mature recent framework to consider performance anal-
ysis of OLTP workloads is described in [3]. It integrates a
handful of performance benchmarks and provides visual an-
alytic tools to assess the impact of concurrent workloads. It
relies on the JDBC interface to study mostly multi-user in-
teraction with the target systems. It is a pity that over 150
project forks of the OLTPbenchmark project5 reported on
GitHub have not yet resulted in a similar number of publicly
accessible reports to increase community insight.

The urgent need for a platform to share performance data
about products can be illustrated further with the recently
started EU project DataBench6, which covers a brought area
of performance benchmarking, and finished EU project Hob-
bit7, which focused on benchmarking RDF stores.

3. SQALPEL PERFORMANCE SPACE
In this section we briefly describe our approach to find

discriminative queries based on user-supplied sample queries
from their envisioned application setting. We focus on the
specification of experiments and running them against target
systems. Further details can be found in [6].

3.1 Query space grammar
The key to any sqalpel performance project is a domain

specific language G to specify a query (sub) space. All sen-
tences in the language derived, i.e., L(G), are candidate
experiments to be run against target system(s). Figure 1
illustrates a query space grammar with seven rules. Each
grammar rule is identified by a name and contains a num-
ber of alternatives, i.e., free-format sentences with embedded
references to other rules using an EBNF-like encoding. The
sqalpel syntax is designed to be a concise, readable descrip-
tion for the user. Internally, the grammar is normalized by
making a clear distinction between rules producing lexical
tokens, only governing alternative text snippets, and all oth-
ers. Furthermore, the validity of the grammar is checked by
looking for missing and dead code rules.

Generation of concrete sentences from the grammar is im-
plemented with a straight-forward recursive descend algo-

4https://share.credativ.com/˜ase/sqlsmith-talk.pdf
5https://github.com/oltpbenchmark
6https://www.databench.eu
7https://project-hobbit.eu

https://share.credativ.com/~ase/sqlsmith-talk.pdf


query:

SELECT ${projection} FROM ${l_tables} $[l_filter]

projection:

${l_count}

${l_column} ${columnlist}*

l_tables:

nation

columnlist:

, ${l_column}

l_column:

n_nationkey

n_name

n_regionkey

n_comment

l_count:

count(*)

l_filter:

WHERE n_name= ’BRAZIL’

Figure 1: Sample sqalpel grammar

rithm. This process stops when the parse tree only contains
key words and references to lexical tokens. They will form
the query templates for a final step, injection of tokens that
embody predicates, expressions, and other text snippets.

Inspired by the observation that most query optimizers
normalize expression lists internally, we can ignore order,
too, in the query generation. It suffices to count the lex-
ical tokens during template generation, e.g., the template
SELECT ${l_column} FROM ${tables} is derived from the
grammar above and can be finalized by choosing a table
and a column literal.

A naive interpretation of the grammar as a language gen-
erator easily leads to an extremely large set of queries. Espe-
cially when literal tokens are repeated or when a recursive
grammar rule is provided. Therefore, we enforce that the
literal tokens are used at most once in a query. This does
not rule out that the same literal can be used multiple times.
They are simply differentiated by their line number in the
grammar.

We have implemented a full fledged SQL parser that turns
a single query, called the baseline query, into a sqalpel
grammar. In real-world applications, a query may be as
complex as covering hundres of lines of code. The heuristic
applied by the parser is to split the query along projection-
list elements, table-expressions, sub-queries, and/or expres-
sions, group-by and order-by terms. The remainders are
considered literal tokens.

A good practice for manual construction of a sqalpel
grammar is to gradually increase the complexity of the base-
line query. This way the combinatorial explosion of the lan-
guage and subsequent work can be controlled.

3.2 The query pool
In contrast to systems such as RAGS [10] that only ran-

domly generates queries in a brute force manner, we use a
query pool. It is populated with the baseline query and some
queries constructed from randomly choosen templates. Once
a collection has been defined, we can extend the pool by mor-
phing queries based on observed behavior. Three morphing
strategies are considered: alter, expand and a prune.

• Alter strategy. We randomly pick a query from the

tag templates space tag templates space
Q1 40 9207 Q12 8484 162918
Q2 58160 6354837405 Q13 16 81
Q3 240 29295 Q14 6 21
Q4 28 81 Q15 40 372
Q5 108 96579 Q16 608 25515
Q6 4 15 Q17 26 81
Q7 >100K – Q18 576 43659
Q8 480 5478165 Q19 >100K –
Q9 1512 3528441 Q20 320 3339.0
Q10 384 722925 Q21 18464 4255065
Q11 162 7203 Q22 156 777

Table 2: TPC-H query space from [6]

pool and replace a literal. The result is added to the
pool unless it was already known.

• Expand strategy. We take a query from the pool and
search for a template that is slightly larger.

• Prune strategy. The reverse operation for expanding a
query is to search for a template with slightly fewer lex-
ical classes. It is the preferred method to identify the
contribution of sub-queries in highly complex queries.

In [6] the TPC-H benchmark was revisited to assess how
large the search space becomes when the SQL queries are
converted automatically into a sqalpel grammar. The num-
ber of queries derived from them vary widely, see Table 2.
This is to be expected, because the grammar produced con-
tains sets of alternative rules from which all subsets can be
considered for template construction. This results in a com-
binatorial explosion of templates.

This query pool size is controlled by the project owner.
Grammar rules can be fused to reduce the search space by
editing the grammar directly. Alternatively, the query pool
can be selectively expanded by focusing on a specific strategy
and/or a subset of the lexical tokens to guide the project
into an area where discriminative queries are expected (See
Figure 6). Finally, the number of query templates derived
from a grammar is capped using a hard system limit.

3.3 Running experiments
Once a sqalpel project is defined, people can use the

sqalpel.py program to contribute results using their own
DBMS infrastructure. This small Python program contains
the logic to call the web-server, requesting a query from
the pool and to report back the performance results. It
comes with some DBMS client API drivers, but any JDBC
enhanced database system can be used directly.

The experiment driver is locally controlled using a con-
figuration file. It specifies the DBMS and host used in the
experimental run and the project contributed to. Further-
more, it uses a separately supplied key to identify the source
of the results without disclosing the contributor’s identity.

By default each experiment is run five times and the wall
clock time for each step is reported. When available, the
system load at the beginning and end of the experimen-
tal run is kept around. This is easily accessible in a Linux
environment. The 1, 5, and 10 minute cpu load averages
provide an indication of processor load during the runs. An
open-ended key-value list structure can be returned to keep
system specific performance indicators for post inspection.



4. SHARING EXPERIENCES
In this section we present an overview of the sqalpel

architecture to define and manage performance projects. It
addresses the second issue, i.e., improve sharing of database
performance information. A problem that calls for both legal
and technical solutions.

4.1 Design considerations
The starting point of the design for sqalpel is to recog-

nize that performance data only makes sense if you can eas-
ily document it and share it. This immediately takes TPC
benchmarking outside the realm of where it is used mostly
nowadays, i.e., a by-product to finalize a scientific paper
to prove a point. Every database researcher has to partly
re-run them on their novel system and compare it with an
open-source DBMS. When a holistic comparison with ma-
ture products is not possible, small-scale micro-benchmarks
further aid in the analysis of specific system functions or
scientific experiments.

Since public benchmarks rarely reflect an application we
are also faced with another dilemma. Should we disclose
the database schema, sample data, and the queries of our
intended product with others? Probably not always. How-
ever, we can greatly benefit from the insights of others who
provide reports on generic or abstracted case studies that
are close to our intended application. Rather than mak-
ing a performance project always public, we should support
collaborative teams as well.

4.2 Access control in SQALPEL
This leads to a clear distinction of the kinds of projects

that sqalpel is designed to accommodate, i.e., public and/or
private ones, with access control. Much like how software
projects are managed on GitHub.

A performance project is initiated and owned by some-
one, the project leader, who acts as a moderator for quality
assurance. Subsequently, contributors are invited to run the
experiments in their own DBMS context and share results.

For all other users, the project description and results are
available in read-only mode. The project owner is the mod-
erator who can actively expand the query pool and manage
visibility of the results. Registered users can leave comments
on projects to improve upon the presentation, highlight is-
sues, or suggest other experiments.

A private project enables users to experiment with propri-
etary database instances or products. For contributors the
information shielding is lifted. They can provide results and
inspect all results of the projects they belong to. There is
no upper limit on the number of contributors per project. A
project declared public may not contain references to private
DBMS and host settings

4.3 Legalities
A long standing complication is that many of the software

licenses are seemingly extremely restrictive when it comes to
sharing experiences on their use. To quote a typical clause
in a End-User-License of a commercial product: You must
obtain XYZ’s prior written approval to disclose to a third
party the results of any benchmark test of the software.

We believe that these restrictions are fundamentally in-
compatible with the essence of the scientific process. In-
stead, sharing of information should be based on scientific
rigor and aimed towards innovation [9]. In particular we feel

that information such as the documentation of the DBMS
knobs, the database schema meta data, index use, parti-
tioning, compression, the data distribution, just to name a
few, should be included in any description of performance
measurements, if we are to perform meaningful experiments.
This is a discussion that needs to take place as a matter of
some urgency in scientific, legal and commercial fora.

We belief it is time to cast away the fear to publish experi-
ences with commercial products for a consumer and research
purpose. This does not mean one should bash a product, be-
cause this could lead to a lawsuit on damaging the vendor’s
credentials.

Although users are free to bind themselves in such limit-
ing contracts, the repercussions on violation of the “deWitt”
clause have, to our knowledge, not been tested extensively in
court.8. Furthermore, the Copyright Laws (in the US) per-
mit “fair use” for research: “In many jurisdictions, copyright
law makes exceptions to these restrictions when the work
is copied for the purpose of commentary or other related
uses.” 9

We believe that the open-source legal framework of GitHub10,
backed by the sqalpel access control policies, strikes a bal-
ance between the need for public and confidential informa-
tion. If a vendor believes a project infringes on their license,
they can follow the notice and take down method, which is
a process operated by an online host in response to court
orders or allegations that content is illegal. Content is re-
moved by the host following notice.

5. DEMO SCENARIO
sqalpel is a SaaS prototype under active development.

In this demo we report on functionality and features mostly.
The purpose is definitely not to engage into a deep perfor-
mance analysis of a specific target DBMS, but on assessment
of the sqalpel design and heuristics itself to steer us into
the right direction.

At the time of writing it supports all JDBC-based data-
base systems, contains sample projects inspired by TPC-H,
SSBM, airtraffic, and platforms ranging from a Raspberry
Pi up to Intel Xeon E5-4657L servers with 1TB RAM.

5.1 The software platform
sqalpel is built as a client-server, web-based software

platform for developing, managing, and sharing experimen-
tal results. The GUI is built around Python using the li-
braries Flask and Bokeh, which already provide a set of vi-
sual data analytics functions. The server is deployed in the
cloud for ease of access. The system comprises around 12K
lines of Python code, 70 Jinja2 templates, and 6K lines of
HTML. Pages are generated at the server side, including the
necessary JavaScript for interactive manipulation. The ses-
sion state is kept within the server and is considered global
within a browser.

8https://academia.stackexchange.com/questions/28511/has-
the-dewitt-clause-which-prevents-
researchers-for-publishing-db-benchmarks-e,
http://www.itprotoday.com/microsoft-sql-server/devils-
dewitt-clause
9https://en.wikipedia.org/wiki/Copyright

10https://github.com/github/site-policy/



5.2 Top menu navigation
The top level menu is kept simple. A straightforward user

administration is provided based on a unique nickname and
a valid email to reach out to its owner. Email addresses
are never exposed in the interface; they are used for legal
interaction with the registered user.

The global DBMS catalog describes all database systems
considered and the platform catalog provides an overview
of the hardware platforms deployed. Both can be readily
extended to include information about new platforms used,
or the DBMS configuration parameters for experimentation.

5.3 Project experiments
Once the anticipated DBMS and host are known, either an

existing project is opened or a new one started. Its synopsis
contains all information to repeat the experiments, provides
proper attribution to the database generator developers, and
marks the project as either public or private. An experiment
consists of a sample SQL query converted into a sqalpel
grammar (see Figure 5). In case the grammar produces too
many semantic incorrect queries or leads to exorbitant large
space, a manual edit of the grammar is called for, e.g., some
alternatives can be removed by making join-paths explicit.

5.4 Query pool
With the sqalpel grammar in place, we can switch to

the query pool (Figure 6). It is initialized with the baseline
query. The pool is extended using the strategies described
in Section 3.2. Most likely the user starts with a number of
random queries and expand as they learn more about the im-
pact on the target systems. Fine grained control is provided
by explicitly specifying what lexical terms should or should
not be included in the queries being generated. This helps
to avoid performing experiments where the performance im-
pact is already known from previous experiments.

5.5 Contributing results
With a pool of queries in place, we can invite contrib-

utors to provide actual performance data. They use the
sqalpel.py experiment driver. Its basic interaction is to
call the sqalpel webserver for a task from a project/ ex-
periment pool, execute it, and report the findings. The con-
tributor is in full control over the target platform and only
data is shared that aids in the analysis. For fair comparison
of results, the best practices of experimentation should be
followed. Documentation of the settings used in the target
system is critical for a proper interpretation. In particu-
lar DBMS server settings may have an effect on the per-
formance, e.g., addition of indices without reporting them
would confuse others attempting to interpret the results.

Each query is ran against a single DBMS + host combi-
nation. The execution status is tracked in a queue, which
enables killing queries that got stuck or when the results of
an experiment are not delivered within a specified timeout
interval.

All raw results are collected in a results table for off-line
inspection. One particular use case is to remove results from
target systems that require a re-run, e.g., they are measured
incorrectly. It is often a better strategy to keep these results
private until sufficient clarification has been obtained from
the contributor.

5.6 Visual analytics
Once the results come back from the contributors, they

can be analysed with a few built-in visual analytics com-
mands or exported in CSV for post-processing. Figure 7
shows the execution time of queries in a single experiment.
The dashed lines illustrate the morphing action taken. The
color coding for alter, expand, and prune morphing is pur-
ple, green, and blue, respectively. Queries that result in
an error are shown as yellow dots. Note that they can be
queries morphed into valid queries later on. The node size
illustrates the number of components in the query. Hovering
over a node shows the details of the run.

Identification of dominant components of the lexical terms
in the queries may indicate costly ones (see Figure 2). For
instance, the dominant term in Q1 for MonetDB is:

sum(l_extendedprice*(1 - l_discount) *

(1 + l_tax)) as sum_charge

This is by far the most expensive component. The under-
lying reason stems from the way MonetDB evaluates such
expressions, which includes type casts to guard against over-
flow and creation of fully materialized intermediates.

Relative speedup between different versions of a system
can be directly visualized (Figure 3). It should not come as
a surprise that a speedup factor of an individual query only
tells part of the story. The figure shows that the base line
query SF 1 Q1 runs about a factor 8 slower on a 10 times
larger database instance. However, looking at the query
variations it actually shows a spread of a factor 8-14. The
outliers are of particular interest. The next step would be
to determine the syntactic differences between the variants.
For this we use a differential page (Figure 4). It highlights
the differences in query formulation and gives an overview of
the performance on various systems. This provides valuable
insights to focus experimentation and engineering.

6. SUMMARY AND CONCLUSIONS
We provided a progress report on the sqalpel project,

a sharp tool in the hands of system architects, DBAs and
end-users to facilitate sharing experimental data. Saving an
enormous amount of energy for the (research) users when
confronted with best-of-breed product selection, or best-of-
breed functionality offerings, or simply measuring progress
in science by standing on the shoulders of giants.

Acknowledgments
This research has received funding from the European Union’s
Horizon 2020 research and innovation programme under Grant
Agreement no. 732366 (ACTiCLOUD).

7. REFERENCES
[1] C. Binnig, D. Kossmann, E. Lo, and M. T. Özsu. QAGen:

Generating query-aware test databases. In Proceedings of
the 2007 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’07, pages 341–352, New
York, NY, USA, 2007. ACM.

[2] A. Böhm and T. Rabl, editors. Proceedings of the 7th
International Workshop on Testing Database Systems,
DBTest@SIGMOD 2018, Houston, TX, USA, June 15,
2018. ACM, 2018.

[3] D. E. Difallah, A. Pavlo, C. Curino, and
P. Cudré-Mauroux. Oltp-bench: An extensible testbed for
benchmarking relational databases. PVLDB, 7(4):277–288,
2013.



Figure 2: Principle components (4/6)

Figure 3: Query speedup (5/6)

[4] H.-F. Guo and Z. Qiu. Automatic grammar-based test
generation. In H. Yenigün, C. Yilmaz, and A. Ulrich,
editors, Testing Software and Systems, pages 17–32, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg.

[5] J. Härtel, L. Härtel, and R. Lämmel. Test-data generation
for xtext. In B. Combemale, D. J. Pearce, O. Barais, and
J. J. Vinju, editors, Software Language Engineering, pages
342–351, Cham, 2014. Springer International Publishing.

[6] M. L. Kersten, P. Koutsourakis, and Y. Zhang. Finding the
pitfalls in query performance. In Böhm and Rabl [2], pages
3:1–3:6.

[7] R. Lämmel and W. Schulte. Controllable combinatorial

coverage in grammar-based testing. In M. Ü. Uyar, A. Y.
Duale, and M. A. Fecko, editors, Testing of
Communicating Systems, pages 19–38, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[8] W. M. McKeeman. Differential testing for software.

DIGITAL TECHNICAL JOURNAL, 10(1):100–107, 1998.

[9] M. Raasveldt, P. Holanda, T. Gubner, and H. Mühleisen.
Fair benchmarking considered difficult: Common pitfalls in
database performance testing. In Böhm and Rabl [2], pages
2:1–2:6.

[10] D. R. Slutz. Massive stochastic testing of SQL. In
A. Gupta, O. Shmueli, and J. Widom, editors, VLDB’98,
Proceedings of 24rd International Conference on Very
Large Data Bases, August 24-27, 1998, New York City,
New York, USA, pages 618–622. Morgan Kaufmann, 1998.

[11] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kemper,
V. Leis, T. Mühlbauer, T. Neumann, and M. Then. Get
real: How benchmarks fail to represent the real world. In
Böhm and Rabl [2], pages 1:1–1:6.

[12] K. Z. Zamli, M. F. Klaib, M. I. Younis, N. A. M. Isa, and
R. Abdullah. Design and implementation of a t-way test
data generation strategy with automated execution tool
support. Information Sciences, 181(9):1741 – 1758, 2011.



Figure 4: Query differentials (6/6)

Figure 5: Query sqalpel (1/6)



Figure 6: Query pool (2/6)

Figure 7: Experiment history (3/6)


	Introduction
	Background
	SQALPEL performance space
	Query space grammar
	The query pool
	Running experiments

	Sharing experiences
	Design considerations
	Access control in SQALPEL
	Legalities

	Demo scenario
	The software platform
	Top menu navigation
	Project experiments
	Query pool
	Contributing results
	Visual analytics

	Summary and conclusions
	References

