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ABSTRACT
Over the last several years, machine learning models have reached
new levels of empirical performance across a broad range of do-
mains. Driven both by accuracy improvements and deployment
advantages, many organizations have begun to shift to learning-
centered software stacks—a newmode that has been called Software
2.0. This approach holds the promise of radically accelerating the
construction, maintenance, and deployment of software systems,
and opens up a broad research agenda around changes to hard-
ware, systems, and interaction models. However, these approaches
require one critical and often prohibitively expensive ingredient:
labeled training data.

We outline a vision for a Software 2.0 lifecycle centered around
the idea that labeling training data can be the primary interface
to Software 2.0 systems. In our envisioned approach, Software
2.0 stacks are programmed using weak supervision—i.e. noisier,
programmatically-generated training data—which is specified at
various levels of declarative abstraction and precision, and then
combined using unsupervised statistical techniques. The codebase
for Software 2.0 is also radically different: we envision labels for
tens or hundreds of different tasks across an organization combined
in a massively multitask central model, leading to amortization of
labeling costs and new models of software reuse and development.
Finally, we envision Software 2.0 stacks deployed by using collected
training labels to supervise commodity model architectures over
different servable feature sets. We outline the components of this
lifecycle, and provide an interim report on Snorkel, our prototype
Software 2.0 system, based on our experiences working on prob-
lems ranging from ad fraud to medical diagnostics with some of
the world’s largest organizations.
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1 INTRODUCTION
In the past several years, deep learning models have achieved a
notable set of accomplishments, hitting an inflection point on many
traditionally challenging tasks in image [14] and speech recogni-
tion [45]; beating human opponents at games such as Go [38]; and
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displaying a surprisingly flexible adaptation to a range of other
problems and domains. In response, large corporations have in-
vested billions of dollars in reinventing themselves as “AI-centric”;
swaths of academic disciplines have flocked to incorporate machine
learning into their research; and a wave of excitement about AI and
ML has proliferated through the broader public sphere.

Much of the adoption of machine learning in industry, how-
ever, has in fact been driven by the potential development and
deployment advantages of replacing traditional software stacks.
Organizations in a range of domains have found that this Software
2.0 approach is often easier to build, deploy, and re-use, for several
emerging reasons [20, 35, 44]:
(1) Adaptability and Empirical Performance:Modern machine learn-

ing models have demonstrated state-of-the-art accuracies on
a broad range of tasks, including both traditionally machine
learning-driven ones like search and translation, and tradition-
ally heuristic ones like data cleaning and integration [36]. Im-
portantly, a basic set of increasingly commoditized model ar-
chitectures have shown broad “out of the box” adaptability to
new domains, data types, and problem settings.

(2) Homogenous Deployment: Traditional “Software 1.0” stacks face
deployment challenges such as varied execution environments,
changing dependencies, and unpredictable memory allocation
requirements. In the Software 2.0 approach, these black-box
pieces of code are replaced with relatively homogeneous net-
works, with matrix multiplies effectively becoming the new
JVM, a transportable set of “write once, run anywhere” opera-
tions with predictable runtimes and memory requirements.

(3) The Death of Feature Engineering: The features of traditional
ML models were once notoriously difficult to develop, maintain,
and deploy. Instead, in modern Software 2.0 approaches, mod-
els learn features automatically from data and achieve much
higher accuracy on a range of tasks, greatly increasing both
development speed and adaptability.
However, all these prospective benefits of the Software 2.0 ap-

proach are contingent on a critical ingredient: large labeled training
sets. Across organizations of all sizes, we have witnessed train-
ing data becoming the key bottleneck in developing Software 2.0
systems. For many of these organizations, training data is a major
capital expenditure—a critical asset that enables core organizational
products, but unfortunately depreciates and becomes underutilized
with time. In response to this, over the past three years we have
developed Snorkel [28]1, a system for programmatically creating
and modeling training data for tasks over arbitrary data types such
as text, images, time series, financial data, and many others. Snorkel
has now been used by over 35 major organizations, including large
technology companies such as Google [4] and others, and use in
1snorkel.stanford.edu
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Figure 1: We envision a Software 2.0 pipeline consisting of (1) building training sets from weak supervision, provided via
a stack of interfaces at different levels of abstraction; (2) combining training signals for tasks across an organization into a
central massively multitask model, which allows developers to contribute and use task models via the simple interface of
labels; and (3) deploying servable models by distilling tasks from the central model into commodity edge models.

high-impact settings such as law enforcement, medical diagnostics,
and consumer applications. These collaborations have given us a
more nuanced view of three core challenges within the lifecycle of
organization-scale Software 2.0 systems:

(1) Diverse Sources of Supervision. An increasingly prominent
trend is the use of noisy, programmatically-generated training
data—often termedweak supervision—to train Software 2.0 mod-
els. For example, developers might utilize external knowledge
bases [24], ontologies, heuristic rules [28], patterns, noisy crowd
labels [10], or even other classifiers to generate labels [29].
These sources have diverse accuracies, coverages, and correla-
tions, andmodeling their accuracies may be the way to improve
accuracy of downstream models—but is a major technical chal-
lenge given the lack of ground truth. Additionally, providing
accessible ways for non-programmers to provide weak super-
vision is another key challenge.

(2) Multi-Task Problems.Most real-world problems involve solv-
ing multiple related sub-tasks, each of which requires its own
training datasets. Even weakly supervised data can still be ex-
pensive and time-consuming to label—often requiring the direct
attention of expensive subject matter experts like doctors, en-
gineers, and research scientists—and it depreciates when the
modeling tasks change. We would ideally like ways to amortize
the cost of generating training data across related tasks, and to
foster new methods of data and label reuse.

(3) Servable Deployment. Often, the features of the data that
are available at labeling time are different from the servable
features that are available in a deployed setting. Moreover,
various deployment settings may have different performance,
memory, and latency requirements. We would like to be able
to use available training labels to quickly deploy new models
across different servable or edge settings.

Despite these challenges, we see training data as a valuable
medium for collecting subject matter expert input from across an
organization, storing and reusing it in a way that is agnostic to the
particular models being used, and transferring it betweenmodalities
and deployment settings. To this end, we describe a vision for
an end-to-end framework for creating, managing, and deploying

Software 2.0 systems at organizational scale, which addresses the
aforementioned challenges through three core components:

(1) Weak Supervision as the Declarative Interface: In our en-
visioned framework, developers provide weak supervision via
interfaces at various layers of abstraction, from high-level inter-
faces requiring no programming knowledge to low-level ones
offering complete expressive control. The generated training
labels are then automatically de-noised and combined using
unsupervised statistical techniques [30].

(2) MassivelyMultitaskModels as the Central Codebase:We
then envision developers across an organization pooling their
training labels in a central, massively multitask (MMT) model,
that serves as the equivalent of a central codebase. Recently,
multitask learning [8, 27, 37] has become an increasingly popu-
lar way of effectively pooling learned representations between
tasks for improved performance. While current approaches con-
sider a small, fixed set of hand-labeled training sets, we envision
our central MMTmodel dynamically aggregating labels for tens
to hundreds of different tasks across an organization. We en-
vision this defining a new mode of software and label reuse
across an organization, where each contributed task can both
be immediately used in other applications, but also potentially
raises the quality of many other tasks.

(3) Servable Commodity Models for Edge Deployment: Fi-
nally, building on the increasing availability of commodity,
open-source model architectures, we envision a simplified qual-
ification process where new model architectures are chosen for
each deployment setting, and then supervised using predicted
labels from the central MMT model. In this style of approach,
developers have the flexibility to specify weak supervision over
any range of expensive, slow, private, or otherwise non-servable
features, then automatically use this to train servable models
for edge deployment.

By making training signals easy to specify, combining them
across tasks using a central, massively multitask model, and au-
tomatically deploying them to servable settings, we expect this
approach to radically change and accelerate the way that develop-
ers interact with and program Software 2.0 systems. We base this on
our experiences with our initial prototype system, Snorkel, which
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we report on herein, but propose to extend in three major ways:
first, by moving to increasingly higher-level and more declarative
ways of specifying weak supervision signals, building on top of
the basic labeling function abstraction used in Snorkel; second, by
extending initial work on a multi-task version of Snorkel [32, 34]
to a newly-proposed massively multi-task setting; and finally, by
focusing on new modes of deploying production models directly
from this central, massively multi-task model. We now go over the
envisioned framework, in part focused on a running case study of
a Software 2.0 fraud detection system at a large web company.

2 BUILDINGWEAK SUPERVISION SYSTEMS:
THE PROGRAMMING STACK OF
SOFTWARE 2.0

To avoid the expensive and time-consuming process of hand-labeling
training data, machine learning practitioners are increasingly turn-
ing to weak supervision [29] to create their training data for tasks
involving text, image, video, time series, and other data, including
at major organizations with substantial resources such as Google
[11, 12, 21], Facebook [22], andMicrosoft [17]. The idea of using pro-
grammatic sources of supervision builds on a long history of work
in distant supervision [1, 16, 24] and crowdsourcing [5, 9, 10, 19, 46].
However, as more types of weak supervision sources are integrated,
accounting for their accuracies, coverages, and correlations be-
comes increasingly important to achieve optimal results.

In response to this challenge, we developed Snorkel, a framework
for creating and modeling weak supervision [28]. With Snorkel,
instead of providing labels, users provide labeling functions (LFs),
arbitrary user-defined functions which programmatically label data
based on patterns, heuristics, external knowledge bases, etc. Snorkel
then addresses the challenge of uneven training source quality by
automatically learning a statistical model of the labeling functions’
accuracies [30] and correlation structure [3]. This learned model
combines and re-weights the labeling functions’ labels, producing
a set of probabilistic training labels. We have seen that this overall
approach can boost downstream predictive accuracy by as much
as 132% over prior heuristic approaches in information extraction
applications [28], image classification [41], and a range of other
problem types. We now introduce a running case study, based on
real scenarios that we have observed over the course of our collab-
orations with industry partners:

Running Case Study: Real-Time Fraud Detection
A large organization, WebCorp, wants to train a suite of real-time
fraud detection systems. Ground truth data is not available in any
sizable quantity, but various forms of weak supervision from subject
matter experts across the organization are available; for example:

(1) The fraud detection team has a legacy fraud prediction system
for text data, composed of complex linguistic rules.

(2) A research scientist has built several graph prediction models over
collected network statistics.

(3) Heuristic rules are automatically compiled monthly by the quality
control team based on aggregated statistics.

(4) Common patterns observed in fraud instances can be verbally
explained by non-programmer fraud experts.

Programming Stack Supervision Stack

Machine Language

Assembly Language

High-Level Language

Declarative Language

Application Interfaces

Individual Labels

LFs (Labeling Functions)
Coded by Hand

LFs Built on 
Advanced Primitives

LFs Compiled from 
Natural Language

LFs Auto-Generated 
from User Behavior

High-level

Low-level

Automated

Manual

Figure 2: Just as higher-level programming languages mag-
nify a user’s algorithmic capabilities, we envision higher-
level supervision interfaces that magnify a user’s labeling
capabilities. These higher-level inputs can be compiled into
labeling functions (LFs), which in turn are used by systems
like Snorkel to generate labeled training sets.

WebCorp would like to opportunistically bring all these available
sources of signal to bear by using them to train a single, high-performance
fraud detection model. However, doing this requires properly account-
ing for the variety in accuracy, correlations, coverage, and provenance
of the sources.

In the current version of our open-source Software 2.0 frame-
work, Snorkel, a variety of these weak supervision signals can be
expressed as labeling functions; however, to do so requires the man-
ual effort of a developer with basic programming knowledge. The
goal of the Snorkel project is to advance beyond labeling functions
as the only interface, and instead view them as the lowest-level
way of supervising machine learning models via code, and build
higher-level abstractions on top of them.

We envision Software 2.0 systems supporting a full stack of su-
pervision interfaces (Fig. 2). Just as SQL and other higher-level
declarative languages have made a vast range of algorithmic ca-
pabilities accessible to non-expert users, we see these higher-level
supervision interfaces doing the same for Software 2.0, allowing
non-experts to declaratively specify noisy sources of signal. Tools
like Snorkel can then be viewed as supervision source compilers—
converting higher-level inputs into lower level inputs (i.e., labels),
which are then easily used to train a range of commodity models.

We have constructed a number of prototype systems exploring
interfaces further up this stack. In one recent project [41], we were
motivated by the difficulty that even expert developers have in writ-
ing labeling functions over modalities like image and video. Instead,
we first use off-the-shelf unsupervised algorithms to construct a
set of basic features or primitives over the raw input data, and then
allow users to write labeling functions over these building blocks.
For example, we can preprocess image data with unsupervised,
pre-trained models (which for example tag bounding boxes, edges,
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geometric shapes, etc.), and then let users write higher-level label-
ing functions over these. This use of shared primitives introduces
new correlation patterns between the labeling functions, which we
can expose and model using basic static analysis of the labeling
function code, leading to significant quality improvements [41].

In another prototype project we built a system, Babble Labble,
which accepts natural language explanations as inputs; these expla-
nations are then compiled via a semantic parser into sets of labeling
functions [13]. Another related approach aimed at enabling users
to generate labeling functions without the need to directly write
code is to use program synthesis techniques, combined with a small
set of labeled data points, to automatically generate labeling func-
tions [42].

We are currently exploring even higher-level directions such as
automatic synthesis of labeling functions from high-level sketches
and from passive or observational signal. One example of the latter
is click stream or eye tracker signals, for example collected from
watching a radiologist reading a study. Here, the signal of where
an annotator is looking, clicking, or otherwise interacting with
data can be used as a form of weak supervision that is collected
without any additional user burden. This signal can then be used to
regularize a model (for example, aligning the attention of a model
with important areas of an image), or as a noisy but direct form
of labeling (e.g. for segmentation or anomaly detection). A second
example is “analyst exhaust” generated by data scientists submit-
ting queries or writing exploratory code. These passively-collected
queries and/or functions could then be used as another way to gen-
erate labeling functions, again without requiring additional user
effort. We believe that by combining these and other approaches
into a single coherent framework, we can create an accessible inter-
face to Software 2.0 that harnesses the full spectrum of supervision
signal available at an organization.

3 COMBINING TRAINING SIGNALS WITH
MASSIVELY MULTITASK MODELS

Given the initial success of Software 2.0-style efforts, organizations
are beginning to apply this approach to an increasingly large set
of problems, which themselves are often comprised of multiple
sub-tasks. This has led to a growing emphasis on amortizing costs
and increasing reuse of training data across tasks in an attempt to
avoid expensive de novo model construction. One popular approach
for this is transfer learning [27]2, which is the strategy of training
a model for a first task, and then repurposing it for a second task.
A directly related approach is multi-task learning [8, 18, 37, 39],
in which a model is trained on multiple tasks, learning a shared
representation of the data which can improve with more tasks. In
general, we observe these techniques being used in effective but
one-off ways—as an engineer’s trick to coax extra performance out
of individual models—and almost exclusively on small, fixed sets of
carefully hand-curated training sets. However, we see these trends
pointing in the direction of a much larger paradigm shift in how
developers program, use, and re-use both labeled data and software
within an organization.

In our framework, we envision a central, massively multitask
(MMT) model that collects tens to hundreds of weakly-supervised

2Which, notably, made it into Amazon’s most recent shareholder’s letter [6].

Figure 3: A mockup of an interface to the task predictions
of a central massively multitask (MMT) model over multi-
modal webpage data. Here, developers can access the pre-
dicted labels for various tasks—for example, tagging objects
and relations in text and image data, as well as classifying
the webpage into higher-level categories—and in turn can
use these to help supervise new tasks, which are then con-
tributed back to the centralMMTmodel. Each new task adds
minimal additional training time, potentially benefits from
and improves the quality of other existing tasks, and can im-
mediately be used by other developers.

tasks from across an organization, enabling a new level of data reuse
and fundamentally changing how developers program Software 2.0.
This central “mother” model will be the Software 2.0 equivalent of
a central organizational codebase, but with noteworthy paradigm-
shifting benefits:

• The Rising Tide of Multi-Task Supervision: Adding tasks to the
central MMT model has the potential to improve the perfor-
mance of other tasks [8, 18]. We envision this leading to a
virtuous cycle in which engineers are motivated to add their
tasks to the central MMT model to gain performance benefits
“for free”, which in turn may boost the performance of other
tasks in the model.
• Simple, Label-Based APIs: In a traditional codebase, a developer
often must overcome non-trivial hurdles to use another de-
veloper’s contributed code, due to arbitrary input and output
signatures, dependencies, and performance requirements. In
our envisioned MMT “codebase”, regardless of how a task is
specified or supervised, its input and output API is simply a set
of labels (see Fig. 3). We envision developers being able to use
labels from existing tasks in the MMT model to help specify
and supervise new ones (see Fig. 4).
• Continuous Versioning: Unlike in a traditional codebase, updates
to a given task in the MMT model can be smoothly propagated
to other tasks if desired, rather than requiring a discrete upgrade
event. Old versions of tasks or layers in the MMT model can
even be phased out gradually by interpolating between model
versions.
• Software 2.0 Form Factor: While a high volume of commits to a
central Software 1.0 codebase might risk bloat and standards
degradation, adding tasks to a centralMMTmodel will generally
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Figure 4: In the envisioned architecture, weak supervision
for tens to hundreds of tasks (green) across an organiza-
tion are used to supervise a central MMTmodel with shared
representation layers (gray). This MMT model functions as
the Software 2.0 equivalent of a central code repository, en-
abling new modes of software development and reuse. For
example, a first developer might supervise a task Y1 corre-
sponding to low-level feature extraction (e.g., tagging en-
tity mentions in text), which is then used by a second de-
veloper to generate training labels for a higher-level task Y2
(e.g., extracting entity-entity relations from text). A multi-
task management system (MTMS) tracks dependencies be-
tween tasks and executes incremental retraining of the
MMT model as necessary.

requireminimalmodification to the existing network structure—
maintaining the same, relatively computationally homogeneous
architecture.

Before addressing technical challenges to realizing this vision, we
revisit our running case study to illustrate the potential impact of
this envisioned approach:

Running Case Study: Multiple Related Tasks
WebCorp’s fraud detection tasks cover a variety of modalities, such
as text, images, and full webpages. Currently, each vertical is handled
separately, and consists of distinct, individualized models and training
sets for each task. However, many of them relying on shared sub-tasks,
third-party tools (e.g., commodity taggers), external resources (e.g.,
blacklisted IP addresses), and more broadly, concern similar concepts.
WebCorp would like to capitalize on those similarities both to improve
performance and to reduce the overhead associated with updating
training sets for each task as new failure modes in their models are
discovered and exploited.

In our envisioned Software 2.0 framework, WebCorp’s process might
look something like this:

• A central MMT model is initiated as the central component of
WebCorp’s fraud detection suite. A task is added for each of the
fraud detection verticals of interest, as well as for related lower-
level tasks like feature extractors, using the existing training labels
as supervision.
• After some time, the engineers in one team observe a new failure
mode in their webpage classifier, which they correct by writing
additional labeling functions that use outputs from other, lower-
level tasks contributed to the MMT model by other teams.

• WebCorp decides to add a new vertical to its fraud detection suite;
the pre-trained weights of the shared layers in the central MMT
model provide a strong starting point, reducing the amount of
labeled data and supervision resources required to reach the re-
quired quality for deployment.

While both transfer and multi-task learning are established tech-
niques, the massive, weakly-supervised setting we propose requires
solving a set of novel and fundamental technical challenges. One of
these is combining the noisy, conflicting, and potentially correlated
weak, multi-task supervision that users will provide. To begin to
study this challenge, we recently developed a prototype system
building on Snorkel, Snorkel MeTaL [32, 34]3. In Snorkel MeTaL,
users specify multi-task labeling functions that directly label–or log-
ically imply–labels for multiple tasks, which are related via a user-
specified task graph. For example, if we are training a fine-grained
entity tagger that tags mentions of specific professionals, e.g. {Doc-
tor, Lawyer, etc.}, organizations, e.g. {Hospital, Office, etc.}, and
more, we might also want to utilize coarser-grained labels we have
for a higher-level task like {Person, Organization, etc.}. In Snorkel
MeTaL, we can use all these supervision sources together, learn-
ing their accuracies and then training an automatically-compiled
multi-task network. Our initial work shows impressive gains over
alternative approaches: 20.2 F1 points over traditional supervision,
6.8 points over a majority vote baseline, and 4.1 points over a non-
multi-task-aware data programming approach [33]. More impor-
tantly, however, our initial user studies highlight the benefit of
allowing developers to focus “locally” on single tasks in isolation—
e.g. Is this a doctor or a lawyer mention?—and then later merging
the various subtasks into a single model automatically. We believe
this is an example of one of the benefits the new programming
model our MMT framework may provide.

As next steps, we plan to focus on other key technical challenges
of this setting, including incremental training and maintenance of
the central MMT model, tracking of task-usage dependencies for
finer-grainedmodel updates, automatic learning of task relationship
structures, and new measures of “task head” stability balanced with
intermediate “torso” layer generalization.

4 DEPLOYING SERVABLE MODELS
AUTOMATICALLY FROM DEVELOPMENT

One of the major drivers of Software 2.0 adoption is the appealingly
homogeneous compositions of neural network architectures, with
matrix multiplies effectively replacing the various compilers and
guardrails needed for arbitrary, black-box Software 1.0 code [20].
Already, hardware is racing to meet this appealingly general design
specification, with billions of dollars being spent to prepare next
generation hardware to better support Software 2.0 systems [25].
Another complementary trend is the increasing availability—and
commodification—of neural network architectures. Recent industry
efforts to accelerate these trends include model zoos and standards
such as ONNX4, as well as supporting open source infrastructure
such as TensorFlow and PyTorch. These trends afford flexibility:
whereas traditional code takes effort to port to new modalities

3https://github.com/HazyResearch/metal
4https://onnx.ai/

https://github.com/HazyResearch/metal
https://onnx.ai/
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Figure 5: A model for task Yt can be deployed in a simple
qualification process: First, a copy of the MMT model (left)
is made containing only the task head Yt and relevant repre-
sentation layers (middle). Second, thismodel—whichmay be
over expensive or private non-servable data, or may be too
large for edge settings—can then be used to train a commod-
ity deployment model (right), which has the required perfor-
mance specifications and runs over servable features.

and deployment settings, here we can simply modify or swap out
commodity model architectures, using the same training data labels.

We envision a simplified qualification process (Fig. 5) where new
model architectures are chosen for each deployment setting, and
then supervised using predicted labels from the central MMTmodel.
This approach anchors on the core idea thatmany commoditymodel
architectures—spanning a wide range of performance specifications
and data types—can perform well enough if we have sufficiently
large labeled training sets for them. Thus, we can take expensive
and difficult-to-deploy Software 1.0 code, and/or our large central
MMT model, and use these to label training data that can then be
used to supervise a cheap commodity network for edge deployment
(similar in process to model distillation techniques [15]).

One common scenario we have observed is when developers
have access to a large set of features that are high-value but also
costly to compute, slow, private, or otherwise non-servable in de-
ployment settings. In this scenario, we can generateweak supervision—
and train ourMMTmodel—over the non-servable features, and then
use this as supervision for a separate deployment model that oper-
ates over servable features. We return to our running case study:

Running Case Study: Training Servable DeploymentModels
Thus far, WebCorp’s engineers have assembled an organization-wide
collection of training sets and models for many related fraud and
risk-detection tasks. However, the majority of these labels and models
operate over non-servable data such as monthly aggregate statistics,
computationally expensive graph query models, and other similar
features.

Instead, WebCorp would like to deploy a model that operates—and
predicts fraud or risk event types—over real-time streaming web data.
In a prior approach, this would require repurposing an expert-level
engineering team to develop an entirely new model from scratch. How-
ever, with our envisioned Software 2.0 system, a commodity architec-
ture appropriate for this real-time deployment setting is automatically
selected, and then trained using the existing weak supervision and
models that had been built over the non-servable features.

In Figure 5, we sketch a slightly more detailed schematic of a
two-step pipeline in which a task Yt is first separated out from the
MMT model—by cloning the MMT model, and removing all the
components specific to other tasks—and then used to train a new
commodity deployment model that operates over servable features.
We note that in this process, lineage information—e.g., how the
task connected to other elements in the MMT model—can be used
to help specify the deployment architecture. We believe that this
lineage-informed model distillation and transfer will be a critical
benefit of the proposed MMT-centric framework. Moreover, we
note that the deployment model can be significantly smaller and
simpler, focused primarily on inference at the edge with potentially
a small capability for learning (e.g. for user fine-tuning).

5 DATA MANAGEMENT CHALLENGES
The envisioned Software 2.0 framework will lead to a rich new set
of data management challenges. To start, the creation of higher-
level interfaces for labeling training data in faster, more accessible
ways will lead to an increasing volume of training data that is fun-
damentally noisy and highly dynamic. This will create an even
more pressing need for fast, incremental ways of training and up-
dating models to support rapid user interaction. For example, if
users become empowered to create or modify training datasets by
simply talking, clicking, or providing high-level sketches of heuris-
tics, slow model training will quickly become a glaring bottleneck
to user interaction, rather than simply a slow process that can be
pipelined within a broader development cycle. In turn, these new
weak supervision input types will open up newways of speeding up
model training that specifically leverage their unique noise profiles,
structure, and dynamics.

New Software 2.0 frameworks like the one envisioned will also
lead to new data access patterns where data analytics operations—
such as SQL queries—are interleaved with machine learning opera-
tions. For example, in our prototype Software 2.0 system Snorkel,
rather than simply loading data points and labels from a static
file during training, data points are loaded as complex, structured
objects via a SQL query, and then weakly labeled and potentially
augmented [31] during training. These new, more complex data ac-
cess patterns will in turn lead to new data management challenges
and optimizations at all levels of the stack [26].

Next, the extension tomassively multi-task models where tens to
hundreds of weakly-supervised tasks are jointly modeled will lead
to even greater challenges around fast, incremental maintenance
and training of models that are not only larger than existing archi-
tectures, but also have unique sparsity and structure determined
by the dynamic relationships of the various tasks. Today, state-of-
the-art multi-task learning models typically use a pre-defined task
structure based on intuition or attempt to learn the structure of
the tasks they jointly model in an single online pass, with success
measured in terms of predictive accuracy improvements. In the
envisioned MMTL setting, a mix of offline and incremental model-
ing steps will be needed, leading to rich tradeoff spaces and new
notions of model maintenance.

Finally, the envisioned Software 2.0 framework and lifecycle
will lead to new challenges around model compression, distillation,
and transfer to deployment models. While the data management
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and machine learning communities have already studied these
problems, our envisioned framework will lead to new aspects and
opportunities around distillation, such as from MMTL models, and
for cross-modal transfer.

6 RELATEDWORK
Our vision builds upon three growing areas of related work: weak
supervision, multi-task learning, and model transfer. With respect
to weak supervision, we build on the paradigm introduced in the
Snorkel system [28, 30], and extended thereafter [3, 13, 33, 41, 42];
for a more comprehensive review of prior and related weak super-
vision work, such as distant supervision [1, 16, 24] and crowdsourc-
ing [5, 9, 10, 19, 46], see [28].

In the domain of multi-task learning [8, 37], there is already a no-
ticeable trend toward increasing the number of tasks being solved
by a single model: [18] introduces an attention-based architecture
which performs well on eight tasks across multiple modalities,
including text and images; the GLUE (General Language Under-
standing Evaluation) benchmark [43] measures performance on
nine language understanding tasks built on existing datasets; and
the Natural Language Decathlon (decaNLP) challenge [23] proposes
a different set of ten NLP tasks all cast as question answering prob-
lems. One aspect these works share is a focus on architectures,
rather than supervision: each comes with a large set of existing
labeled datasets (e.g., almost 2 million labels for decaNLP). As the
sheer number and variety of tasks of interest to an organization
grow, obtaining and maintaining labeled datasets of sufficient size
becomes impractical, necessitating the types of weak supervision
approaches we have described in this work.

Transferring knowledge between models is also an idea that has
been studied extensively. Often described as model compression or
model distillation, various works have considered how to reduce the
size or change the shape of a model or compress the knowledge of
an ensemble by training a smaller model on the outputs of a larger
one [2, 7, 15]. In this work we highlight the potential for not just
changing model characteristics, but also transferring knowledge
across domains, feature sets, and execution environments—for ex-
ample, by training image classifiers with weak supervision over
accompanying text [22, 40], or by using slower or more expensive
feature sets with the mother model before transferring to more
servable feature sets for deployment.

7 CURRENT STATUS AND NEXT STEPS
Our envisioned system for programming and deploying Software
2.0 systems via training data management consists of three main
stages: building training sets from diverse layers of weak supervi-
sion interfaces, combining training signal from multiple tasks in a
central, massively multitask model; and deploying models directly
from this training signal over development data to servable models.
Our open-source Software 2.0 framework, Snorkel, currently imple-
ments basic version of these components: users build training sets
by writing labeling functions, rather than by hand-labeling train-
ing data; a new prototype multi-task version of Snorkel, Snorkel
MeTaL, can combine a small number of logically-related tasks into
one multi-task model; and this model can then be deployed using
standard frameworks.

In our next steps, we plan to continue building towards the larger
vision outlined in this paper. For this first stage, we plan to con-
tinue “climbing up the stack” by providing increasingly high-level,
minimal-effort interfaces for specifying weak supervision, both
building on top of and extending the basic abstraction of a label-
ing function, and are currently exploring intersections with areas
such as program synthesis and semantic parsing, and with input
devices ranging from natural language parsers to eye trackers. For
the second stage, our next steps are to explore the data manage-
ment challenges of massively multi-task models at scale, such as
incremental model maintenance and task relationship structure in-
duction, and the new programming paradigms they lead to. Finally,
we continue to work with collaborators to study ways of faster and
more automatic model deployment from non-servable training data
to servable modalities. We plan to continue studying the totality
of this pipeline, and its associated technical challenges, within our
open-source Software 2.0 framework, Snorkel.
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