
Kyrix: Interactive Visual Data Exploration at Scale

Wenbo Tao
MIT CSAIL

wenbo@mit.edu

Xiaoyu Liu
Purdue University

liu1962@purdue.edu

Çağatay Demiralp
MIT CSAIL

cagatay@csail.mit.edu

Remco Chang
Tufts University

remco@cs.tufts.edu

Michael Stonebraker
MIT CSAIL

stonebraker@csail.mit.edu

ABSTRACT
Scalable interactive visual data exploration is crucial in

many domains due to increasingly large datasets generated
at rapid rates. Details-on-demand provides a useful interac-
tion paradigm for exploring large datasets, where the user
starts at an overview, finds regions of interest, zooms in
to see detailed views, zooms out and then repeats. This
paradigm is the primary user interaction mode of widely-
used systems such as Google Maps, Aperture Tiles and Fore-
Cache. These earlier systems, however, are highly customized
with hardcoded visual representations and optimizations. A
more general framework is needed to facilitate the develop-
ment of visual data exploration systems at scale. In this
paper, we present Kyrix, an end-to-end system for devel-
oping scalable details-on-demand data exploration applica-
tions. Kyrix provides the developer with a declarative model
for easy specification of general visualizations. Behind the
scenes, Kyrix utilizes a suite of performance optimization
techniques to achieve a response time within 500 ms for var-
ious user interactions. We also report results from a per-
formance study which shows that a novel dynamic fetching
scheme adopted by Kyrix outperforms tile-based fetching
used in traditional systems.

Keywords
Scalable visual exploration, details-on-demand, query op-

timization.

1. INTRODUCTION
Interactive visual data exploration over massive datasets

is becoming increasingly important. With the rapid gen-
eration of data across domains, it is not unusual for ana-
lysts in application domains to deal with datasets of sizes in
the order of terabytes or petabytes. Since fluid interactions
help allocate human attention efficiently over data [13], in-
teractivity should not be compromised when exploring big
datasets, which can easily overwhelm analysts.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR‘ 19)
January 13-16, 2019, Asilomar, California, USA.

Developer spec
compile

Backend Server Database

Frontend (browser)

ask data return data

indexing

fetching data

pan

jump

Figure 1: Architecture of Kyrix, an end-to-end system for
developing scalable details-on-demand visualizations.

Details-on-demand [21] is a common interaction pattern
that arises from exploratory data analysis practices and can
be particularly effective in exploring complex datasets, re-
ducing the user’s information load. In this paradigm, the
user starts with an overview of a dataset and then zooms into
a smaller subset of interest within the dataset to examine
this data patch [16], while querying details on items within
the focused region as needed. The user repeats the same
process after zooming further into or zooming out of the
current region. However, most visual exploration systems
cannot handle very large datasets, let alone enable details-
on-demand interactions. Large datasets make it challeng-
ing to bound the interaction response times within 500 ms,
which is required for sustaining an interactive user experi-
ence [13].

Several earlier details-on-demand systems address interac-
tivity challenges at scale with highly-customized implemen-
tations. Google Maps and Aperture Tiles [8] precompute
image tiles of the entire world map at multiple levels of de-
tails. Similarly, imMens [14] supports interactive brushing
& linking in binned plots by precomputing data cubes. AT-
LAS [7] uses predictive prefetching and level-of-detail man-
agement to improve the panning and zooming performance
on large time-series datasets. ForeCache [2] also adopts pre-
dictive prefetching and data tiling to sustain interactive ex-
ploration of large amounts of satellite images. Although
these earlier systems use similar approaches to scale to large
datasets, they are one-off tools developed from scratch for
specific datasets. The optimization techniques used in these
systems are often inaccessible to visualization developers at
large, who are not necessarily experts in performance op-
timizations. Furthermore, current general-purpose data vi-
sualization tools [5, 18, 9] provide limited support for the
developer to create visual exploration applications at scale.

To accelerate the development of scalable visual data ex-



(a) (b) (c) (d)

Figure 2: Interactive map of crime rates in the US: (a) a state-level crime rate map where the user can click on a state and
zoom into a county-level crime rate map centered at the selected state; (b) Kyrix frontend starts a smooth zoom transition;
(c) county-level crime rate map centered at Massachusetts; (d) the user pans on the county-level map.

ploration systems, we need general-purpose tools that can
help the developer handle large datasets by using effective
optimization techniques (e.g. indexing, caching and prefetch-
ing). This warrants an integrative, end-to-end approach
to visualization specification, where performance optimiza-
tions and data are pushed to the backend data management
pipelines.

In this paper, we present the design of Kyrix, a novel sys-
tem for the developer to build large-scale details-on-demand
visualizations. Our goal is to achieve both generality and
scalability. Figure 1 shows the architecture of Kyrix. On the
developer side, we offer a concise yet expressive declarative
language for specifying visualizations. Declarative designs
enable the developer to focus on visual specification with-
out being concerned with execution details (e.g. backend
optimization and frontend rendering) [20]. On the execu-
tion side, there are three main components: the compiler,
the backend server, and the frontend renderer. The compiler
parses the developer’s specification and performs basic con-
straint checkings. Based on the developer’s specifications,
the backend server then builds indexes and performs neces-
sary precomputation. The frontend renderer is responsible
for listening to user activities, communicating with the back-
end server to fetch data and rendering the visualizations.

In the following, we first discuss a simple map visualiza-
tion created using Kyrix, briefly demonstrating the use of
its declarative language. We then introduce optimizations
used by Kyrix that facilitate fluid details-on-demand interac-
tions. Next we discuss useful extensions to the Kyrix system
along with avenues of future research. We then put Kyrix in
the context of earlier scalable visualization systems and vi-
sual specification grammars. We conclude by summarizing
our contributions and reiterating our vision on accelerat-
ing the development of interactive visualizations for massive
datasets.

2. DEVELOPING INTERACTIVE VISUAL-
IZATIONS WITH KYRIX

The goal of Kyrix is to provide an end-to-end solution
for the developer to create details-on-demand visualizations.
To this end, Kyrix offers a declarative language for easy
visualization specification.

2.1 Kyrix Declarative Language
Kyrix’s declarative model has two basic abstractions: can-

vas and jump. A canvas is an arbitrary size worksheet
with one or more overlaid layers, forming a single view that
shows a static visualization. A jump is a customized transi-
tion from one canvas to another, allowing easy specifications

of common details-on-demand interactions such as panning,
geometric and semantic zooming.1

The Kyrix declarative language is data type agnostic and
supports general visualizations. To render a layer, the de-
veloper specifies the following:

(1) The data needed for the layer. This is specified using a
SQL query to a DBMS along with a transform function
postprocessing the query result. The developer can
use existing visualization libraries (e.g. D3 and Vega)
to specify a desired transform function (e.g. layout
transforms, scaling, etc).

(2) The location of each returned data item on the canvas.
This is specified using a placement function.

(3) A rendering function that converts data items to shapes
on the screen. A rendering function can be written us-
ing lower-level visualization specification libraries such
as D3 [5].

A jump transition can be established simply by specify-
ing a source canvas, a destination canvas and a transition
type (currently it can be geometric zoom, semantic zoom
or both). It can also be customized in many ways. For ex-
ample, the developer can specify a subset of objects on the
source canvas that can trigger this jump. For more details
on the language, interested readers can refer to our devel-
oper manual.2

2.2 Example: Map of US Crime Rates
We now describe an interactive application created using

Kyrix. This example visualizes the US crime rates per state
and county (Figure 2). There are two canvases in this appli-
cation. The initial canvas in Figure 2a shows a map of the
state-level crime rates. The user can click on a state and
zoom into a second, pannable canvas that shows the crime
rates at the county level (Figure 2c). In the current imple-
mentation, the developer is expected to write specifications
in Javascript. Figure 3 shows a snippet for this example
application. An application object (Line 2) is constructed
by specifying the application name and a configuration file
containing information such as the underlying DBMS. The

1Geometric zooming refers to scaling the visualization to
show different levels of details. Data type and visual encod-
ing are unchanged. Semantic zooming, in contrast, connects
different views showing related data using smooth zoom-
like transitions. Data type and visual encoding can both be
changed.
2https://github.com/tracyhenry/Kyrix/wiki/API-
Reference



1 // construct an application object
2 var app = new App("usmap", "config.txt");
3
4 // ========== state map canvas ==========
5 var stateMapCanvas = new Canvas("statemap");
6 app.addCanvas(stateMapCanvas);
7
8 // add data transforms
9 stateMapCanvas.addTransform(transforms.emptyTransform);

10 stateMapCanvas.addTransform(transforms.stateMapTransform)
;

11
12 // static legend layer
13 var stateMapLegendLayer = new Layer("empty", true);
14 stateMapCanvas.addLayer(stateMapLegendLayer);
15 stateMapLegendLayer.addRenderingFunc(renderers.

stateMapLegendRendering);
16
17 // state border layer
18 var stateBorderLayer = new Layer("stateMapTrans", false);
19 stateMapCanvas.addLayer(stateBorderLayer);
20 stateBorderLayer.addPlacement(placements.

stateMapPlacement);
21 stateBorderLayer.addRenderingFunc(renderers.

stateMapRendering);
22
23 // ========== county map canvas ==========
24 ...
25
26 // ========== state -> county ==========
27 var selector = function (row, layerId) {
28 return (layerId == 1);
29 };
30 var newViewport = function (row) {
31 return [0, row[1] * 5 - 1000, row[2] * 5 - 500];
32 };
33 var jumpName = function (row) {
34 return "County map of " + row[3];
35 };
36 app.addJump(new Jump("statemap", "countymap", "

geometric_semantic_zoom", selector, newViewport,
jumpName));

37
38 // set initial canvas
39 app.initialCanvas("statemap", 0, 0);

Figure 3: A Javascript snippet of the US crime rate map
example.

state map canvas is specified in Lines 5–21. This canvas con-
tains two overlaid layers: a static legend layer (lines 13–15)
and a pannable state border layer (lines 18–21). Each layer
is specified using an identifier of a data transform (lines 9
and 10) and a boolean value indicating whether this layer is
static (Lines 13 and 18). Static layers do not need to be re-
rendered as the user pans. So as the user browses within a
canvas, the legend stays unchanged in the upper right-hand
corner, overlaid on the state border layer. The county map
canvas is similarly specified.

A jump from the state canvas to the county canvas is de-
fined in line 36. When constructing the jump object, the
first two arguments are respectively the state and county
canvases. The third argument specifies the jump type. The
rest of the arguments customize the jump transition. To
complete specifying the application, the developer also spec-
ifies an initial canvas and a viewport location (line 39).

3. INTERACTIVITY IN KYRIX
In general, the interactivity problem in Kyrix is to achieve

a 500 ms response time to the following user interactions: (1)
a pan to a different location on the same canvas and (2) a
jump to a different canvas.

In Section 3.1 we discuss how Kyrix fetches data in re-

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

(a) Static tiles (b) Dynamic boxes

Figure 4: An illustration of two fetching granularities. (a)
A canvas is partitioned into 35 tiles. The blue rectangle is
the viewport. Tiles in orange are fetched. (b) Blue rectan-
gles are viewports. Orange rectangles are what are actually
fetched. Dashed-line rectangles are before the user pans.
Solid-line rectangles are after the user pans.

sponse to user interactions. Then in Section 3.2, we give
some general guidelines that assist with achieving our goal.
Lastly, Section 3.3 gives some end-to-end performance num-
bers. We discuss in Section 4 other performance options.

3.1 Data Fetching
As the user performs one of the operations (pan or jump),

Kyrix’s frontend communicates with the backend to retrieve
the data needed to render the viewport. Like previous sys-
tems (e.g. ForeCache [2]), Kyrix employs both a frontend
cache and a backend cache. If there is a cache miss in both,
Kyrix backend will talk to the backing DBMS to fetch data.
In this data fetching process, we identify two important fac-
tors that can affect Kyrix’s performance:(1)fetching granu-
larity and (2)database design and indexing. In the following,
we describe these two factors in detail.

Fetching Granularity. The standard wisdom, as applied
in Google Maps, ForeCache[2] and Aperture Tiles[8], is to
decompose a canvas into fixed-size static tiles (Figure 4a).
The frontend then requests the tiles that intersect with the
viewport. Every tile is individually fetched and rendered.
Kyrix currently supports static tiling. Kyrix also contributes
a novel fetching granularity, dynamic boxes, which amounts
to requesting a box that encompasses the viewport (Figure
4b). We call this enclosing box a dynamic box because its
size and location change dynamically. Whenever the view-
port moves outside the current box, the frontend sends the
current viewport location to the backend and requests a new
box. There are numerous ways to calculate a box, e.g., a box
centered at the viewport center having a width (height) 50%
larger than the viewport width (height). We expect dynamic
boxes to outperform static tiles for the following reasons:

(1) compared to large tiles, dynamic boxes fetch less data;

(2) compared to small tiles, dynamic boxes require fewer
frontend-backend requests in general;

(3) in cases where data is not uniformly distributed, dy-
namic boxes can adjust their sizes and locations based
on data sparsity, incurring much fewer network and
database trips than static tiles.

In Section 3.3, we use two simple box calculation algo-
rithms to experimentally show that dynamic boxes are a
more performant option than static tiles. We leave an in-
depth performance study as future work.

Database Design and Indexing. We now describe two
database designs along with two indexing schemes that we



use to support static tiles and dynamic boxes. Our first
database design maps tuples to static tiles and has two ta-
bles. The first table has all raw data records in addition to
an auto-increment tuple id column. The second table con-
tains two columns tuple id and tile id. Each record in this
table indicates that a raw data tuple overlaps a tile. Kyrix
backend uses placement functions specified by the developer
to precompute the second table. We then build Btree/hash
indexes on the tuple id column of the first table and the
tile id column of the second table. At runtime, tile queries
are answered by joining these two tables on the tuple id col-
umn.

Our second database design is based on spatial indexes
in PostgreSQL. In addition to raw data attributes, we store
a bbox attribute representing the bounding box of a tuple
on a canvas.3 We then build a spatial index on the bbox
column. Using this design, queries that request tuples whose
bounding boxes intersect with a given rectangle should run
fast. Therefore, this design can be used by both static tiles
and dynamic boxes.

3.2 Performance Hygiene
Parallelism. We can apply parallelism to improve the data
management in Kyrix. All data and metadata (canvas def-
initions, etc.) are stored in and retrieved from the DBMS.
Although the performance experiments in the next section
use PostgreSQL, it would be prudent to replace the DBMS
with a parallel one if performance requirements warrant a
switch. Currently, rendering is performed by a separate pro-
cess on a separate CPU in the frontend. This operation can
also be easily parallelized. Lastly, each concurrent Kyrix
application is run in a separate process, since there is no
interaction between them, except through the DBMS. Right
now, Kyrix applications function like a read-only browser.
Future releases will extend Kyrix to allow editing updates,
which can be supported by DBMS concurrency control.

Application Design. Managing visual density on the screen,
which can overwhelm users as well as the client (e.g. the
browser) resources, is an important concern in visualization
of large datasets. Application design must deal with what
canvases exist and how to put data onto these canvases so
that visual density is not too high.

Separability. Recall in Section 3.1, we describe how Kyrix
precomputes database tables and indexes to ensure data
fetching speed. However, when data is huge or the SQL
query corresponding to a canvas layer is complex, this pre-
computation process can take a long time. We identify a
common case where this precomputation process can be
avoided: the (x, y) placement of objects are directly raw
data attributes, or some simple scaling of raw data attributes.
In these separable cases, if we assume DBAs have built spa-
tial indexes on relevant raw data attributes when data is
first loaded into the DBMS, we do not have to precompute
the tables described in Section 3.1. For separable cases, we
provide the developer with the option to specify the rele-
vant attributes so that precomputation can be skipped by
Kyrix. There are cases where this requirement cannot be
met, i.e., the placement of an object depends on multiple
data attributes or the placements of other objects. We call

3We assume records are generally rendered bigger than a
single pixel. This bounding box information is derived from
the placement functions specified by the developer.

C

C

b

b

a

a

Figure 5: Viewport movement traces used in our experi-
ments. Blue shaded area is the dense area in the dataset
Skewed. Dotted lines are the boundaries of tiles with size
1,024.

these cases non-separable. Pie chart is an example.

3.3 Initial Performance Results
We conducted performance experiments on two synthetic

datasets using three viewport movement traces. The goal of
these experiments was to study the characteristics of the two
fetching granularities when combined with different database
designs. All experiments were done on an AWS EC2 m4.2xlarge
instance with 8 cores and 32GB RAM. PostgreSQL 9.3 was
used as the backing DBMS.

Datasets. We used two synthetic datasets, Uniform and
Skewed. In Uniform, there were 100M random dots evenly
distributed on a 1M×0.1M canvas. In Skewed, 80M dots
were in 20% of the canvas area (a 0.4M×0.05M rectangle)
and 20M dots were in the rest of the canvas. Skewed cor-
responded to the likely scenario where visual objects are
distributed unevenly on a canvas.

Viewport Movement Traces. In our experiments we
used three viewport movement traces illustrated in Figure 5.

(a) The viewport was always aligned with tile boundaries.
It horizontally moved leftwards six steps (the length of
a tile) then vertically up six steps.

(b) The viewport was never aligned with tiles. It also hori-
zontally moved leftwards six steps (the length of a tile)
then vertically upwards six steps.

(c) The viewport moved diagonally from bottom left to
top right. There were six steps in total.

Fetching schemes. We evaluated the following fetching
schemes.

Dbox : dynamic boxes with spatial index. The box fetched
is exactly the viewport in each step.

Dbox 50% : dynamic boxes with spatial index. The box
fetched is 50% larger than the viewport.

Tile spatial : static tiles with spatial index (three tile sizes
tested: 256, 1,024 and 4,096).

Tile tuple-tile mapping : static tiles with tuple-tile mapping
(three tile sizes tested: 256, 1,024 and 4,096). Btree index
is used on the tuple ID and tile ID columns.

Results. We measured the average response time (per step)
of all fetching schemes on three traces. Average results over
three runs are shown in Figures 6 and 7. We have the fol-
lowing main observations:



Trace−a Trace−b Trace−c

T
im

e
 (

m
s
)

10

100

500

1000

10000

dbox dbox 50% tile spatial 1024 tile spatial 256

tile spatial 4096 tile mapping 1024 tile mapping 256

tile mapping 4096

Figure 6: The average response times of dynamic box and
static tiling on uniformly distributed data.

Trace−a Trace−b Trace−c

T
im

e
 (

m
s
)

10

100

500

1000

10000

dbox dbox 50% tile spatial 1024 tile spatial 256

tile spatial 4096 tile mapping 1024 tile mapping 256

tile mapping 4096

Figure 7: The average response times of dynamic box and
static tiling on skewed data.

(1) Dbox had the best overall performance on both Uni-
form and Skewed. The reasons were twofold. First,
it fetched the least amount of data needed to render
the viewport. Second, compared to small tiles, it issues
much fewer queries.

(2) Tile 1,024 spatial had competitive performance on trace-
a, and was even better than Dbox 50%. This was be-
cause the viewport completely aligned with tile bound-
aries in trace-a.

(3) For static tiles, spatial indexes were much more per-
formant than tile mapping indexes.

(4) Tile sizes 4,096 and 256 had the worst performance.
This was expected since tile size 4,096 fetched more
data than other fetching schemes and tile size 256 is-
sued more queries than other fetching schemes.

4. DISCUSSION AND FUTURE WORK
Previous work [2] has studied prefetching data ahead of

user interactions. Specifically, both momentum-based and
semantic-based prefetching are considered in a tiling con-
text. Momentum-based prefetching predicts future user ac-
tions based on recent movement history. Semantic-based
prefetching identifies tiles that are visually similar to al-
ready fetched tiles. We plan to evaluate the effectiveness
of momentum-based prefetching in the context of dynamic
boxes. Our future work will also study caching options for
Kyrix. Caching and prefetching are challenging given the

jump operation, and will be made more challenging by the
extension of Kyrix to support coordinated views.

Currently, we are collaborating with a neurology group
at Massachusetts General Hospital (MGH), which we antic-
ipate motivating various future extensions of Kyrix. Our
collaborators want to be able to interactively explore 30 ter-
abytes of electroencephalogram (EEG) data collected from
sleeping subjects. They want three different views of the
data, a temporal view, a spectrogram view and a composite
clustering view, to be coordinated. For instance, movement
in the temporal view should trigger synchronized scrolling
in the spectrogram view. Hence, Kyrix must be extended to
support multiple canvases on the screen simultaneously and
to have pan/zoom operations in one canvas cause desired
actions in other canvases. In addition, MGH wants an up-
date model for Kyrix so they can edit and tag relevant data.
Thirty terabytes will require a parallel multi-node DBMS to
achieve our performance goals.

Lastly, we envision Kyrix as an integrated environment
for developing scalable visualization applications. To this
end, we plan to work on an “application by example” inter-
face, whereby the user can drag and drop screen objects,
and Kyrix can learn to automatically generate the location
function (and perhaps other parts of the application).

5. RELATED WORK
Kyrix is related to prior efforts in scalable visualization

systems and declarative visualization specification.

5.1 Scalable Visualization Systems
Earlier research has proposed methods for scalable inter-

active data analysis that fall into one of the two categories
in general: precomputation and sampling [10]. Precompu-
tation, which traditionally refers to processing data into
formats such as prespecified tiles or cubes, has been the
prevalent approach to support advanced interactions such
as panning, zooming, brushing and linking. Google Maps
precompute image tiles in multiple zoom levels to support
scalable panning and zooming. Extending the tiling idea
to structured data, imMens [14] computes multivariate data
tiles and performs fast “roll ups”and rendering on the GPU.
Nanocubes [12] stores and queries multi-dimensional aggre-
gated data at multiple levels of resolution in memory for vi-
sualization. Hashedcubes [15] improves on the memory foot-
print and implementation complexity of Nanocubes with an
incurred cost of longer query times. ForeCache [2] uses data
tiling together with predictive prefetching and in-memory
caching to enable scalable panning and zooming over array-
based datasets. When precomputation is not possible (e.g.
queries are not known in advance), sampling, often com-
bined with precomputation and online aggregation [11, 1,
3], is used to improve user experience.

Kyrix precomputes database indexes and uses novel data
fetching mechanisms to efficiently respond to pan and zoom
interactions. Kyrix’s new dynamic-box fetching together
with spatial index outperforms tile-based fetching used in
earlier systems.

5.2 Declarative Visualization Specification
Earlier research proposes declarative grammars over data

as well as visual encoding and design variables to specify
visualizations. In a seminal work, Wilkinson introduces a
grammar of graphics [24] and its implementation (VizML),



forming the basis of the subsequent research on visualization
specification. Drawing from Wilkinson’s grammar of graph-
ics, Polaris [22] (commercialized as Tableau) uses a table al-
gebra, which later evolved to VizQL [9], the underlying rep-
resentation of Tableau visualizations. Wickham introduces
ggplot2 [23], a widely-popular package in the R statistical
language, based on Wilkinson’s grammar. Similarly, Proto-
vis [4], D3 [6], Vega [19], Brunel [25], and Vega-Lite [17] all
provide grammars to declaratively specify visualizations.

Kyrix’s declarative grammar differs from these earlier ef-
forts by providing constructs for specifying scalable inter-
active visualizations and by integrating visual specification
with a server-side performance optimization pipeline.

6. CONCLUSION
The current practice of purpose-built visualization tools

is itself not scalable under the fast growth of large datasets
across domains. To accelerate the development pace of in-
teractive visualization systems at scale, we need to make
it easier for the developer to access scalable data manage-
ment models as well as performance optimizations needed.
In this paper, we present the design of Kyrix, a novel end-to-
end system for building interactive, details-on-demand visu-
alizations at scale. Kyrix enables the developer to declara-
tively specify visualizations, while utilizing Kyrix’s suite of
optimizations and data management model. Kyrix also con-
tributes a novel dynamic fetching scheme that outperforms
traditional tile-based fetching.

7. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner,

S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 29–42. ACM,
2013.

[2] L. Battle, R. Chang, and M. Stonebraker. Dynamic
prefetching of data tiles for interactive visualization.
In ACM SIGMOD, pages 1363–1375, 2016.

[3] L. Battle, M. Stonebraker, and R. Chang. Dynamic
reduction of query result sets for interactive
visualizaton. In Proc. IEEE Conference on Big Data,
2013.

[4] M. Bostock and J. Heer. Protovis: A graphical toolkit
for visualization. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2009.

[5] M. Bostock, V. Ogievetsky, and J. Heer. D3

data-driven documents. IEEE transactions on
visualization and computer graphics,
17(12):2301–2309, 2011.

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3:
Data-driven documents. IEEE Trans. Visualization &
Comp. Graphics (Proc. InfoVis), 2011.

[7] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan.
Maintaining interactivity while exploring massive time
series. In IEEE Symposium on Visual Analytics
Science and Technology, pages 59–66, 2008.

[8] D. Cheng, P. Schretlen, N. Kronenfeld, N. Bozowsky,
and W. Wright. Tile based visual analytics for twitter
big data exploratory analysis. In Big Data, 2013 IEEE
International Conference on, pages 2–4. IEEE, 2013.

[9] P. Hanrahan. Vizql: a language for query, analysis and
visualization. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data, pages 721–721. ACM, 2006.

[10] J. M. Hellerstein. Interactive analytics. In Readings in
Database Systems. MIT Press, 5th edition, 2015.

[11] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online
aggregation. In ACM SIGMOD Record, volume 26,
pages 171–182. ACM, 1997.

[12] L. Lins, J. T. Klosowski, and C. Scheidegger.
Nanocubes for real-time exploration of spatiotemporal
datasets. IEEE TVCG, 19(12):2456–2465, 2013.

[13] Z. Liu and J. Heer. The effects of interactive latency
on exploratory visual analysis. IEEE transactions on
visualization and computer graphics,
20(12):2122–2131, 2014.

[14] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time
visual querying of big data. Comput. Graphics Forum,
32:421–430, 2013.

[15] C. A. L. Pahins, S. A. Stephens, C. Scheidegger, and
J. L. D. Comba. Hashedcubes: Simple, low memory,
real-time visual exploration of big data. IEEE
Transactions on Visualization and Computer
Graphics, pages 671–680, 2017.

[16] P. Pirolli and S. Card. Information foraging.
Psychological review, 106(4):643, 1999.

[17] A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and
J. Heer. Vega-lite: A grammar of interactive graphics.
IEEE Trans. Visualization & Comp. Graphics (Proc.
InfoVis), 2017.

[18] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer.
Reactive vega: A streaming dataflow architecture for
declarative interactive visualization. IEEE
transactions on visualization and computer graphics,
22(1):659–668, 2016.

[19] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer.
Reactive vega: A streaming dataflow architecture for
declarative interactive visualization. IEEE Trans.
Visualization & Comp. Graphics (Proc. InfoVis),
2016.

[20] A. Satyanarayan, K. Wongsuphasawat, and J. Heer.
Declarative interaction design for data visualization.
In ACM User Interface Software & Technology
(UIST), 2014.

[21] B. Shneiderman. The eyes have it: A task by data
type taxonomy for information visualizations. In
Proceedings of the 1996 IEEE Symposium on Visual
Languages, 1996.

[22] C. Stolte, D. Tang, and P. Hanrahan. Polaris: a
system for query, analysis, and visualization of
multidimensional relational databases. IEEE
Transactions on Visualization and Computer
Graphics, 8(1):52–65, 2002.

[23] H. Wickham. A layered grammar of graphics. Journal
of Computational and Graphical Statistics, 19(1):3–28,
2010.

[24] L. Wilkinson. The Grammar of Graphics. Springer, 1st
edition, 1999.

[25] G. Wills. Brunel v2.5.
https://github.com/Brunel-Visualization/Brunel,
2017. Accessed: 2018-04-04.


