
Demonstration of a Multiresolution Schema Mapping
System

Zhongjun Jin Christopher Baik Michael Cafarella H. V. Jagadish Yuze Lou
University of Michigan, Ann Arbor

{markjin,cjbaik,michjc,jag,lyzlyz}@umich.edu

ABSTRACT
Enterprise databases usually contain large and complex schemas.
Authoring complete schema mapping queries in this case re-
quires deep knowledge about the source and target schemas
and is thereby very challenging to programmers. Sample-
driven schema mapping allows the user to describe the schema
mapping using data records. However, real data records
are still harder to specify than other useful insights about
the desired schema mapping the user might have. In this
project, we develop a schema mapping system, Prism, that
enables multiresolution schema mapping. The end user is
not limited to providing high-resolution constraints like ex-
act data records but may also provide constraints of various
resolutions, like incomplete data records, value ranges, and
data types. This new interaction paradigm gives the user
more flexibility in describing the desired schema mapping.
This demonstration showcases how to use Prism for schema
mapping in a real database.

1. INTRODUCTION
Schema mapping is the problem of discovering queries that

convert data from source databases with different schemas
to a target schema, i.e., the schema expected by the end
user. In real-world complex databases, composing schema
mapping queries is challenging because it requires a deep
understanding of the source database schema and the tar-
get schema. Previous works [7, 8, 9, 6, 1, 4] have adopted
a sample-driven approach to simplify this process for end
users: the user can demonstrate the desired schema map-
ping process by providing a few data records in the tar-
get schema without being familiar with the source database
schema. However, we argue that the sample-driven schema
mapping approach has two practical challenges:

1. High-resolution issue. The user is required to provide
high-resolution constraints, i.e., complete data records
with exact values in the target schema. Providing ex-
act values can be challenging for a user unfamiliar with
the database content. For example, the user might
know the area of Take Tahoe roughly but cannot pro-
vide an exact value.

2. Low-expressivity issue. The user may have insights on

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well allowing derivative works, provided that you attribute
the original work to the author(s) and CIDR 2019. 9th Biennial Conference on Innova-
tive Data Systems Research (CIDR ’19). January 13-16, 2019, Asilomar, California,
USA.

State Lake Name Area (km2)
California Lake Tahoe 497
Oregon Crater Lake 53.2
Florida Fort Peck Lake 981

. . .

Table 1: Desired target schema

the target schema other than data examples, like col-
umn names, data types. Existing methods lack mech-
anisms for capturing these kinds of knowledge.

Take Mondial—a relational geography data set—as an
example. Suppose the goal is to list all lakes, their area and
the states they belong to from the Mondial database as in
Table 1. The desired SQL query to obtain such a table is
“SELECT geo_lake.Province, Lake.Name, Lake.Area FROM

Lake, geo_lake WHERE Lake.Name = geo_lake.Lake”.
A sample-based schema mapping system, such as MWeaver [7],

takes complete target schema data samples from the user
and synthesizes schema mapping queries in the form of Project-
Join (PJ) SQL queries. A person without the precise geo-
graphical knowledge might not be able to use the system
because it is hard to specify complete data records in the
desired schema, especially the area (High-resolution issue).
However, this does not necessarily mean that the person
has no insight to help discover the desired schema mapping
query. For example, the person may know that“Lake Tahoe”
is close to California and Nevada, so one of them must be
part of the example. Also, even if the exact lake area of Lake
Tahoe is beyond the user’s knowledge, she may know that
these values must be at least numeric and positive. Although
such marginal knowledge should still be useful in narrowing
down the search space of possible queries, existing systems
cannot use them (Low-expressivity issue).

Our Approach — To address the above limitations of
sample-driven schema mapping, we developed Prism1, a
multiresolution schema mapping system, that can discover
schema mapping queries employing user insights provided
at various resolutions.

Multiresolution schema mapping is a schema mapping pro-
cess with a novel interaction model which increases the scope
of descriptions the end user can provide. The model is em-
powered by a schema mapping description language enriched
to support constraints of various resolutions: 1) high reso-
lution: complete sample constraints with precise data val-
ues, 2) medium resolution: incomplete sample constraints
with approximate data values (a set of possible data values,
value ranges), 3) low resolution: column-level descriptions
like data type, value range or even user-defined functions.

1Available at https://github.com/umich-dbgroup/prism

https://github.com/umich-dbgroup/prism

Value Constraint ck := pv | pv logicalop pv | ε
Metadata Constraint cm := pm | pm logicalop pm | ε

logicalop := ∧ | ∨
Value Predicate pv := binop const

Metadata Predicate pm := type binop const

Metadata Type type := DataType | ColumnName |
MaxValue | MinValue

binop := > | ≥ | < | ≤ | = | 6=

Figure 1: Multiresolution schema mapping language

Once the user provides multiresolution constraints in the
proposed language, we synthesize the desired schema map-
ping query matching these constraints. A major technical
challenge is to ensure that the program search process is
efficient enough to be interactive. The search space of all
schema mappings is inherently massive; it is exponential
in the complexity of the desired schema mapping and the
source database schema. Moreover, the number of satis-
fying solutions can be relatively large because the types of
constraints we support are more relaxed than those ingested
by the sample-driven approach. As a result, performing a
fast search for a complete solution set in our case is diffi-
cult. Another challenge is that, for many non-expert users,
displaying SQL queries as the output result of a schema
mapping system may be difficult to understand. We pro-
pose an interactive approach using visualizations to make
the synthesized queries more explainable.

In Section 2, we present the design of Prism. We demon-
strate how to use Prism in Section 3.

2. SYSTEM OVERVIEW

2.1 Multiresolution Schema Mapping
User Input — As enterprise databases today are usually
large and complex, users might not have deep understand-
ing about the source database schema or precise knowledge
about the database content. In this case, it is difficult for a
user to author a schema mapping query or provide even a
few data examples in the target schema. However, the user
might still have some insights that are useful in narrowing
down the space of possible desired schema mapping queries.

To allow users to comfortably express their insights, ex-
tending our previous work [3], we propose a Multiresolu-
tion Schema Mapping Language (Figure 1), composed
of two classes of constraints the users can specify: at the row
level, target schema result constraints (“result constraints”
for short) and, at the column level, target schema metadata
constraints (“metadata constraints” for short). We also allow
the user to add logical operators “AND” and “OR” between
constraint values.

A result constraint is a set of sample constraints, which
are composed of a sequence of value constraints.

1. Value Constraints. A value constraint requires a
tuple in the target schema to contain a given keyword.
Unlike the value constraints handled by traditional
schema mapping systems, the user may also specify
a disjunction of possible values or a value range.

2. Sample Constraints. Multiple value constraints
listed in the same row together form a sample con-
straint. A schema mapping query satisfies a sample

Schema Mapping
Query Discovery

Configuration,
Result Constraints,

Metadata Constraints

Find Candidate
Schema Mapping

Queries

Validation through
Filters

Final Schema
Mapping Queries

Query Explanation
(Graph + Content)

Bayesian
Models

Figure 2: Prism architecture

Figure 3: Specify constraints for the desired schema mapping
(Description Sec.)

constraint if the result set of the query contains this
sample. Such constraints are also handled by other
sample-driven schema mapping systems [7, 8].

A metadata constraint represents factual knowledge about
individual columns in the source database. Currently, the
kinds of metadata we support in Prism are data type (in-
cluding decimal, int, text, date, time), maximum text length,
and value range. In the future, we plan to support more
metadata constraints, and even user-defined functions. Meta-
data constraints are allowed to be “ambiguous” too: the user
could specify a conjunction or disjunction of multiple meta-
data constraints for one column.

Problem Definition — Given a set of multiresolution schema
mapping constraints Q (or “multiresolution constraints” for
short) in the proposed language and a database D, the prob-
lem is to synthesize a schema mapping query, M, so that
M and the query result M(D) satisfy all constraints in Q.

System Output — To focus on the problem without loss
of generality, we restrict the space of synthesized schema
mapping queries to support Project-Join (PJ) queries.

2.2 System Architecture
Figure 2 shows Prism’s architecture and user interaction

workflow. Prism provides users with a web-based graphical
interface with three major sections: Configuration, De-
scription and Result.

Initially, in the Configuration section, the user sets up
the system for the schema mapping task. Current configura-
tions include the source database, number of columns in the
target schema, number of sample constraints, and whether
metadata constraints are specified.

Next, the user specifies a set of multiresolution constraints,
including result constraints and metadata constraints, to de-
scribe the desired schema mapping. The Description sec-
tion (Figure 3) has two regions to take in these constraints.

Once our system obtains the multiresolution constraints,
it executes the algorithm introduced in Section 2.3 to ini-
tiate a search for the desired schema mapping query. In
our system, we set a 60-second time limit for each round of
query discovery. If Prism successfully finds a set of schema
mapping queries, they are displayed in the Result section
(Figure 4). If Prism encounters a timeout, it reports a fail-
ure. A synthesized schema mapping query and its results
are guaranteed to match the constraints the user initially
provided.

If multiple satisfying schema mapping queries are discov-
ered, the user needs to understand each query and pick the
one that is desired. To help the user comprehend each query,

(a) Choose to view a synthesized
SQL query and its graph

(b) Schema mapping query
content

(c) The chosen SQL query graph and all constraints

Figure 4: Result Section: show the returned set of schema mapping queries and their graphs

in the Result section, Prism creates a visualization to ex-
plain any discovered schema mapping query the user selects
(as Figure 4c). We discuss this in more detail in Section 2.3.

2.3 Our Approach
Query Discovery — Like [7, 8], we split our schema map-
ping query discovery into of two steps: (#1) discovering
candidate complete schema mapping queries, and (#2) val-
idating candidate schema mapping queries.

The first step, discovering the candidate complete schema
mapping queries, is relatively straightforward. First, we
identify related columns—columns in the database poten-
tially used in the schema mapping—so that the search scope
for potential schema mapping queries is limited within this
small set of columns and tables, and hence, the search space
can be significantly reduced. In our setting, finding re-
lated columns is essentially finding columns in the database
matching at least a value constraint or metadata constraint.
Validating sample constraints requires executing expensive
join queries on the database and is done in Step 2.

The way we validate a value constraint on a column is
same as that in [7, 8]: leveraging the inverted index pro-
vided in most DBMS systems. To check a metadata con-
straint, we use metadata information, e.g., min/max values,
collected during preprocessing. With related columns found,
we exhaustively search through the source database schema
graph and find all possible join paths, each connecting a
set of related columns that altogether can be mapped to all
columns in the target schema. Every join path along with
the set of related columns it connects becomes a candidate
schema mapping query (in form of a PJ query). Note that
these candidate schema mapping queries are not final; we
have never executed these queries and checked if their query
results match the sample constraints.

In Step 2, a näıve solution to validating all candidate
queries is to execute them one by one on the source database
and check their query results, which can be very expensive.
In our project, we divide such an expensive verification task
into a set of cheap validations of filters, i.e. sub(join)trees
along with projected attributes (shorter PJ queries), in-
spired by [8]. If a filter fails, its parent filters and entire
candidate schema mapping query, from which the filter is
derived, automatically fail, and thereby pruned. This gives
us an opportunity to replace expensive validations of com-
plex schema mapping queries with cheaper validations of

filters.
Although validating filters instead of schema mapping queries

saves time, it is still a relatively expensive process. A new
important issue becomes the filter validation scheduling: in
what order the filters are validated so that the most number
of filters are pruned, as well as overall filter validation time
is minimized.

A filter scheduling algorithm should naturally consider
two important aspects of a filter: pruning power and cost.
Estimating the cost of a filter is essentially estimating the
cost of executing a SQL query on a database, which is known
to be very challenging because the actual cost can be af-
fected by many database tuning parameters, and is beyond
the scope of our project. We focus on improving the esti-
mation of pruning power of the filter.

The pruning power of a filter depends on two things: fil-
ter dependency and filter failure (success) probability. While
dependency relationships among a set of filters is fixed and
can be easily captured, estimating the failure probability
of a filter is a bit more tricky. Instead of setting the failure
probability proportional to the join path length of a filter [8],
we take a machine learning approach: we estimate the filter
probability using Bayesian models trained a priori for the
source database. A Bayesian model is able to give an esti-
mated probability of a certain record matching the sample
constraint exists. With this probability and the relation size
information, we can obtain a rough estimation of the fail-
ure probability good enough to boost our filter scheduling.
While learning a Bayesian model in a single relation is no
different from learning a model for a data set, learning a
model capturing the correlations among multiple relations
is more difficult. This problem is solved by using the join
indicator introduced by Getoor et al. in [2]. Details about
this idea will be discussed in our future paper.

In the end, we return all final schema mapping queries
and let the user choose the desired one.

Query Explanation — In Prism, we go beyond simply
showing the actual generated SQL queries; we explain the
discovered schema mapping queries using visualizations.

Whenever the user points to a schema mapping SQL query
(top of Figure 4a), we draw a corresponding query graph rep-
resentation for this query (Figure 4c). Orange squares rep-
resent relations, green ellipses are the attributes to project,
and edges represent join conditions. To help the user un-
derstand why a given query matches all the constraints she

provides, the user could pick one or more constraints (bot-
tom of Figure 4a), and Prism draws these constraints (as
blue boxes) in the previous graph to show the locations in
the database where these constraints are satisfied.

2.4 System Evaluation
We compared Prism with Filter on a set of synthesized

test cases created from a public relational database Mon-
dial [5]. In summary, we observed that the overall execution
time of user constraints did not grow significantly as user
constraints became loose (containing constraints with dis-
junctions, value ranges, etc.). Meanwhile, the number of sat-
isfying schema mapping queries discovered did not increase
much (unless when there were too many missing values). All
these evidences suggest that, Prism not only requires less
user knowledge, it does not increase the user interaction ef-
fort in schema mapping. Also, our approach significantly
reduced the gap of the required number of filter validations
between Filter and the optimum (up to ∼ 70%; on average
∼ 30%), which shows our Bayesian-model-based approach
can effectively improve the filter scheduling. This section
will be discussed in more details in our future paper.

3. DEMONSTRATION
Our demonstration aims to show the conference attendees

that our proposed system, Prism, is able to help a näıve
user synthesize schema mapping queries using multiresolu-
tion constraints.

We use the Mondial data set mentioned in Section 1 and
two other data sets, IMDB and NBA as the source databases
the user can interact with. The user can choose from a set of
suggested target schemas or come up with her own. Then,
the user is free to provide any multiresolution constraint she
can come up with to constrain the desired schema mapping
process. In the end, Prism will show all satisfying schema
mapping queries discovered and present visualizations to ex-
plain the query the user selects, as discussed in Section 2.3.

To best illustrate how to use our tool, we will use the
motivating example from Section 1, where a user would do
the following2:

1. In the Configuration section, 1) choose “Mondial”
as the source database from the supported databases,
2) set the number of columns in the target schema as
“3”, 3) set the number of sample constraints as “1”, 4)
confirm to specify metadata constraints.

2. Specify the multiresolution constraints to describe the
desired schema mapping in the Description section.

2.1. Type “California || Nevada” in the first cell in the
Sample Constraint field.

2.2. Type“Lake Tahoe”in the second cell in the Result
Constraints field.

2.3. Type“DataType==‘decimal”’ AND MinValue>=‘0”’
in the third cell in the Metadata Constraints field.

3. Hit the “Start Searching!” button.

4. In the Result section, Prism shows a list of satisfying
schema mapping queries. View the queries and pick
the one that is correct.

4.1. Select the first synthesized query in the top field
in Figure 4a. The SQL query is shown as Fig-
ure 4b.

2https://markjin1990.github.io/assets/video/prism.mp4

4.2. The system draws a graph.

4.3. Interaction: choose the constraints in the bottom
field in Figure 4a to show in the visualization (Fig-
ure 4c shows a SQL graph with all constraints
user provided). This helps the user understand
why the selected query matches the constraints
she provided.

4.4. If the selected query is not desired, repeat the
above process for the second query.

4. CONCLUSION
Our demonstration shows that the proposed multiresolu-

tion schema mapping system, Prism, makes schema map-
ping in a large complex database easy for non-expert users.
To build a schema mapping SQL query generating the tar-
get schema in a large and complex database, the user may
specify constraints of various resolutions, such as disjunc-
tions of values, value ranges, and even column-level meta-
data constraints which presumably require less domain ex-
pertise than high-resolution constraints, i.e., exact data sam-
ples. We will continue to develop this system to achieve our
vision for a schema mapping system for non-expert users.

5. ACKNOWLEDGMENTS
This project is supported in part by by NSF grants IIS-

1250880, IIS-1054913, NSF IGERT grant 0903629, a Sloan
Research Fellowship, a CSE Dept. Fellowship, and a Uni-
versity of Michigan MIDAS grant.

REFERENCES
[1] Angela Bonifati, Ugo Comignani, Emmanuel Coquery,

and Romuald Thion. Interactive mapping specification
with exemplar tuples. In SIGMOD, 2017.

[2] Lise Getoor, Benjamin Taskar, and Daphne Koller.
Selectivity estimation using probabilistic models. In
ACM SIGMOD, 2001.

[3] Zhongjun Jin, Christopher Baik, Michael Cafarella, and
H. V. Jagadish. Beaver: Towards a declarative schema
mapping. In Proceedings of the Workshop on
Human-In-the-Loop Data Analytics.

[4] Dmitri V Kalashnikov, Laks VS Lakshmanan, and
Divesh Srivastava. Fastqre: Fast query reverse
engineering. In SIGMOD, 2018.

[5] Wolfgang May. Information extraction and integration
with Florid: The Mondial case study. Technical
Report 131, Universität Freiburg, Institut für
Informatik, 1999. Available from
http://dbis.informatik.uni-goettingen.de/Mondial.

[6] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis,
and Themis Palpanas. Exemplar queries: Give me an
example of what you need. In PVLDB, 2014.

[7] Li Qian, Michael J Cafarella, and HV Jagadish.
Sample-driven schema mapping. In SIGMOD, 2012.

[8] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri,
Bolin Ding, and Lev Novik. Discovering queries based
on example tuples. In SIGMOD, 2014.

[9] Chenglong Wang, Alvin Cheung, and Rastislav Bodik.
Synthesizing highly expressive sql queries from
input-output examples. In PLDI, 2017.

https://markjin1990.github.io/assets/video/prism.mp4
http://dbis.informatik.uni-goettingen.de/Mondial

	Introduction
	System Overview
	Multiresolution Schema Mapping
	System Architecture
	Our Approach
	System Evaluation

	Demonstration
	Conclusion
	ACKNOWLEDGMENTS

