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ABSTRACT
When developing new data-intensive applications, one faces a build-
or-buy decision: use an existing off-the-shelf data management sys-
tem (DMS) or implement a custom solution. While off-the-shelf
systems offer quick results, they lack the flexibility to accommo-
date the changing requirements of long-term projects. Building a
solution from scratch in a general-purpose programming language,
however, comes with long-term development costs that may not be
justified. What is lacking is a middle ground or, more precisely,
a clear migration path from off-the-shelf Data Management Sys-
tems to customized applications in general-purpose programming
languages. There is, in effect, a no man’s land that neither compiler
nor database researchers have claimed.

We believe that this problem is an opportunity for the database
community to claim a stake. We need to invest effort to transfer the
outcomes of data management research into fields of programming
languages and compilers. The common complaint that other fields
are re-inventing database techniques bears witness to the need for
that knowledge transfer. In this paper, we motivate the necessity
for data management techniques in general-purpose programming
languages and outline a number of specific opportunities for knowl-
edge transfer. This effort will not only cover the no man’s land but
also broaden the impact of data management research.

1. INTRODUCTION
The data management landscape is shifting. On the one hand, the
underlying components on which data management systems (DMSs)
are built are becoming more heterogeneous: programmable devices
such as co-processors, smart network interfaces or memory with
compute capabilities need to be exploited to maximize efficiency.
On the other hand, applications are becoming ever more demand-
ing: correctness and low response times are no longer enough. In
cloud environments, users require features such as security, elastic-
ity and cost efficiency.

Unfortunately, DMSs are increasingly falling behind in the race
to provide users with the features that they demand. For example,
no major database vendor is currently supporting the secure execu-
tion of arbitrary queries in protected hardware enclaves using In-

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2019.
9th Biennial Conference on Innovative Data Systems Research (CIDR ‘19)
January 13-16, 2019 , Asilomar, California, USA.

FlexibilitySimplicity
Pr

op
os

ed
 V

al
ue

CompilersDatabases

User Requirement

No Man’s Land

Figure 1: No Man’s Land between Compilers and Databases

tel’s Software Guard Extensions (SGX) despite the technology be-
ing commercially available for three years and there being massive
demand.1 Even if users would like to extend the DMS with custom
features such as hardware enclaves, the system lacks the flexibil-
ity to accommodate that. The alternative is building a system from
scratch, which comes at enormous ramp-up costs that may never
pay off. For example, we are familiar with a major cloud mu-
sic provider migrating their data management solution away from
Apache Spark (a flexible framework incorporating multiple storage
formats and hand-crafted query plans) to Google’s BigQuery (an
off-the-shelf solution with opaque storage and an SQL interface)
after a number of years because there was little need for custom
features and the development costs were, thus, not justified.

Figure 1 illustrates this fundamental problem. While the value
proposition of DMSs is based on simplicity and a (largely) self-
managing system, compilers offer practically unlimited flexibility
and control. If application requirements fall onto one end of this
spectrum, selecting the appropriate tool is easy; if an application
falls somewhere in between, breaking the application into compo-
nents with unambiguous requirements is hard—when dealing with
shifting requirements (as most long-term projects do), this decision
is largely based on guesswork.

To demonstrate this problem, consider an application that man-
ages patient data for a hospital chain. It may start out as a clas-
sic OLTP database application, i.e., storing and retrieving patient
records. At some point, hospitals are equipped with smart medical
devices that measure patients vitals. The acquired data points are
added to the database as an event stream. At this point, the com-
pany’s software architects may consider a more specialized data
management solution such as a stream store [10]. Later, a predic-

1We are only aware of SQL Server’s Enclave support, which has
been in preview for almost two years.



tive model management system is added to forecast the need for
vaccinations and other treatments based on real-time patient ad-
mission data. When the hospital decides to cross-correlate patient’s
vitals with real-time data about room temperatures to create opti-
mal recovery conditions, the time for a custom-made solution has
come. Unfortunately, the hospital is unlikely to adopt such an ap-
proach because it means crossing the architectural no man’s land:
there is no migration path2 from a DMSs to custom-built solutions.

To address this challenge, we need to claim the space between
compilers and databases: the two fields need to move closer, with
knowledge transfer in both directions. While we find that the database
community is adopting techniques from compiler research [22, 33,
35], rarely, however, does knowledge flow the other way.3.

We argue that this is less a technological issue but one of mind-
set: compiler researchers usually focus on small, incremental gains
with broad applicability and that all but guarantee the absence of
performance regression; most research on DMS performance fo-
cuses on carving out regions of the problem space that are amenable
to a particular optimization technique. Stateless intermediate alge-
bras simplify the definition of rules that prescribe the applicability
of a given optimization.

Technologically, however, these two fields are less divided than
they seem: both use dataflow representations internally to simplify
optimization, both have notions of cost-based optimization, of tran-
sient vs. persistent state and of resource pressure—most concepts
in one can be found in the other. This leads to the question:

Can DMS optimizations be applied directly to compiler’s in-
termediate representation and do they yield similar benefits?

We believe they can, if one relaxes the expectation of universal
applicability, and we give a specific example of this in Section 4.
We also claim that one can go even further than that. We outline
a research agenda to gradually merge the fields of databases and
compilers by transplanting concepts and ideas from the database
research into existing compilers. We motivate the necessity of this
agenda in the next section by discussing the growing diversity in
application needs as well as the increasing heterogeneity in hard-
ware platforms. We follow with a description of the state-of-the-art
in the respective fields (compilers and databases) and a discussion
the potential for knowledge transfer in Section 3. After a detailed
example in Section 4, we conclude in Section 5.

2. CHANGES IN APPLICATION NEEDS
Application needs are changing. Even when limiting the scope
to data management requirements, we find that often they are no
longer adequately served by relational DMSs. While SQL is techni-
cally Turing-complete, expressing complex data management tasks
in user-defined functions (UDFs) is cumbersome and inefficient.

To assess the magnitude of this problem, we implement a linear
least-squares classifier with online retraining as a single-threaded
C++ program and compare it to one implemented as a PostgreSQL
UDF.4 We insert a stream of 2 million (int,int)-tuples gener-
ated from a realistic input distribution (fitted to a country’s area
and population). The model labels the countries as low, medium or
high population and is updated with each inserted tuple (note that

2A strategy to gradually replace one with the other at reasonable
cost and without significant downtime
3In fact, database researchers often lament when other fields adopt
individual database techniques rather than adopting the package
that is a DBMS
4Naturally, the PostgreSQL implementation must store the model’s
state in a table.
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Figure 2: Overhead for Model Management in Postgres

a linear least-squares model has only four parameters). Figure 2
shows the model management overhead, i.e., execution time with
model update minus time with a static model, in seconds. We ob-
serve that PostgreSQL adds more than 5000× overhead. While this
may technically be justified because PostgreSQL provides features
such as recoverability, consistency and data independence, none of
these are necessary for the application. However, they come with
the package.

Given the rigid nature of DMSs, it is not surprising that dataflow
frameworks such as Spark [44] and Flink [4] use general-purpose
programming languages as their frontends as well as to implement
their engines. Their reliance on general-purpose languages, though,
exposes them to their advantages and disadvantages.

In the following, we discuss these in decreasing order of im-
portance (as perceived by us). Note that these are not necessarily
independent dimensions of the problem.
Correctness. Naturally, correctness is the primary concern of ap-
plication developers. The separation of the declarative frontend
from the execution engine is a key advantage of DMSs when rea-
soning about the correctness of programs. By mixing the two, the
aforementioned frameworks sacrifice guaranteed correctness. In
Spark Streaming [45], e.g., the result of a window query may be
affected by the speed of processing in a cluster. This leads to dif-
ferent “correct” outputs, which is clearly problematic: correctness
should be “semantic”, i.e., defined independently of the implemen-
tation. DMSs have long fulfilled this desiderata.
Performance. Good out-of-the-box performance is often the main
reason for developers to opt for a DMS. However, they sacrifice
tuning potential for edge-cases that compilers provide. While ex-
pecting both in all cases is unreasonable, one would assume that
a compiler should, at least, be able to match the performance of a
DMS for the data management aspects of an application.

One particularly important aspect of this is the exploitation of
modern hardware: as the last decade has brought many-core ma-
chines with multi-tier cache hierarchies, DMSs were forced to re-
structure their architectures to better match the properties of the
underlying hardware [2, 3, 8, 29]. This led to the development of
hardware conscious data processing algorithms and implementa-
tions that run efficiently on modern machines by exploiting the new
features introduced by hardware vendors.

Compared to the low-level intermediate representation (IR) that
a compiler typically operates on, a DMS’s query plan is a higher-
level representation of the program, describing algorithms as well
as access patterns. This knowledge can be exploited to, e.g., achieve
better cache and bandwidth usage by re-structuring the data layout
(data-partitioning, column vs. row storage, etc.) or hiding cache-
miss latencies by software prefetching using access pattern knowl-



edge. Such optimizations have been shown to yield significant ben-
efit compared to compiler-generated code [7, 26, 36, 39, 43].
Flexibility. As illustrated by the online learning example, data
management applications are no longer merely OLTP or OLAP.
Instead users expect a platform for building generic stateful appli-
cations with the flexibility to integrate and run any code. That code
could implement a classifier, a specific encryption algorithm or a
data cleaning tool—its state could be held in a relation, an array,
a neural network or a binary object. Applications need to satisfy
requirements as diverse as latency sensitivity, throughout orienta-
tion, security sensitivity, scalability, etc. In fact, the configuration
may change over the lifetime of the system. Given this list of re-
quirements, it is hard to see how any system short of a compiled
general-purpose programming language could satisfy these.
Security. Security is an important application requirement right
now and will likely only increase in relevance.5 How to accommo-
date security concerns in DMSs is, arguably, one of the most ac-
tively studied research questions right now. In this respect, compiler-
based approaches are more advanced than their DMS counterparts:
taint-tracking and information flow control [47] as security tech-
niques for ensuring data confidentiality are well studied and can be
enforced by a compiler across whole applications.

Augmenting such software solutions, hardware can provide se-
cure and trusted execution environments (TEE), which are becom-
ing wide-spread (e.g., Intel’s SGX [11], ARM TrustZone [5]). How-
ever, efficiently leveraging such hardware extensions requires end-
to-end system support and holistic decisions on when and how
to use them. For example, in a cloud environment, a DMS can
leverage the available TEEs when operating on sensitive data and
queries for clients, which are willing to trade-off high performance
for high security guarantees. In addition, they can make use of
the cache allocation technology (CAT) in new Intel processors to
better isolate the effects of concurrent queries, mitigating against
side-channel attacks.
Heterogeneous hardware and portability. With the end of Den-
nard scaling, the hardware landscape is only going to become more
heterogeneous with specialized, active components. Hardware ex-
tensions no longer only come within the CPU itself as new in-
structions (e.g., hashing, encryption, vectorization, etc.) but also
off-chip e.g., in the form of co-processors such as GPUs, FPGAs,
XeonPhi, ASICs, etc. Such a major shift to an active everything ar-
chitecture represents both a challenge and an opportunity. Systems
will have to be redesigned to fully exploit the potential of heteroge-
neous hardware components: they need to generate code that runs
efficiently on the target platforms, construct and optimize dataflows
to find a deployment that maps operations to devices and manage
the necessary data transfers.

One major challenge for software development on such a wide
variety of platforms is that they differ in various aspects such as
their memory organization and the computational units. While the
memory sub-system on a CPU is implicitly managed by the hard-
ware, on a GPU this management is mixed, while on many ASICs,
it becomes explicitly managed by the programmer, with caches re-
placed by scratchpad SRAM memory and memory fetched with
DMA engines (e.g., Google’s TPU [20], Oracle’s DPU [1]). Sim-
ilar differences can be found in computational units: while CPUs
operate primarily on scalar values, GPUs operate on vectors, FP-
GAs on streams of data items, a domain-specific processor such as
Google’s TPU operates on domain objects (tensors for deep learn-
ing). This diversity in hardware properties yields challenges to the

5Some may argue that security should even come before correct-
ness.

compiler infrastructure [13]. In such a setup, a compiler not only
must generate code that adheres to the ISA but also explicitly man-
age the data layout to match the one required by the memory hi-
erarchy of the accelerator. In addition, it must control the pipeline
dependencies in order to hide memory access latencies for accel-
erators that do in-order processing and configure the runtime with
the appropriate threading model.

This is where DMSs can exploit the independence of logical and
physical data model: (1) working with query execution plans in a
physical data and hardware-independent way enables optimizations
that would otherwise be impossible to do in a compiler as they lack
the high-level overview of the data-dependent control flow among
the different operations; and (2) it enables DMSs to apply transfor-
mations that simplify the use of heterogeneous hardware platforms
such as co-processors. When targeting specific hardware compo-
nents, the only scalable way to manage the combinatorial explo-
sion of high-level operations, data types, hardware intrinsics and
data layouts is to generate executable code.
Ease of Development. Before concluding this section, let us briefly
discuss an important area in which general-purpose programming
languages have a significant lead: the ease of development and the
availability of abstractions and tools. Consider the availability of
unit-testing or refactoring tools for typical DMS query languages in
contrast to mainstream programming languages. Given the preva-
lence of large applications in SQL, the lack of development sup-
port is worrying. A related concern is the availability of packaging
systems as well as the support for closed-source libraries, which
are crucial to many commercial applications. While the lack of
tools can, at least in part, be explained by the view of SQL as an
domain-specific language, having stronger tool support would help
the adoption of SQL.

3. UNIFYING COMPILER AND DMS
As discussed in the previous section, the unification of compilers
and DMSs is driven by changes in applications requirements and
the need to exploit new hardware features. Historically, compilers
and DMSs have targeted different problems. In recent years, how-
ever, they have converged slightly: on the DMS side, this was trig-
gered by the move to memory-resident data, which forced query
processors to boost their efficiency. Generating executable code
(just like compilers do) was a natural means of achieving that [22,
33, 35]. On the compiler side, data-intensive (also known as “big
data”) applications have created an incentive to study, e.g., domain-
specific languages for data processing tasks [30,38]. There are still
fundamental differences in the approaches and architectures of the
respective systems, which complicate knowledge transfer.

In this section, we describe a path towards a unified system. We
start by presenting the state-of-the-art in the integration and adop-
tion of techniques from one system to the other. We follow this
with a description of the challenges that any unification effort faces
and conclude with the opportunities of such a unification.

3.1 State-of-the-Art
We begin with a comparison of the respective features of DMSs and
compilers (see Table 1). The matrix is, naturally, non-exhaustive
but indicative of a general trend. In addition to DMSs and com-
pilers, we added two columns summarising the features that can be
provided by either libraries (Lib) or the underlying hardware (HW),
but are neither integrated in nor supported by the compiler itself. In
addition to present (X) and missing (×) features, we mark those
that are either a subject of active research or experimental with �.
One notable observation from the table is that the feature-sets of



DMS Compiler Lib HW

Transactional Isolation X × X X
Transactional Atomicity X × X X
Transactional Consistency X × X ×
Transactional Durability X × X ×
Binary ABI × X × ×
Cost-based Optimization X × × ×
Indexing X × X ×
Adaptive Indexing X × × ×
Runtime Re-Optimization X � × ×
Defined memory layout × X × ×
Data Independence X × � ×
Persistence X × X X
Declarative Interface X X X ×
Access Control X × × X
Crash Recovery X × × ×
Explicit State Management × X × ×
Intermediate Operator State × X X ×
Fallback Language X X × ×
Implicit Resource Mgmt. X × X ×
Explicit Resource Mgmt. × X × ×
Unit Testing × × X ×
Pay-as-you-go cloud pricing X × X ×
Table 1: Comparing (some) Features of Execution Platforms

compilers and DMSs are largely disjoint. We believe that this mer-
its a deeper discussion.
Knowledge Transfer to DMSs. DMSs have adopted compilers
(or, more specifically, virtual machines) as backends because they
fulfil the need for CPU-efficient binary code. Projects such as Hy-
PeR [33], Legobase [22] and Voodoo [35] have demonstrated how
query processors can be built on top of compiler frameworks and
the performance benefits that ensue. What they lack is, e.g., a sys-
tem that allows applications to manage their own state, such as a
machine learning model, inside these query compiler systems.

Systems such as TupleWare [15] and Weld [34], which build on
top of compiler frameworks, can merge the data managing code
of applications with other parts of the program and optimize them
jointly. The optimizations are, however, performed using clas-
sic compiler techniques with their known limitations—they fail to
leverage techniques such as cardinality estimation, data compres-
sion or indexing.
Knowledge Transfer to Programming Languages. On the com-
piler side, one common approach is to re-create the functionality of
classical query processing engines within a general-purpose pro-
gramming language in the form of dataflow libraries. Spark [44],
Naiad [32] and ArrayFire [27], implement dataflow paradigms rem-
iniscent of relational algebra.

Like relational databases, they are built on top of rather than inte-
grated with general-purpose compilers, placing them in the library
category in Table 1. On the one hand, this leaves them with lim-
ited control over the low-level aspects of execution such as mem-
ory allocation, scheduling and vectorization; on the other hand, this
also limits their scope: users need to use the provided abstractions
(RDDs, Naiad Collections, etc.) and the provided primitives to

benefit from them, which is not a fundamental improvement over
DMSs. Similarly, approaches such as Exodus [9] or, more con-
ceptually, RISC-style database systems [12] provide no compiler
integration at all, although they recognize the problem posed by
monolithic DMSs.

There are some early efforts to extend the applicability of data-
dependent optimizations, which were previously almost exclusively
used in DMSs, to a broader scope of programs by giving hints to
the compiler. An example is Milk [21], which allows a compiler to
apply optimization to indirect memory loads similar to those that
query processors apply to page loads in foreign-key joins. Since
this optimization is not universally beneficial (or correct), develop-
ers have to enable it using OpenMP pragmas.

While such changes to the internal workings of compilers or
DMSs positively impact their respective performance, they do not
fundamentally alter their capabilities. On the DMS side, the inter-
face to query compilation systems is still SQL with ACID guaran-
tees on all tables, which comes with the overhead that we shown
in our experiment in Section 2. On the compiler side, Spark RDD
query plans still need to be optimized by hand.
Reducing Friction between the two. There is, however, some
work that accepts the strengths and shortcomings of each of the
systems and attempts to use knowledge about one to optimize the
other. An interesting example of that is Sloth [14], an approach to
holistic optimization that defers the issuing of queries in an appli-
cation as much possible. This enables optimizations such as fusion
and even complete elimination of calls to the database.

3.2 Challenges
Despite some early successes, traditional DMSs and compilers are,
at their core, still quite different, and their unification is not a trivial
task. Let us next walk through the challenges that we see in this
endeavor.

We see three aspects of these systems that need unification: their
model of intermediate state, their model of computation and their
model of persistence. These aspects correspond directly to the three
components of a computer system: RAM, CPU and disk. Both
compilers and DMSs have these aspects, but they implement funda-
mentally different approaches. We discuss them below and outline
approaches to their unification.
Unifying the Model of Intermediate State. The model of inter-
mediate state describes the format of intermediate (i.e., volatile)
data structures that are passed between operators. For relational
DMSs, the state model is a relation. This model is, arguably, the
defining criterion of relational DBMSs. On the compiler side, there
is no consensus on an intermediate representation. The three most
prominent approaches are: registers, an operand stack and a heap.

Most compilers have a notion of a heap, i.e., an unstructured
memory region that allows random access. It is shared among all
threads and is usually the target for pointer arithmetics. These two
aspects make it hard to reason about the state of the heap and pre-
vent many program optimizations such as common subexpression
elimination or write-combining. Therefore, most compilers use one
of the other two means of maintaining state: registers, as in the case
of LLVM or V8, and a stack, as in the case of .Net CLR and We-
bAssembly Bytecode. The Hotspot JVM implements both.

While LLVM has a lot of momentum right now, it is unclear if
pure register machines are a good fit for the requirements of DMSs.
Register machines limit the size of the state to a compile-time con-
stant (LLVM provides an arbitrarily large but finite set of registers).
Any state that grows to a size that is unknown (at compile-time)
has to be maintained in the heap. As we mentioned earlier though,
heap-allocated state prevents certain key optimizations. In addition,



stack machine instruction sets are known to yield faster interpreters,
which makes them attractive for “small” queries that usually do not
benefit from the effort of compiling all the way down to executable
code. This aspect is of particular importance to DMSs that need to
support interactive queries.

Given these constraints, the question of the right model for state
merits closer investigation than it has received from either the DMS
or the compiler communities. In fact, it seems likely that a unified
state model for compilers and databases would be a stack rather
than a register machine.
Unifying the Computational Model. An area in which DMSs are
severely restricted is their support for efficient iterative processing.
On the one hand, an advantage when optimizing relational algebra
plans is the lack of dynamically bounded iteration and recursion.
As iteration creates work at runtime, it complicates cost-estimation
and, thus, increases the complexity and cost for query optimization;
on the other hand, iterative processing enables many real-world
use-cases such as the computation of pagerank, gradient descent
and other randomized algorithms.

While most major DMSs support the definition of recursive SQL
queries, database optimizers merely optimize their non-recursive
parts. Such optimization closely resembles the one that compilers
perform on the Single Static Assignment (SSA) form6 of programs.
Both share the same limitations, i.e., that no optimizations are per-
formed across loop iterations.

To perform cross-loop optimizations, compilers usually repre-
sent code in higher-level forms such as the polyhedral model [24],
which is a nested-loop representation with formalized constraints
on the loops. While extracting a polyhedral representation from
SSA form is possible, it is non-trivial and computationally expen-
sive [17]. This is not aligned with DMS requirements for low com-
pilation times.

It is, thus, worthwhile to look beyond the current trend into other
kinds of recursion models. One likely candidate is the Continua-
tion Passing Style (CPS) that is commonly implemented as an IR
in functional language compilers. Conceptually, CPS is more ex-
pressive than SSA and closer to the recursive (functional or declar-
ative) programming model that dominates in data processing sys-
tems. Therefore, we plan to study the use of such alternative com-
putational models in DMS backends.
Unifying the Model of Persistence. Persistence (also known as
durability) describes how the system manages data that needs to
be available even after a transient failure. It is the core domain of
DMS but only auxiliary to compilers: where (relational) DMS pro-
vide a single, portable persistance model with semantic guarantees
(e.g., for updates), general-purpose programming languages rely
on system-specific APIs (e.g., for disk access) or (more recently)
portable abstractions such as Protocol Buffers [42] or Thrift [37].
While these offer portable durability, they do not offer any kind of
guarantees in terms of integrity, consistency or isolation. These are
offloaded to developers to implement on top of a persistence frame-
work. Support for these properties could be generated by the com-
piler: it could enforce consistency by instrumenting the generated
code to check for violations. In fact, the work on object-oriented
databases and persistent object-stores [6] demonstrated that this is
possible in standalone systems.

Most of the related research must be revisited in the context of
modern hardware such as multicore CPUs, GPUs or non-volatile
memory. Currently it does not address the need for highly-performant
code with efficiency techniques such as pointer arithmetics, vector-
ization or hardware acceleration.

6basically a dataflow representation with goto

3.3 Opportunities
Having outlined the challenges in the unification of compilers

and DMSs, let us discuss some of the created opportunities.
Recovering state of general programs. State recovery is a key
reason why users opt to use DMSs, yet not all data needs to pay
the price/overhead for recoverability. In databases, data recovery
is typically achieved through write-ahead logging [31] or shadow
paging. It is also, one of the hardest problems that DMSs solve and,
thus, non-trivial to implement by hand.

As we illustrated by the online learning example in Section 2,
not all parts of an application’s state need to be “recoverable”, as
they can be easily recomputed by the application. In this case, the
overhead added by the recovery protocol is likely the main source
of inefficiency of the application’s implementation on top of Post-
greSQL. To achieve better performance and the desired recover-
ability, the application should be allowed to specify that the in-
serted base data must be recoverable, while the model does not. For
convenience, developers would likely specify a customized recov-
ery handler function (in this case, retraining the model of the base
data) rather than manually running the recovery strategy from out-
side the DMS. One could even imagine a situation in which some
attributes or tuples of a table would be recovered using a custom
handler while others are recovered by the system.
Cost as a first class citizen. Cost estimation was until recently
a mere supporting function in compilers as well as databases. It
plays a much bigger role in databases now because it steers the ex-
ploration of the plan space during query optimization [28,40]. This
is fundamentally different in compilers because the set of correct
programs is theoretically infinite and practically very large, which
makes it infeasible to explore exhaustively. Cost models are usu-
ally used to make localized decisions such as loop unrolling or par-
allelization [16]. A notion of the overall cost of a program is, if at
all, acquired by running it on sample input.

With the advent of platform-as-a-service and serverless comput-
ing, cost-estimation of generic programs is becoming increasingly
important: in a serverless execution setup, a cloud provider agrees
to execute a generic function at an agreed-upon price. Estimating
the cost of the function is, thus, important to the cloud provider.
Database-inspired cost models can help fulfil that requirement.
Unifying the Model of Adaptivity. Adaptivity, i.e., learning from
previous executions of a program to improve the efficiency the cur-
rent one, is an area in which both DMSs and compilers have notable
features. Both, however, play to their respective strengths: DMSs
either gather knowledge about the data (see, e.g., the learning op-
timizer [41]) or adaptively build indices (see, e.g., database crack-
ing [19]). Compilers implement adaptivity in one of two ways: for
statically compiled languages, they gather execution profiles when
running an unoptimized version of the program and feed the pro-
file to a second, optimized compilation run. This process is com-
monly referred to as Profile-Guided Optimization [18]; in just-in-
time compiled languages, the compilation/optimization process it-
self is subject to adaptivity: only parts of the code that are executed
frequently are compiled/optimized. Most compilers represent code
differently depending on the level of optimization. This way, the
compiler spends less time on code that contributes little to overall
runtime.

For adaptivity, we see potential for knowledge transfer in both
directions. Some DMSs have already started adopting the idea
of adaptive compilation [23]. They have yet to embrace the idea
of changing the representation (it is currently always LLVM byte-
code). This forces them to compile and optimize at a very coarse
granularity (query plan fragments that can be as large as the en-



int process(int* input, unsigned long size) {
int result = 0;
for(auto i = 0; i < size; i++)
result += input[i];

return result;
};

Listing 1: Simple Aggregation in C

extern int* runs;
extern int* lengths;

int process(int* input, unsigned long size) {
int result = 0;
for(auto i = 0ul; i < size; i++)
result += runs[i] * lengths[i];

return result;
};

Listing 2: Aggregation of Run-length-encoded data in C

tire plan). If the system explores different query plans (see [46]),
this quickly becomes expensive. There are, thus, gains to be made
by integrating adaptive compilation into DMSs. On the other side,
compilers could be more aggressive in building (and even persist-
ing) auxiliary data structures such as indices. We envision exe-
cutable binaries contain a “scratchpad-memory” that can be modi-
fied by the application to pass data to its next invocation. For exam-
ple, a UNIX grep could store the probability of finding matching
lines in a text file over the last n runs and use this information to
allocate buffers.

4. EXAMPLE: COMPRESSION
Let us illustrate our approach using a textbook data management

technique that has, to the best of our knowledge, never been ap-
plied in the context of general-purpose compilers: data compres-
sion (specifically run-length encoding) and operating directly on
that compressed data. In the context of DMSs, it requires a devel-
oper to implement operators that work on compressed data; in the
context of general-purpose programming languages, it could be im-
plemented as a library that implements compressed data structures
as well as primitives over them. In contrast, we envision a deeper
integration with the host language to enable the transparent use of
compression. To illustrate this, consider the code in Listing 1: it
calculates a simple (ungrouped) sum over an input array. The same
operation over run-length-encoded data is shown in Listing 2. As-
suming a good compression ratio, we expect this implementation
to be significantly faster. However, rewriting a complex program
on uncompressed data into one of compressed is non-trivial. We
therefore aim to apply this (admittedly complex) optimization au-
tomatically. For our example, we implement it in LLVM [25].

Following common practice, we do not apply this optimization
at the source code level but at the level of the dataflow IR. In the
case of LLVM, this IR follows the static single assignment (SSA)
paradigm. The SSA representation of the aggregation program is
displayed in Listing 3. Note that while there is a fair amount of boil-
erplate, the crucial piece of code is the loading of the input values
in lines 5 and 6, and their accumulation in line 7. Transforming this
program into one that operates on run-length-encoded data (the one
displayed in Listing 4) is not hard: we merely need to replace the
accumulation with one that multiplies each value with the length
of its run first (line 12). This naturally requires the loading of the
current run and its length in lines 8 and 10, respectively. This,
in turn, requires the loading of the compressed runs and lengths

1 define i32 @process(i32*, i64) {
2 loop:
3 %i = phi i64 [ 0, %2 ], [ %nextI, %loop ]
4 %resultBefore = phi i32 [ 0, %2 ], [ %result, %loop ]
5 %inputValuePtr = getelementptr inbounds i32, i32* %0, i64 %i
6 %inputValue = load i32, i32* %inputValuePtr
7 %result = add nsw i32 %inputValue, %resultBefore
8 %nextI = add nuw i64 %i, 1
9 %end = icmp eq i64 %nextI, %1

10 br i1 %end, label %exit, label %loop
11 exit:
12 ret i32 %result
13 }

Listing 3: Simple Aggregation in LLVM IR

1 define i32 @process(i32*, i64) {
2 %runs = load i32*, i32** @runs
3 %lengths = load i32*, i32** @lengths
4 br label %loop
5 loop:
6 %i = phi i64 [ 0, %2 ], [ %nextI, %loop ]
7 %resultBefore = phi i32 [ 0, %2 ], [ %result, %loop ]
8 %runValuePtr = getelementptr inbounds i32, i32* %runs, i64 %i
9 %runValue = load i32, i32* %runValuePtr

10 %lengthValuePtr = getelementptr inbounds i32, i32* %lengths, i64 %i
11 %lengthValue = load i32, i32* %lengthValuePtr
12 %inputValue = mul nsw i32 %lengthValue, %runValue
13 %result = add nsw i32 %inputValue, %resultBefore
14 %nextI = add nuw i64 %i, 1
15 %end = icmp eq i64 %nextI, %1
16 br i1 %end, label %exit, label %loop
17 exit:
18 ret i32 %result
19 }

Listing 4: Aggregation of Run-length-encoded Data in LLVM IR

arrays in lines 2 and 3 (we omitted the code for compressing the
input for brevity).

While this example is simplified and, thus, not particularly chal-
lenging, it illustrates the direction of our work: we apply a tech-
nique that is well-established in the realm of data management
and integrate it into an existing compilation framework. The re-
sult is a compiler that automatically applies the optimization when
applicable. This kind of optimizations is fundamentally different
from those traditionally applied in general-purpose compilers in
that it exposes the risk of hurting performance (for example, if
the compression rate is poor). Estimating and bounding costs for
data-intensive algorithms, however, has been one of the traditional
strengths of DMSs, which will allow us to apply this optimization
only when beneficial.

5. CONCLUSION
Data management systems and compilers must merge. It will

free developers from the architectural challenge of selecting the
right platform for their needs. It will allow infrastructure and cloud
providers to maximize utilization and charge appropriate prices. Fi-
nally, it will allow database researches to work on “the hollow mid-
dle” again—core database topics, albeit applied in a more general
context. In this paper, we argued the need for such a merge us-
ing experimental as well as architectural evidence. However, the
road to a unified data management system/compiler system holds
a number of challenges. We discussed the three core unification
challenges (computation, state and persistence) and how they can
be addressed. We also showed a number of opportunities that arise
from a unified approach.

In conclusion, we argue that the time has come to claim the no



man’s land between compilers and databases and leverage decades
of database research in the context of general-purpose program-
ming language compilers.
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