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ABSTRACT
Query optimization remains one of the most important and
well-studied problems in database systems. However, tradi-
tional query optimizers are complex heuristically-driven sys-
tems, requiring large amounts of time to tune for a particular
database and requiring even more time to develop and main-
tain in the first place. In this vision paper, we argue that a
new type of query optimizer, based on deep reinforcement
learning, can drastically improve on the state-of-the-art. We
identify potential complications for future research that in-
tegrates deep learning with query optimization, and describe
three novel deep learning based approaches that can lead the
way to end-to-end learning-based query optimizers.

1. INTRODUCTION
Query optimization, e.g. transforming SQL queries into

physical execution plans with good performance, is a critical
and well-studied problem in database systems (e.g. [3, 10,
31,35]). Despite their long research history, the majority of
existing query optimization systems share two problematic
properties:
1. They are, or are composed of, carefully tuned and com-

plex heuristics designed using many years of developer-
based experience. Furthermore, these heuristics often re-
quire even more tuning by expert DBAs to improve query
performance on each individual database (e.g. tweaking
optimization time cutoffs, adding query hints, updating
statistics, tuning optimizer “knobs”).

2. They take a “fire and forget” approach in which the ob-
served performance of a execution plan is never leveraged
by the optimization process in the future, hence prevent-
ing query optimizers from systematically “learning from
their mistakes.”

Of course, there are several notable exceptions. Many op-
timizers use feedback from query execution to update cardi-
nality estimates [1,7,32], and many adaptive query process-
ing systems [13, 34] incorporate feedback as well. However,
in this vision paper, we argue that recent advances in deep
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reinforcement learning (DRL) [2] can be applied to query
optimization, resulting in a “hands-free” optimizer that (1)
can tune itself for a particular database automatically with-
out requiring intervention from expert DBAs, and (2) tightly
incorporates feedback from past query optimizations and ex-
ecutions in order to improve the performance of query exe-
cution plans generated in the future.

Deep reinforcement learning is a process in which a ma-
chine learns a task through continuous feedback with the
help of a neural network [28]. It is a iterative learning pro-
cess where the machine (an agent) repeatedly selects actions
and receives feedback about the quality of the actions se-
lected. DRL algorithms train a neural network model over
multiple rounds (episodes), aiming to maximize the perfor-
mance of their selected actions (policies). This performance
feedback, the indicator of whether or not an agent is per-
forming well or poorly, is referred to as the reward signal.

While deep learning has been previously applied to database
systems (e.g. indexes [15], physical design [23], and en-
tity matching [21]), deep reinforcement learning has not
received much attention. Despite applications in multiple
domains [2], applying DRL algorithms to query optimiza-
tion generates a number of research challenges. First, DRL
algorithms initially perform very poorly, and require exten-
sive training data before achieving competitive performance.
Second, it is generally assumed that that the reward signal is
cheap to calculate. In query optimization, the most natural
performance indicator to use is the query latency. However,
training on (and hence executing) large numbers of query
plans (especially poorly optimized query plans) and collect-
ing their latency for feedback as a reward signal to a DRL
agent can be extremely expensive. Using the optimizer’s
cost model as a performance indicator is also problematic,
as cost models are themselves complex, brittle, and often
rely on inaccurate statistics and oversimplified assumptions.

Second, the enormous size of the query plan search space
for any given query causes naive applications of DRL to fail.
For instance, while DRL can be used to learn policies that
tackle join order enumeration [18], training these models to
additionally capture physical operator and access path selec-
tion dramatically lengthens the training process and hinders
convergence to an effective policy.

In this vision paper, we describe and analyze potential so-
lutions to the above challenges, each representing directions
for further research that tightly integrates deep learning-
based theory with query optimization. We propose two
novel DRL approaches: learning from demonstration and
cost model bootstrapping. The first approach involves ini-



tially training a model to imitate the behavior of a state-
of-the-art query optimizer, and then fine-tuning that model
for increased performance. The second approach involves
using existing cost models as guides to help DRL models
learn more quickly. Finally, we propose and analyze the
design space of an incremental training approach that in-
volves learning the complexities of query optimization in a
step-by-step fashion.

We start in Section 2 with an brief introduction to DRL
and an overview of a case study DRL-based join enumer-
ator in Section 3. In Section 4, we detail the three main
challenges that DRL-based query optimizers need to over-
come. In Section 5, we analyze our proposed future research
directions, and we conclude in Section 6.

2. DEEP REINFORCEMENT LEARNING
Reinforcement Learning (RL) [36] is a machine learning

technique that enables an agent to learn in an interactive
environment by trial and error using feedback from its own
actions and experiences. More formally, an agent inter-
acts with an environment. The environment tells the agent
its current state, st, and a set of potential actions At =
{a0, a1, . . . , an} that the agent may perform. The agent se-
lects an action a ∈ At, and the environment gives the agent
a reward rt based on that action. The environment addition-
ally gives the agent a new state st+1 and a new action set
At+1. This process repeats until the agent reaches a termi-
nal state, where no more actions are available. This marks
the end of an episode, after which a new episode begins.
The agent’s goal is to maximize its reward over episodes by
learning from its experience (previous actions, states, and re-
wards). This is achieved by balancing the exploration of new
never-before-tried actions with the exploitation of knowledge
collected from past actions.
Policy Gradient One subset of reinforcement learning tech-
niques is policy gradient methods [37]. Here the agents se-
lect actions based on a parameterized policy πθ, where θ is a
vector that represents the policy parameters. Given a state
st and an action set At, the policy πθ outputs one of the
potential actions from At.

Reinforcement learning aims to optimize the policy πθ
over episodes, i.e., to identify the policy parameters θ that
optimizes the expected reward. The expected reward that a
policy will receive per episode is denoted Jπ(θ). A reinforce-
ment learning agent thus seeks the vector θ that maximizes
the reward Jπ(θ), but the reward Jπ(θ) is typically not fea-
sible to precisely compute. Hence, policy gradient methods
search for such a vector θ by constructing an estimator E of
the gradient of the expected reward: E(θ) ≈ ∇θJπ(θ).

Real-world applications require that any change to the
policy parameterization has to be smooth, as drastic changes
can (1) be hazardous for the system and (2) cause the pol-
icy to fluctuate too severely, without ever converging. For
these reasons, given an estimate E, gradient ascent/descent
methods [25] tune the initial parameters θ by increasing each
parameter in θi by a small value when the gradient∇θiJπ(θ)
is positive (the positive gradient indicates that a larger value
of θi will increase the reward), and decreasing the parame-
ters in θi by a small value when the gradient is negative.
Deep Reinforcement Learning In DRL, policy gradient
deep learning methods (e.g., [29,30]) represent the policy πθ
as a neural network, where θ is the network weights. The
policy is improved by adjusting the weights of the network

based on the reward signal from the environment. Here,
the neural network receives as input a representation of the
current state, and transforms it through a number of hid-
den layers. Each layer transforms (through an activation
function) its input data and and passes its output to the
subsequent layer. Eventually, data is passed to the final
action layer. Each neuron in the action layer represents an
action, and these outputs are normalized to form a probabil-
ity distribution. The policy selects actions by sampling from
this probability distribution, aiming to balance exploration
and exploitation. Selecting the mode of the distribution in-
stead of sampling from the distribution would represent a
pure exploitation strategy. Choosing an action uniformally
at random would represent a pure exploration strategy.

3. CASE STUDY: REJOIN
One of the key challenges in applying RL to a particular

domain is “massaging” the problem into the terms of rein-
forcement learning (i.e., designing its actions, states, and
rewards). In this section, we present a case study of Re-
JOIN, a deep reinforcement learning join order enumerator.
We first give a brief overview1 of ReJOIN, and highlight key
experimental results. While ReJOIN focused exclusively on
join order enumeration (it did not perform operator or index
selection), it represents an example of how query optimiza-
tion may be framed in the terms of reinforcement learning.
Overview ReJOIN performs join ordering in a bottom-up
fashion, modeling the problem in the terms of reinforcement
learning. Each query sent to the optimizer represents an
episode, and ReJOIN learns over multiple episodes (i.e., con-
tinuously learning as queries are sent). Each state represents
subtrees of a binary join tree, in addition to information
about query join and selection predicates. Each action rep-
resents combining two subtrees together into a single tree.
A subtree can represent either an input relation or a join be-
tween subtrees. The episode ends when all input relations
are joined (a terminal state). At this point, ReJOIN assigns
a reward to the final join ordering based on the optimizer’s
cost model. The final join ordering is sent to the optimizer
to perform operator selection, index selection, etc., and the
final physical plan is executed.

Intuitively, ReJOIN uses a neural network to iteratively
build up a join order. When the optimizer’s cost model de-
termines that the resulting query plan (using the join order-
ing selected by ReJOIN) is good (i.e., a low cost), ReJOIN
adjusts its neural network to produce similar join orderings.
When the optimizer’s cost model determines the resulting
plan is bad (i.e., a high cost), ReJOIN adjusts its neural
network to produce different join orderings.
State and Actions The framework is shown in Figure 1.
Formally, given a query q accessing relations r1, r2, . . . , rn,
we define the initial state of the episode for q as s1 =
{r1, r2, . . . , rn}. This state is expressed as a state vector.
This state vector is fed through a neural network, which
produces a probability distribution over potential actions.
The action set Ai for any state is every unique ordered pair
of integers from 1 to |si|, inclusive: Ai = [1, |si|] × [1, |si|].
The action (x, y) ∈ Ai represents joining the xth and yth
elements of si together. The output of the neural net-
work is used to select an action (i.e., a new join), which is
sent back to the environment, which transitions to a new

1Details about ReJOIN can be found in [18].
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Figure 1: The ReJOIN Framework
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Figure 2: ReJOIN example

state. The state si+1 after selecting the action (x, y) is
si+1 = (si − {si[x], si[y]}) ∪ {si[x] ./ si[y]}. The new state
is fed into the neural network. The reward for every non-
terminal state (a partial ordering) is zero, and the reward
for an action arriving at a terminal state sf (a complete or-
dering) is the reciprocal of the cost of the join tree t, M (t),
represented by sf , 1

M(t)
. Periodically, the agent uses its ex-

perience to tweak the weights of the neural network, aiming
to earn larger rewards.
Example Figure 2 shows an example of this process. Each
of the relations in the SQL query are initially treated as sub-
trees. At each step, the set of possible actions contains every
possible pair of subtrees. For example, in Figure 2, ReJOIN
selects the action [1,3], so relations A and C are joined.
The reward for this action is determined by a DBMS’ op-
timizer cost model. At the next step, ReJOIN selects the
action [2, 3], so relations B and D are joined. Finally,
the action [1, 2] is selected, and the A ./ C and B ./ D
subtrees are joined. The resulting state of the system is
a terminal state, as no more actions can be selected. The
resulting join ordering is sent to a traditional query opti-
mizer, and the optimizer’s cost model is used to determine
the quality of the join ordering (the reward).
Experimental Results Figure 3 shows several key exper-
imental results from ReJOIN. Figure 3a shows the average
performance of ReJOIN compared to PostgreSQL during
training. The graph demonstrates that ReJOIN has the abil-
ity to learn join orderings that lead to query executions plan
with latency close and even better than the ones of Post-
greSQL. However, converging to a good model takes time.
Even for the “limited” search space of join order enumera-
tion, ReJOIN had to process nearly 9000 queries to become
competitive with PostgreSQL.

Figure 3b shows that the final join orderings selected by
ReJOIN (after training) are superior to PostgreSQL accord-
ing to the optimizer’s cost model. While the produced query
plans were faster in terms of latency as well [18], potential
errors in the cost model, and the high human cost of devel-
oping and maintaining the cost model, makes directly op-
timizing for latency much more desirable. Figure 3c shows
the time required for PostgreSQL and ReJOIN to select a
join ordering. Counter-intuitively, ReJOIN’s deep reinforce-
ment learning algorithm (after training) is faster than Post-
greSQL’s built-in join order enumerator in many cases.

Summary Our experiental analysis of ReJOIN [18] yielded
interesting conclusions:
1. While ReJOIN is eventually able to learn a join ordering

policy that outperforms PostgreSQL (both in terms of
optimizer cost and query latency), doing so requires a
substantial, but not prohibitive, training overhead.

2. ReJOIN’s use of a traditional query optimizer’s cost model
as a reward signal allowed for join orderings to be evalu-
ated quickly. However, this implies that ReJOIN’s per-
formance depends on the existence of a well-tuned cost
model.

3. Counter-intuitively, ReJOIN’s DRL algorithm is faster
than PostgreSQL’s built-in join order enumerator in many
cases. Notably, the bottom-up nature of ReJOIN’s algo-
rithm is O(n), where PostgreSQL’s greedy bottom-up
algorithm is O(n2).

ReJOIN is, to the best of our knowledge, the first direct
application of deep reinforcement learning to query opti-
mization. Another promising work [22] has examined how
deep reinforcement learning can produce embedded repre-
sentations of substeps of the query optimization process which
correlate strongly with cardinality, with an eye towards a
more principled deep reinforcement learning powered query
optimizer. Even more recent work [16] demonstrates how
a deep Q-learning [20] approach, with a small amount of
pre-training, can perform well when true cardinalities are
used as inputs and the optimization target is one of several
analytic cost models.

4. LEARNING-BASED QUERY OPTIMIZA-
TION: RESEARCH CHALLENGES

Inspired by our experience with ReJOIN [18] as well as
other existing work in the area [22], we argue that applica-
tions of DRL theory to query optimization is both promising
and possible. However, we next identify three key research
challenges that must be overcome in order to achieve an
end-to-end DRL-powered query optimizer.
Search Space Size While previous work [18] has demon-
strated that reinforcement learning techniques can find good
policies in limited search spaces (e.g., join order enumera-
tion in isolation), the entire search space for execution plans
is significantly larger. The ReJOIN prototype required 9000
iterations to become competitive with the PostgreSQL op-
timizer, and in that case only join ordering was considered
(no index or operator selection, etc.). Accounting for opera-
tor selection, access path selection, etc. creates such a large
search space that approaches from earlier work cannot be
easily scaled up. In fact, a naive extension of ReJOIN to
cover the entire execution plan search space yielded a model
that did not out-perform random choice even with 72 hours
of training time. Theoretical results [14] support this obser-
vation, suggesting that adding additional non-trivial dimen-
sions to the problem increases convergence time drastically.
Performance Indicator Deep reinforcment learning algo-
rithms generally make several assumptions about the metric
to optimize, i.e., the reward signal, that are difficult to guar-
antee in the context of query optimization. Abstractly, the
metric to optimize in query optimization is the latency of
the resulting execution plan. However, we next discuss why
using latency as a reward signal leads to two unfortunate
complications, namely that the query latency offers neither
a dense nor a linear reward signal.
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Figure 3: Effectiveness and efficiency results

Many deep reinforcement learning algorithms [20, 29] as-
sume that, or perform substantially better when, the reward
signal is dense: provided progressively as the environment is
navigated, e.g. each action taken by a reinforcement learning
agent achieves some reward. Furthermore, DRL algorithms
often assume that rewards are linear, i.e. the algorithms at-
tempt to maximize the sum of many small rewards within an
episode. Neither of these assumptions hold in the context of
query optimization: query latency is not dense (it can only
be measured after a plan has been executed), and it is not
linear (e.g., subtrees may be executed in parallel).

One may reasonably consider using a traditional query
optimizer’s cost model as a reward signal instead of query
latency, as the optimizer’s cost model may appear to provide
a dense linear reward. This approach has two major draw-
backs. First, these cost models tend to be complex, hand-
tuned (by database engineers and DBAs) heuristics. Using a
cost model as the reward signal for a DRL query optimizer
simply “kicks the can down the road,” moving complexity
and human effort from designing optimization heuristics to
tweaking optimizer cost models. Second, the cost model’s
estimation of the quality of an execution plan may not al-
ways accurately represent the latency of the execution plan
(e.g., a query with a high optimizer cost might outperform a
query with lower optimizer cost). Therefore, using DRL to
find execution plans with a low cost as determined by a cost
model might not always achieve the best possible results.
Performance Evaluation Overhead An often-unstated
assumption made by many DRL algorithms is that the re-
ward of an action can be determined in constant time – e.g.,
that determining the performance of an agent for a partic-
ular episode in which the agent performs poorly is no more
time-consuming than calculating the reward for an episode
in which the agent performs well. For example, the time
to determine the current score of a player in a video game
does not change based on whether or not the score is high or
low. If the latency of an execution plan is used as a reward
signal, this assumption does not hold: poor execution plans
can take significantly longer to evaluate than good execution
plans (hours vs. seconds). Since traditional DRL algorithms
start with no information, their initial policies cannot be
better than random choice, which will often result in very
poor plans [17]. Hence, a naive DRL approach that sim-
ply uses query latency as the reward signal would take a
prohibitive amount of time to converge to good results.2

2We confirmed this experimentally by using query latency as the
reward signal in ReJOIN. The initial query plans produced could
not be executed in any reasonable amount of time.

SQL

O
pt

im
iz

er

C
os

t 
M

od
el

E
nu

m
er

at
or

s

H
eu

ris
tic

s
E

xe
c.

 E
ng

in
e

Physical 
Plan

DRL Agent

Parser

O
ut

pu
t

Latency

In
pu

t

Phase 1

SQL

E
xe

c.
 E

ng
in

e

Physical 
Plan

DRL Agent

Parser

Latency

Phase 2

O
ut

pu
t

Input

Figure 4: Learning from demonstration

5. RESEARCH DIRECTIONS
Here, we outline potential approaches to handle the chal-

lenges we highlighted. First, we discuss two drastically dif-
ferent approaches, demonstration learning and cost-model
bootstrapping, which both avoid the pitfalls identified in Sec-
tion 4 in interesting ways. We then touch upon incremental
learning, and propose three techniques that decompose the
problem of query optimization in a principled way across
various axes, and analyze the resulting design space.

5.1 Learning From Demonstration
One way to avoid the pitfalls of using query latency di-

rectly as the performance indicator (reward) for DRL algo-
rithms is learning from demonstration (LfD) [11, 26]. Intu-
itively, this approach works by first training a model to im-
itate the behavior of an expert. Once this mimicry reaches
acceptable levels, the model is fine-tuned by applying it to
the actual environment. This learn-by-imitation technique
mirrors how children learn basic behaviors like language and
walking by watching adults, and then fine-tune those behav-
iors by practicing themselves.

Here, we propose using a traditional DBMS’ query op-
timizer – such as the PostgreSQL query optimizer – as an
expert. In this approach, illustrated in Figure 4, a model is
initially allowed to observe how the traditional query opti-
mizer (the expert) optimizes a query. During this phase, the
model is trained to mimic the optimizer’s selected actions
(e.g., indexes, join orderings, pruning of bad plans, etc).
Assuming that a traditional optimizer will be able to prune-



out unfeasible plans, this process allows a DRL model to
learn by observing the execution time of only feasible plans.

Once the model achieves good mimicry, it is then used to
optimize queries directly, bypassing the optimizer. In this
second phase, the model initially closely matches the ac-
tions of the traditional query optimizer, but now begins to
slowly fine-tune itself based on the observed query latency.
Here, the agent updates its neural network based on the
latency of the execution plans it constructs. If the perfor-
mance of the model begins to slip, it is re-trained to match
the traditional query optimizer until performance improves.
In practice, choosing the point at which the model is again
trained to mimic the traditional query optimizer is critical
to improve the performance of the algorithm [11]. By lever-
aging learning from demonstration, one can train a query
optimization model that learns with small overhead, with-
out having to execute a large number of bad plans, therefore
massively accelerating learning.

While specific techniques and formalizations vary [8, 11,
26,36], we outline the general process here.
1. A large query workload, W , is executed one query at

a time. Each q ∈ W is transformed by the traditional
query optimizer into a physical plan through a number
of actions ai at various intermediary states si, which are
recorded as an episode history :

Hq = [(a0, s0), (a1, s1), . . . , (an, sn)]

For example, at the initial state s0, a query optimizer
performing a greedy bottom-up join order selection pro-
cess may choose an action a0 signifying that two partic-
ular relations should be joined, or a query optimizer that
first performs storage selection may choose an action sig-
nifying that data for a certain relation should come from
a particular index. All episode histories are saved.

2. The resulting physical plans are executed, and the la-
tency of each query q ∈W , Lq, is measured and saved.

3. Next, the agent is trained, for each q ∈ W , on the Hq
and Lq data (Phase 1 in Figure 4). Specifically, for each
action/state pair (ai, si) ∈ Hq, the agent is taught to
predict that taking action ai in state si eventually re-
sults in a query latency of Lq. Similar to the off-policy
learning approach of [22], the agent thus learns a reward
prediction function: a function that guesses the quality
of a given action at a given state.

4. Once the agent has proficiency guessing the outcome of
the traditional optimizer’s actions, the agent can fine-
tune itself. Now, the agent will be creating a query plan
for an incoming query q. For a given state si, an action
ai is selected by running every possible action though
the reward prediction function and selecting the action
which is predicated to result in the lowest latency.3 This
process repeats until a physical execution plan is created
and executed. The model is then trained (fine-tuned) on
the resulting history Hq and observed latency Lq.

5. Hopefully, the performance of the model will eventually
exceed the performance of the traditional query opti-
mizer. However, if the model’s performance slips, it
is partially re-trained with samples from the traditional
query optimizer’s choices when processing the queries in
the initial workload W .

3In many implementations, an action besides the one predicted
to result in the lowest latency may be selected with small proba-
bility [20] to enable additional exploration.
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Figure 5: Cost Model Bootstrapping

Since the behavior of the model in the second phase should
not initially stray too far from the behavior of the expert sys-
tem [11], we do not have to worry about executing any ex-
ceptionally poor query plans. Additionally, since the second
training phase only needs to fine-tune an already-performant
model, the delayed reward signal is of far less consequence.
In fact, the initial behavior of the model may outpeform
the traditional query optimizer in certain circumstances, for
example if the trained model were to observe a systemic er-
ror in the performance of traditional optimizer, such as the
traditional optimizer handling two similar situations in two
significantly different ways, one of which causes substantially
increased query latency. In this case, the trained model may
automatically avoid the errors of the traditional optimizer
(which has no capability to learn from its mistakes) through
observation alone.

An important issue here is that, since the experience col-
lected based on the traditional optimizer is necessarily cov-
ering a narrow part of the action space (it excludes “bad”
plans, and thus also excludes the corresponding sequence of
actions that would produce them), many state-actions have
never been observed and have no training data to ground
them to realistic cost. For instance, a nested-loop-join or
a table scan may never/rarely be picked by the traditional
optimizer for a particular workload/database, and hence the
model does not learn how to evaluate these actions correctly.
However, since the model is trained on experiences contain-
ing significantly faster execution plans, there is no reason for
the model to attempt to explore these extremely poor plans.

Experimental results from other problem domains (e.g. ar-
cade games [11] and a few systems applications [27]), show
that deep reinforcement learning agents which initially learn
from demonstration can master tasks with significantly less
training time than their tabula rasa counterparts. This re-
sult holds even when the expert is flawed (e.g. when the ex-
pert is a human player who does not know a particular short-
cut or strategy), implying that learning-from-demonstration
techniques can improve upon, and not just imitate, existing
expert systems.

5.2 Cost Model Bootstrapping
A traditional, but still widely used and researched, ap-

proach to improving the performance of reinforcement learn-
ing algorithms on problems when the performance indicator
(reward) is only available at the end of an episode (sparse)
is to craft a heuristic reward function. This heuristic re-
ward function estimates the utility of a given state using a
heuristic constructed by a human being: for example, when
a robot is learning to navigate a maze, it may use an“as-the-
crow-flies” heuristic to estimate its proximity to the maze’s



exit. In the game of chess, a popular heuristic to evalu-
ate the value of a particular board position is to count the
number of pieces captured by both sides. Sometimes, this
heuristic may be incorrect (e.g., it may rate a dead-end very
near the exit as a desirable position, or it may highly-rate
a board position in which many pieces have been captured
but the opponent has an obvious winning move), but in gen-
eral there is a strong relationship between the value of the
heuristic function and the actual reward.

Luckily, the database community has invested significantly
into designing optimizer cost models, which can be used for
exactly this purpose. While imperfect, modern cost models,
like “as-the-crow-flies” distance, can normally differentiate
between good and catastrophic plans. We thus propose us-
ing these cost models as heuristic reward functions. This
approach, depicted in Figure 5, first uses the optimizer’s
cost model as a reward signal (Phase 1) and then, once
training has converged, switches the reward signal to the
observed query latency (Phase 2). In this way, the opti-
mizer’s cost model acts as “training wheels,” allowing the
DRL model to explore strategies that produce catastrophic
query plans without requiring execution. Once the DRL
model has stabilized and starts to pick predominately good
plans, the “training wheels” can be removed and the DRL
model can fine-tune itself using the “true” reward signal,
query latency.

Cost model bootstrapping brings about a number of com-
plications which require further exploration by the database
community. Generally, an optimizer’s cost model output is
a unitless value, meant to compare alternative query plans
but not meant to directly correlate with execution latency.
For example, an optimizer’s cost estimate for a set of query
plans may range from 10 to 50, but the latency of these
query plans may range from 100s to 200s. Switching the
range of the reward signal from 10-50 to 100-200 will cause
the DRL model to assume that its performance has sud-
denly decreased (the DRL model was getting query plans
with costs in the range 10-50 in Phase 1, and at the start
of Phase 2 the costs suddenly jump to be in range 100-200).
This sudden change could cause the DRL model to begin
exploring previously-discarded strategies, requiring the ex-
ecution of poor execution plans. The change in variance
could also have a detrimental effect [12].

One way to potentially fix this issue would be to tune
the units of the cost model to more precisely match exe-
cution latency, but the presence of cardinality estimation
errors makes this difficult [17]. Instead of adjusting the op-
timizer’s estimates to match the query latency, another ap-
proach could be to adjust the query latency to match the
optimizer cost. This could be implemented by simply scal-
ing the query latency observed in Phase 2 to fall within the
range of cost model estimates observed in Phase 1.

One could implement this scaling by noting the optimizer
cost estimates and query execution latencies during the end
of Phase 1 (when the DRL model has converged). Let Cmax
and Cmin be the maximum and minimum observed opti-
mizer cost, and let Lmax and Lmin be the maximum and
minimum observed query execution times. Then, in Phase
2, when the DRL model proposes an execution plan with an
observed latency of l, the reward rl could be:

rl = Cmin +
l − Lmin

Lmax − Lmin
(Cmax − Cmin)
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Figure 6: Complexity diagram

This scaling could be done linearly, as above, or using
a more complex (but probably monotonic) function. This
simple solution would likely need to be adjusted to handle
workload shifts, changes in hardware, changes in physical
design, etc.

Another potential approach, partially suggested in [16], is
to first train a neural network model to optimize for the op-
erator cost, and then transfer the weights of the later layers
of the network into a new network that trains directly on
query latency. This technique, known as “transfer learning”,
has seen wide success in other fields [5, 38].

5.3 Incremental Learning
In this section, we discuss potential techniques to incre-

mentally learn query optimization by first training a model
to handle simple cases and slowly introducing more com-
plexity. This approach makes the extremely large search
space more manageable by dividing it into smaller pieces.
Similar incremental approaches has shown success in other
applications of reinforcement learning [6, 9, 33].

We begin by examining how the task of query optimization
can be decomposed into simpler pieces in a number of ways.
We note that the difficulty of a query optimization task is
primarily controlled by two dimensions: the number of re-
lations in the query, and the number of optimization tasks
that need to be performed. This is illustrated in Figure 6.
The first axis is the number of relations in the query. If a
DRL model must optimize queries containing only a single
relation, then the search space of query plans is very small
(there are no join orderings or join operators to consider).
However, if a DRL model must optimize queries containing
many relations, then the search space is much larger.

The second axis is the number of optimization tasks to
perform. Consider a simplified query optimization pipeline
(illustrated in Figure 8) containing four phases: join order-
ing, index selection, join operator selection, and aggregate
operator selection. Performing any prefix of the pipeline is
a simpler task than performing the entire pipeline: e.g., de-
termining a join ordering and selecting indexes is a simpler
task than determining a join ordering, selecting indexes, and
determining join operators.

Thus, the lower-left hand side of Figure 6 corresponds to
“easy”cases, e.g. few stages of the pipeline and few relations.
The upper-right hand side of Figure 6 corresponds to “hard”
cases, e.g. most stages of the pipeline and many relations.
This insight illuminates a large design space for incremental
learning approaches. In general, an incremental learning
approach will be divided into phases. The first phase will
use “easier” cases (the bottom left-hand part of the chart),
training until relatively good performance is achieved. Then,
subsequent phases will introduce more complex examples to
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the model, allowing the model to slowly and smoothly learn
more complex cases (the top right-hand part of the chart).

Figure 7 illustrates three simple incremental learning ap-
proaches, with light colors representating the initial training
phases and dark colors representing the subsequent training
phases. We next discuss each of these approaches in detail.

5.3.1 Increasing optimization actions (pipeline)
Our first proposed approach is pipeline-based incremental

learning, illustrated in Figure 8. A model is first trained on
a small piece of the query optimization pipeline, e.g. join or-
der selection. During this first phase, traditional query opti-
mization techniques are used to take the output of the model
and construct a complete execution plan (ReJOIN [18] is es-
sentially this first phase). Once the model achieves good
performance in this first phase, the model is then slightly
modified and trained on the first two phases of the query
optimization pipeline, e.g. join order selection and index se-
lection. This process is repeated until the model has learned
the entire pipeline.

Extending ReJOIN to support this approach would be rel-
atively straightforward. As shown in [18], the first phase of
query optimization (join order enumeration) can be effec-
tively learned. Once this initial training is complete, the
action space can be extended to support index selection: in-
stead of having one action per relation, the extended action
space would have one action per relational data structure,
e.g. one action for a relation’s B-tree index, one action for a
relation’s row-order storage, one action for a relation’s hash
index, etc. The knowledge gained from the previous train-
ing phase should help the model train significantly faster in
subsequent phases.

The pipeline approach has the advantages of incremental
learning (e.g., a managable growth of the state space), but
comes with several drawbacks that need to be further in-
vestigated. First, the early training phases requires access
to a traditional implementation of the later stages of the
query optimization pipeline. While such implementations
are available in a range of DBMSes today, the dependency
on a traditional query optimizer is not ideal. Second, each
phase of the training process will not bring about a uni-
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form increase in complexity. It is conceivable that some
stages of the pipeline are fundamentally more complex than
others (for example, join order selection is likely more dif-
ficult than aggregate operator selection). The non-linearity
of complexity going through the query optimization pipeline
means that some training phases will require overcoming
much larger jumps in complexity than others. This could
result in unpredictable training times, or, in the worst case,
a jump in complexity to large to learn all at once.

5.3.2 Increasing relations
While the previous approach reduces the size of the search

space by focusing on larger and larger parts of the query op-
timization pipeline, this section proposes limiting the search
space by focusing on larger and larger queries. The proposed
approach is depicted in Figure 9. In the first training phase,
the model learns to master queries over a single relation. In
subsequent training phases, the model is trained on queries
over two relations, then three relations, etc. In each phase,
the entire query optimization pipeline is performed.

This approach dodges some pitfalls of the pipeline stage
approach. Generally, the increase in complexity between
optimizing a query with n relations and optimizing a query
with n + 1 relations is small. Even though there is an ex-
ponential increase in the number of potential join orderings,
this is a “quantitative” change as opposed to a “qualitative”
change – intuitively, it is easier to learn how to create a join
plan with a single additional relation than it is to learn how
to perform a new pipeline step.

A major challenge of this approach is finding candidate
queries. Generally, real-world workloads will contain very
few queries over a single relation. Even synthetic workloads
have very few low-relation-count queries (TPC-H [24] has
only two such templates, JOB [17] has none). Queries with
low relation counts could be synthetically generated, but do-
ing so while matching the characteristics of real-world work-
loads is a complex task.

5.3.3 Hybrid
The last approach we explicitly discuss is the hybrid ap-

proach, depicted on the right-hand side of Figure 7. In this
hybrid approach, the initial training phase learns only the
first step of the query optimization pipeline (e.g. join or-
der selection) using only queries over two or fewer relations.
The next training phase introduces both another step of the
pipeline (e.g. index selection) and queries over three or fewer
relations. After all stages of the query optimization pipeline
have been incorporated, subsequent training phases increase



the number of relations considered. This approach provides
the smallest increase in complexity from training phase to
subsequent training phase. However, the hybrid approach
suffers from some of the disadvantages of both the relations
and pipeline based approach: it depends on a traditional op-
timizer and it requires queries with relatively few relations
for training purposes.

6. CONCLUSIONS
We have argued that recent advances in deep reinforce-

ment learning open up new research avenues towards a“hands-
free” query optimizer, potentially improving the speed of re-
lational queries and significantly reducing time spent tuning
heuristics by both DBMS designers and DBAs. We have
identified how the large search space, delayed reward sig-
nal, and costly performance indicators provide substantial
hurdles to naive applications of DRL to query optimization.
Finally, we have analyzed how recent advances in reinforce-
ment learning, from learning from demonstration to boot-
strapping to incremental learning, open up new research di-
rections for directly addressing these challenges.
Other complexities We argue that deep reinforcement
learning can greatly decrease the amount of human effort
required to develop and tune database management sys-
tems. However, these deep learning techniques come with
their own complexities as well: training configurations (e.g.
learning rate), network architectures, activation function se-
lection, etc. While deep learning researchers are quickly
making inroads towards automating many of these deci-
sions [4, 19], future research should carefully analyze the
tradeoffs between tuning deep learning systems and tuning
traditional query optimizers.
Other applications While query optimization is a good
candidate for applying DRL to database internals, a wide
variety of other core DBMS concepts (e.g.cache manage-
ment, concurrency control) could benefit from applications
of machine learning as well. Careful applications of machine
learning across the entire DBMS, not just the query opti-
mizer, could bring about a massive increase in performance
and capability.
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