
Pixels: Multiversion Wide Table Store for Data Lakes

Haoqiong Bian
bianhaoqiong@gmail.com

ABSTRACT
Data lake can be considered as the place where massive data
is continuously ingested, stored, evolved and consumed. As
a storage, it is decoupled from computation and shared by
various analytic applications. In practice, a data lake can
be built upon massively scalable distributed file system (e.g.
HDFS) or cloud storage (e.g. Amazon S3).

In data lakes, wide tables with hundreds or even thousands
of columns are often seen. They can be naturally wide [2,
3, 4] or denormalized from non-wide tables [6]. Wide table
is inevitable for: (1) it eliminates distributed joins, which
are the major bottleneck of performance and scalability in
distributed environment. (2) it is flexible to structure the
raw data. However, there are still some critical problems to
be addressed: (1) a storage model should adapt efficiently
to the rapid evolution of application needs in data lakes.
(2) wide table may change access pattern in current column
stores from sequential dominated to random dominated [4],
so that dedicated layout optimization is needed.

Focusing on these problems, we present the idea of build-
ing a multiversion store for data lakes which is optimized for
wide tables. It can provide more than one order of magni-
tude improving query performance on wide tables compared
to state-of-the-art column stores. Also, it supports efficient
evolution of both metadata and user data according to the
changing application needs. Although optimized for wide
tables, it is also suitable for normal non-wide tables.
Data Versioning and Evolution

We are inspired by multiversion schema warehouse [5] in
supporting efficient evolution of wide tables. In our solution,
we consider metadata as a kind of data and apply a uniform
versioning mechanism on both. Each group of data records
(a.k.a. row group) or version of metadata is assigned a global
ascending timestamp (version) at birth.

On a table, inserts, updates and deletes of data records are
considered as new data version and packed into row groups.
For metadata, most updates (such as adding or dropping
columns, updating column order) are logical. They only

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ’20).
January 12-15, 2020, Amsterdam, Netherlands

write a new version of metadata which is only applied to
newborn row groups. Queries only see the latest version by
their start timestamps. During query execution, each row
group can find its corresponding version of metadata and get
interpreted. Physical updates such as converting a column
type from varchar to integer may need extra verification and
transformation. But we can still do these along query exe-
cution if filling corrupted values by defaults is acceptable.

By such versioning mechanism, we can support not only
efficient data evolution but also ACID transactions on row
group level. We also plan to build a catalog service based
on it to ease data sharing between applications.
Storage Optimization

Another core target of wide table store is to provide high
read performance while guarantee timely data ingestion. We
have finished a prototype named Pixels for this target and
open sourced it at https://github.com/pixelsdb/pixels/.

In Pixels, we realize the aforementioned goal based on two
methods: (1) compact 2n row groups into each storage block
and allow each query task to read a contiguous range of 2m

row groups from a block (0 ≤ m ≤ n and m,n ∈ N , m is
variable for each query) according to its access pattern, so
that we have more opportunity for data layout optimization
without harming data ingestion timeliness and computation
parallelism. (2) design a dedicated column cache backed
by shared memory for column store, which is more efficient
than OS page cache or other general-purpose cache system.

Evaluations results show that under the same workload
and environment, Pixels improves query performance by 4x
on average using the first method, compared to our previous
work [4] on Parquet [1]. By caching 20% data in column
cache, the performance can be further improved by 3.7x on
average. We have integrated Pixels with mainstream query
engines and plan to implement versioning in Pixels.

1. REFERENCES
[1] Parquet. http://parquet.apache.org/.

[2] Sloan digital sky survey. https://www.sdss.org/.

[3] Uber’s big data platform: 100+ petabytes with minute
latency.

[4] H. Bian, Y. Yan, W. Tao, L. J. Chen, Y. Chen, X. Du,
and T. Moscibroda. Wide table layout optimization
based on column ordering and duplication. In
SIGMOD, 2017.

[5] M. Golfarelli, J. Lechtenbörger, S. Rizzi, and G. Vossen.
Schema versioning in data warehouses. In ER, 2004.

[6] Y. Li and J. M. Patel. Widetable: An accelerator for
analytical data processing. PVLDB, 7(10), 2014.


