
When sweet and cute isn’t enough anymore:
Solving scalability issues in Python Pandas with Grizzly

Stefan Hagedorn
TU Ilmenau, Germany

stefan.hagedorn@tu-ilmenau.de

1. MOTIVATION
The giant panda bear is very popular, not only because of

the (seemingly) cute and friendly face and behavior. How-
ever, due to their poor diet they are slow and clumsy. In
this sense, Python Pandas is very similar to the bears: The
framework has a nice and user-friendly appearance, but, un-
der the hood, requires a lot of resources (memory, CPU time)
even to process data sets of moderate size. Relational DBMS
are highly optimized for storing and querying large amounts
of data, but complex analysis tasks are often difficult or even
impossible to express in SQL. Thus, easy-to-learn scripting
languages such as Python or R became very popular and
the de-facto standard for data science tasks. The Pandas
DataFrames re-implement operations known from SQL, such
as projection, selection, join, grouping etc. Therefore, a se-
quence of Pandas operations could also be expressed as SQL
and executed in a DBMS or SparkSQL.

2. THE GRIZZLY FRAMEWORK
Grizzly is a transpiler from a Pandas-like Python API

to SQL used to push Python operations into the DBMS
where data is stored in order to benefit from its optimized
data processing capabilities. The lightweight architecture
does not require changes to be made to the DBMS and can
therefore be used with any SQL engine.

Grizzly supports projection, selection, join, aggregation
with and without grouping and experiments have shown that
execution time as well as memory consumption on the user’s
PC were reduced to only a fraction compared to Pandas.

While the prototype is fully functional1, there are a few
challenges and opportunities being addressed in our ongoing
work:

1. Dealing with External Data: Although we argue
that for most cases data is already stored in an RDBMS,
there are use cases where data is present in (local) files only.
For such cases, already existing techniques known from vari-
ous projects (PostgresRaw, Foreign Data Wrappers in Post-

1https://github.com/dbis-ilm/grizzly

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ‘20)
January 12-15, 2020, Amsterdam, Netherlands.

greSQL, or External Tables in Actian Vector, etc.) can be
utilized. For this scenario, we further envision a cost model
to decide when to import the external data as regular tables
into the DBMS.

2. User Defined Functions: While most standard op-
erations to analyze a data set’s characteristics are already
present in the DBMSs, users often need to implement use
case specific algorithms to process the data. In order to exe-
cute such UDFs within the DBMS, their Python code needs
to be transferred to the DBMS. This can be achieved sev-
eral ways: (1) If the DBMS supports Python as a language
for stored procedures/functions, the source code of the UDF
can be fetched via reflection tools and be sent to and be in-
stalled at the DBMS, or (2) the Python code is transpiled
into a language the DBMS supports, e.g., PL/pgSQL for
PostgreSQL.

3. Recycling Intermediate Results: When many re-
searchers in a team work with the same data sets, many op-
erations on the input data are performed again and again.
To avoid the costly repeated execution of the same oper-
ations, a caching strategy can be applied to identify fre-
quently used sub-expressions and materialize their results
for later re-use. In [1] we presented a cost model to mate-
rialize and reuse such intermediate results and showed that
this approach can have a enormous benefit on query execu-
tion time. Recently, [2] also showed that materializing the
result of common sub-expressions of SQL queries reduces
the machine hours in data centers up to 40%.

4. Self-tuning: The framework can further be extended
by approaches from self-tuning and even self-driving databases
to automatically derive an optimal partitioning scheme or
create indexes on-the-fly.

5. Multiple Target Platforms: Currently, we gen-
erate SQL queries only. However, since the Pandas API
is widespread and well-known, we believe that it could be
used in various cases. Thus, we are working on decoupling
the SQL generation from the core and allow to add custom
code generation plugins. This way, and with the respective
language extensions, Grizzly could be used to create queries
for various platforms, including stream processing.

3. REFERENCES
[1] S. Hagedorn and K. Sattler. Cost-based sharing and

recycling of (intermediate) results in dataflow
programs. In ADBIS, pages 185–199. Springer, 2018.

[2] A. Jindal, K. Karanasos, S. Rao, and H. Patel.
Selecting subexpressions to materialize at datacenter
scale. Proc. VLDB Endow., 11(7):800–812, 2018.


