
VisualWorldDB: A DBMS for the Visual World

Brandon Haynes1, Maureen Daum1, Amrita Mazumdar1,
Magdalena Balazinska1, Alvin Cheung2, and Luis Ceze1

1Paul G. Allen School for Computer Science & Engineering, University of Washington

{bhaynes, mdaum, amrita, magda, luisceze}@cs.washington.edu

2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley

akcheung@cs.berkeley.edu

ABSTRACT
Many recent video applications—including autonomous
driving, traffic monitoring, drone analytics, large-scale
surveillance networks, and virtual reality—require reasoning
about, combining, and operating over many video streams,
each with distinct position and orientation. However, modern
video data management systems are largely designed to
process individual streams of video data as if they were
independent and unrelated.

In this paper, we present VisualWorldDB, a vision
and an initial architecture for a new type of database
management system optimized for multi-video applications.
VisualWorldDB ingests video data from many perspectives
and makes them queryable as a single multidimensional
visual object. It incorporates new techniques for optimizing,
executing, and storing multi-perspective video data. Our
preliminary results suggest that this approach allows for faster
queries and lower storage costs, improving the state of the art
for applications that operate over this type of video data.

1. INTRODUCTION
Video data management has recently re-emerged as an

active research area due to the proliferation of video cameras,
advances in machine learning and graphics hardware, and the
emergence of new video-oriented applications (e.g., virtual
reality, autonomous driving, surveillance networks, adaptive
streaming). New video-oriented data management systems and
frameworks (VDBMSs) are specially designed to support these
applications (e.g., machine learning [15,19,20], analytics [2,21,
23,28], virtual and augmented reality [10,12,34]).

Today’s VDBMSs, however, assume each video stream
is independent, thus requiring users to be responsible
for combining, aligning, downsampling, overlaying, and
intermixing sets of videos. At the same time, our world
has become filled with correlated cameras that capture what
is happening around us from many diverse perspectives
and overlapping fields of view. While content produced
by an individual camera is valuable, that content would
become richer and much more useful with the ability to
easily combine and reason about streams from groups of
cameras. For example, consider multiple traffic and vehicle-
mounted cameras that capture the scene of an automobile
accident. While each camera captures one perspective and
potentially the scene of the accident, the combined camera
output can help better reconstruct the sequence of events.

Additionally, current VDBMSs do not expose high-level
support for, or reasoning about, a video source’s dynamic
spatiotemporal position or orientation, and has little support
for reasoning about visual overlap and field of view between
cameras. They also require tedious management of low-level
details such as compression, resolution, or frame rate. Finally,
many systems fail to support intermixing and querying
over the higher-level properties required by recent video
applications (e.g., the trajectory of or number of passengers
in an automobile prior to an accident).

Despite this lack of support, an important class of emerging
applications rely on exactly these concepts: spatiotemporal
position, orientation, field of view, and inter-camera overlap.
These types of applications are abundant and include diverse
areas such as drone analytics [35, 36], civil engineering [3,
9], surveillance [1, 7, 37], autonomous driving, intelligent
infrastructure [41], retail analytics [31], and unstructured
stitching [27]. These applications, which we refer to as visual
world applications (VWAs), all require reasoning about or
operations over one or more of these additional concepts,
and are thus distinguished from previous-generation video-
oriented applications that perform modifications to groups of
location- and orientation-agnostic, independent video streams.
Implementing VWAs on current VDBMSs requires overcoming
conceptual mismatches and technical challenges that lead to
brittle implementations, intermixing of application logic with data
plumbing, and failure to exploit current and future optimizations.

In this paper, we present a vision and an initial design
for a new type of database management system optimized
for VWAs. Our system, VisualWorldDB, ingests video
data from diverse sources and makes them queryable as one
multidimensional visual object. The user can then ask rich
queries about the content of this visual object.

A major challenge addressed by VisualWorldDB is the data
model to expose. Users need a model that captures a world
of video streams collected by many cameras, each located
in a different location and pointed in a specific direction.
VisualWorldDB exposes a data model that consists of a
visual world filled with cameras and pixels from video data
and objects specified by users or derived from video data. It
enables queries over these entities, including support for higher-
level semantic objects (e.g., generated via object recognition
algorithms) and properties such as trajectories and orientation.

In addition to the technical challenges that hinder
implementing VWAs, optimizing and executing queries in
VDBMSs is also a substantial challenge. The need to reason
about position and orientation often requires joining together

Storage
Manager

Query Processor
Query

Optimizer

User
Queries

Video Frames
Relations
〰️

〰️

〰️

〰️

〰️

〰️

〰️

〰️

〰️

Relational Store

Video File System (VFS)

Worlds

Figure 1: Proposed VisualWorldDB architecture.

overlapping video streams (e.g., two traffic cameras that can
see the same intersection), resulting in higher complexity
and opportunities for optimization. Our prototype deploys
new optimization and execution techniques to address these
challenges by selecting sets of cameras relevant to a query,
and, where possible, reusing results between them rather
than reapplying expensive machine learning and computer
vision algorithms to recognize objects and infer information.

Finally, optimizations associated with the efficient storage
and retrieval of physical video data remains underexplored.
For example, virtually all video processing systems treat
video encoding and decoding algorithms as expensive black
boxes, and as a result spend a disproportionate time performing
(de)compression relative to useful work. Our storage manager
and video file system reduces redundancy in overlapping video
data by jointly compressing overlapping videos and operates
directly on a video’s compressed representation.

In summary, we make the following contributions:

• We propose VisualWorldDB, a vision for a data
management system for visual world applications
(Section 2). VisualWorldDB includes a data model
for expressing queries over collections of video as a
unified multidimensional object (Section 3).

• We describe and show preliminary results for
VisualWorldDB’s storage manager, which pushes the
state of the art in video storage and retrieval (Section 4).

• We propose query execution and optimization techniques
relevant to visual world applications (Section 5).

2. VISUALWORLDDB OVERVIEW
We propose to address the mentioned challenges with the

design of VisualWorldDB, as illustrated in Figure 1. To
use VisualWorldDB, users begin by creating a world, which
is an object analogous to a database in a relational system.
Each world is a container for interrelated video and higher-
level semantic information such as objects and trajectories.
To populate the world, users ingest video data and specify the
location and orientation of each data source’s capturing position.

Using built-in or user-specified computer vision and
machine learning algorithms, users next fill the world with
objects based on the video data and other domain knowledge.
Each object is a contextually meaningful entity such as a
classification (e.g., an automobile), a region of interest (e.g., a
traffic intersection), or an abstraction (e.g., blind spots on
an autonomous vehicle). A user fills the world with objects
lazily and incrementally, and only materializes the objects that
are needed by an application. Each object is associated with a
polyhedral shape and optional trajectories and orientation.

Having created and populated a world, users submit
declarative queries to VisualWorldDB’s query processor.
Query answers may be in the form of video data associated

Compressed Video Relational Data

Pixel

Point

Is AVisible
At

Defined
By

Associated
With

Child Of

Property

Camera

Object

Object (oid, otype, parent) Point (pid, oid, x, y, z, t, ptype)
Pixel (xid, x, y, z, t, color) Property (oid, key, value)
VisibleAt (xid, oid)

Figure 2: Entities, relationships, and schema for
the VisualWorldDB data model. Objects are
defined by points, which define their polyhedral
shape, orientation, and trajectory. Objects are also
associated with pixels. They may be composed
hierarchically and associated with properties.

with objects (e.g., “find all video of all automobiles exceeding
n kilometers per hour”) or relational data (e.g., “how many
automobiles transited an intersection per hour?”). We
provide concrete examples in Section 3.

Upon receiving a query, the query optimizer constructs
an execution plan from a set of physical operators and
identifies a minimal set of relevant video sources to answer
it. The optimizer also reduces the cost of applying machine
learning and computer vision algorithms to cameras with
overlapping field of view by applying these algorithms to the
overlapping region once, intelligently reusing the results for
other perspectives (see Section 5).

Similar to prior work [30], VisualWorldDB utilizes a hybrid
storage manager that leverages both a relational and video
store. As we discuss in Section 4, the video store exploits
its knowledge of the 3D spatial configuration of cameras to
jointly compress video data, which vastly decreases storage
costs. Additionally, it reorganizes compressed data to prioritize
frequently-queried pixels and greatly increase the performance
of common video operations (e.g., cropping, downsampling).

3. DATA MODEL
Unlike prior VDBMSs with two-dimensional APIs that

target video frames, VisualWorldDB exposes a data model
that targets applications that reason about multiple video
streams in a 3D space. The key idea behind our data
model is to directly expose worlds created from overlapping
video streams, objects within those videos, and the different
perspectives captured by specific videos. Our model is
inspired by real-time simulation engines (e.g., [8]) and
captures data found in a real or virtual world by organizing
and relating video pixels; objects with shape, orientation, and
trajectory defined by points; and cameras within that world.
These entities, their relationships, and the corresponding
database schema are shown in Figure 2.

At a high level, a user creates a world and ingests one
or more videos. Each imported video is associated with
a distinct camera, which we treat as a special type of
object. If a video has associated depth information, then
this data is used to populate a pixel relation that stores the
spatial (x, y, z) and temporal (t) coordinates of the video’s
pixels. Otherwise, VisualWorldDB applies a default depth-
generation algorithm described by Casser et al. [6] and then
populates the relation using estimated depth.

Figure 3: A world consisting of two cameras (c1 and
c2) respectively positioned at (x1, y1, z1) and (x2, y2, z2)
and oriented at (θ1, φ1, ρ1) and (θ2, φ2, ρ2). Note that
the cameras have different positions and orientations
and the automobile is visible to both.

Importantly, in either case, pixel data and depth are
maintained as compressed video data and only logically
exposed as a relation for query authoring (see Section 4.1).

After importing videos, the world contains camera
objects and pixels but is devoid of other more interesting
objects (and points). A user next populates the world
with meaningful objects, usually by inserting the results
of an object recognition function. Each such inserted
object has a polyhedral shape defined by one or more
associated points. For example, camera c1 has a
single point at (pid : pi, oid : c1, x : x1, ..., ptype : position)
that indicates where it is located. Objects may be
associated with other types of points as well, including
user-defined point types. For example, a camera’s viewing
direction is given by a special orientation point (e.g.,
camera c1 has an orientation point (pid : pj , oid : c1, x : x1 +
sin(θ1), ..., ptype : orientation)). Additionally, each object
is associated with the pixels that produced it through the
VisibleAt relationship; for example, when an “automobile” is
inferred by an object recognition algorithm, the “automobile”
object is associated with the pixels that were recognized to
be a vehicle. Finally, objects can also have a trajectory that
is described by the spatial evolution of its points over time.

Each object has a type (e.g., “camera”, “automobile”, or
“cat”). Depending on their type, objects may be visible to
cameras or represent invisible semantic annotations (e.g.,
a convex hull delineating an accident-prone intersection).
Finally, objects may be hierarchically composed, e.g., a user
might query for the driver inside a particular vehicle or a
person’s left arm.

All objects can be associated with an arbitrary number of
key/value properties. In addition to user-defined properties,
VisualWorldDB automatically maintains required properties
that includes camera’s interpolation method and field of view,
object trajectory interpolation, and the units used in the
world coordinate system (specified during world creation).

Users may extract videos from cameras—at any resolution,
frame rate, and using any compression method—and
VisualWorldDB automatically identifies the most efficient way
to generate that video and deliver it to the user. Additionally,
users may leverage both built-in and user-defined functions
that automatically convert (potentially compressed) video
into a format compatible with the pixel relation. We describe
concrete examples of video import and export below.

To illustrate, we show example queries over the
VisualWorldDB data model using SQL syntax in Table 1.
However, VisualWorldDB will also expose a functional
interface (similar to VRQL [12]) that provides equivalent
functionality.

Table 1: Sample VisualWorldDB queries
Query
Q1 Create world & populate with videos

CREATE WORLD W(units=metric)
INSERT INTO W.Objects (oid, type, parent)
VALUES ("c1", "camera", NULL)

INSERT INTO W.Points VALUES ("p1", "c1", x1, ..., NULL, "pos")
INSERT INTO W.Points VALUES ("p2", "c1", x1 + sin(θ1), ...,

NULL, "orientation")
// Procedure that populates Pixel and VisibleAt relations
EXECUTE W.AddCameraVideoData("c1", "camera1.mp4")

... // Repeat process for c2
Q2 Perform recognition on 448 × 448 raw video extracted from c1

INSERT INTO W.Objects
SELECT YOLO(SELECT * FROM W.Pixels
NATURAL JOIN W.VisibleTo WHERE oid = "c1"
AS RAWVIDEO WITH RESOLUTION(448, 448))

Q3 Manually create an automobile with a trajectory

INSERT INTO W.Objects (oid, otype, parent)
VALUES ("a1", "auto", NULL)

// For simplicity, assume only one automobile in W.Objects
// Add points created in Q2 to the new object
INSERT INTO W.Points SELECT "a1", x, y, z, t, ptype
FROM W.Points WHERE oid IN (SELECT oid FROM W.Objects
WHERE otype = "auto")

Q4 Get a 128x128 video of automobile a1 from c2

SELECT * FROM W.Objects
NATURAL JOIN W.VisibleTo
NATURAL JOIN W.Pixels
WHERE Objects.oid = "c2" AND

t IN (SELECT t from W.Points P
WHERE P.oid = "a1")

WITH RESOLUTION(128, 128)
Q5 Add a new property to an object

INSERT INTO W.Properties VALUES ("a1", "plate", "123ABCD")

Our example, illustrated in Figure 3, consists of two
overlapping RGB-D cameras (which capture both color and
depth information) recording a roadway. A developer begins
by issuing Q1 in Table 1 to create a new world containing
the two cameras in Figure 3 (c1 and c2). She then adds two
points to each new camera: a “position” point indicating the
camera’s location, and an “orientation” point in the direction
of the camera’s orientation relative to its position. She finally
ingests the video data associated with each camera.

Because the two videos were recorded using RBG-
D cameras, they both contain depth information.
VisualWorldDB uses that information rather than performing
automatic inference. After the query completes,
VisualWorldDB contains a world named W, two cameras
in W.Camera, and tuples in W.Pixels for each pixel in the
source videos. Each pixel is spatiotemporally positioned
using time and depth information from its source video.
However, despite logically exposing pixels in a relational
manner, VisualWorldDB continues to physically store all
video data in an efficient compressed manner that we describe
in Section 4.1.

Next, the developer identifies semantically relevant objects
(i.e., automobiles) visible in the world. To do so, she runs
Q2, which performs object recognition using the YOLO
built-in function [29] applied to video data from c1 (we will
discuss optimizations related to object recognition on c2 in
Section 5). The resulting objects are automatically projected
into three dimensions using the minimum and maximum
depth associated with the classified pixels. Importantly,
as is common in image-based deep learning algorithms, the
neural network used by YOLO requires a downsampled frame
resolution (448× 448 for YOLOv2 [29]). In the example, the
user elects to request this resolution explicitly and, as we

describe in Sections 4 and 5, VisualWorldDB’s optimization,
execution, and storage components coordinate to perform
this decompression and downsampling efficiently.

Most object recognition algorithms identify objects in a
single image or frame and do not perform tracking of an object
across multiple frames. In the previous example, if 1000
frames contained one automobile, W.Objects would contain
1000 tuples. In real-world scenarios, manually reconciling the
trajectory of many automobiles across frames is unmanageable,
and users would employ an object tracking algorithm such as
the built-in GOTURN function [14] to automatically reconcile
objects and produce trajectories for many moving objects.
Due to space constraints we show a simplified example in Q3
for a world that contains a single automobile.

Once relevant objects have been identified and reconciled,
the developer is now able to execute complex queries over the
world that would be challenging to express in existing video-
oriented systems. Assume an automobile a1 was identified by
the previous query and that the developer wishes to extract
video from c2 when the automobile was visible on c1. To do
so she executes Q4. Note that in this example, we performed
object recognition on camera c1 but are able to automatically
extract correlating video from a different camera that is more
likely to contain video of the driver. We describe further
optimizations related to overlapping cameras in Section 5.

Finally, as mentioned, the developer may also create new
properties and query them. For example, Q5 associates a license
plate with the suspected automobile a1 detected previously.

We have carefully designed the VisualWorldDB model to
be simple so that users can easily write queries over a real
or virtual world. However, this simplicity raises a number of
challenges in storage, back-end implementation, and query
optimization, which we discuss in the next sections.

4. STORAGE SYSTEM
Current VDBMSs treat video compression as a black

box, either storing data as a single compressed file or
uncompressed as raw pixels. Instead, our vision is to decouple
compression decisions from an application and exploit the
resulting data independence to improve performance.

As such, we have partitioned video storage into two
components: a storage manager (SM) and a video file system
(VFS). This architecture allows other video-oriented systems
to leverage each component individually; for example, any
VDBMS that can read video from a mounted file system may
immediately benefit from the optimizations offered by the VFS.

4.1 Video File System
At the lowest layer, the VFS is responsible for video data

storage on disk. It exposes a POSIX-compliant file system
interface through which applications (including the SM) read
and write video data. The VFS optimizes how videos are
compressed and laid out on disk: it chooses compression
strategies, fragments videos, and reorganizes pixels within
frames. Additionally, rather than treating compressed
video as an opaque flat file containing frames that must be
sequentially decompressed, the VFS operates directly on the
compressed representation whenever possible. This strategy
differs from existing systems that sequentially (de)compress
video data from the file system before performing useful work
on the uncompressed representation.

File System
(Local Disk)

Video File System (VFS)

⋯

/

video-1 video-n⋯

1920x1080r.h264 960x540r.hevc 960x540r10s.hevc 540x270r.raw policy.yml

Physical Video
View

Directory Entry

Policy
Video Fragment

Figure 4: The video file system (VFS) directory
structure. Each video is organized under its own
directory entry, which contains materializations,
views, and a policy file. Materialized views are
associated with a sequence of compressed video blocks,
which may have redundant physical organization.

As shown in Figure 4, the VFS arranges each video within
its own subdirectory. Each subdirectory contains a policy,
one or more materializations, and zero or more views. A
video’s policy determines optimizations that may be applied
by the VFS (e.g., favoring performance over quality).

The VFS exposes as API a simple query language with
predicates embedded directly in a filename. These predicates
include resolution, frame rate, video codec, start and end
times, crop locations, and individual frame selection. For
example, Q2 in Table 1 requests a 448 × 448 representation
of video from camera c1, and the SM would read file
/c1/448x448r.raw to load uncompressed pixels at this resolution.

The VFS caches one or more read-only materializations of
a each video, which applications may read efficiently and pin
if they expect to frequently do so. A request for any other
filename requires the VFS to generate the new view based on
one or more materializations, which is returned and possibly
stored on disk for future requests.

The VFS additionally employs a battery of optimizations
to improve query performance. One example, compressed
cropping, allows a user to retrieve cross sections of a frame
without decompressing the entire frame. Consider the
example in Figure 3, and assume that a user has identified
an automobile near the top of camera c1’s field of view. A
user might issue a query requesting the uppermost 256 pixels
of camera c1, triggering the SM to request /c1/256h.h264
from the VFS (the h indicates the VFS should crop at the
given height). The VFS would apply the compressed crop
optimization to decode only the minimal top portion of the
video required to answer the query. Our preliminary results
suggest that compressed cropping yields more than a 2.5×
performance benefit relative to the typical approach of full
decompression before cropping.

For space, we defer discussion of other optimizations to
a future paper. These include pixel reordering, frequency-
domain conversions, and an incremental refinement technique
similar to database cracking [17].

4.2 Storage Manager
On top of the VFS, VisualWorldDB’s storage manager

(SM) is responsible for deciding (i) whether to jointly compress
video from overlapping cameras, (ii) what strategy to use when
subsequently retrieving video compressed in this manner, and
(iii) which video to operate on when answering queries.

0

5

10

15

20

15 40 65 90

Si
ze

 (
M

B
)

% Overlap

Separate Compression

Joint Compression
(Interleaved)

Joint Compression
(Stitched)

Figure 5: Joint compression performance.

When ingesting or writing video, the first thing the SM
must decide is how to physically arrange the data in the VFS.
For video produced by physically distant or non-overlapping
cameras, the SM simply writes it to a distinct VFS file.

In the case of overlapping videos, the SM exploits
its knowledge of each camera’s position to automatically
combine overlapping camera videos and reduce the storage
redundancy in the overlapped regions Concretely, the SM
combines video frames from cameras within distance d and
with overlapping field of view of at least θ degrees. The SM
then writes the joint frames to the VFS, which may apply
further optimizations described in Section 4.1. Automatically
tuning the d and θ parameters remains as future work.

The SM currently chooses from two joint compression
methods. The interleave method aligns and alternates rows
of pixels in corresponding pairs of video frames and then
depends on video compression (applied by the VFS) to
minimize the resulting redundancy [32, 38]. The stitching
method merges pairs of frames into a panorama.

We applied each compression method to fifteen minutes
of 4K (3840 × 2160 pixels) synthetic video data generated
using [13] with various degrees of overlap. Figure 5 shows
preliminary results in terms of compressed file size for each
method. These results suggest that jointly compressing video
data reduces compressed video for sizes by up to 60%. We are
currently optimizing these methods and exploring additional
techniques with different performance trade-offs.

During reads, the SM requests a non-jointly compressed
video if available. Otherwise, it requests only relevant video
regions from the VFS. For example, if a user executes Q5 from
Table 1 after the SM had jointly compressed cameras c1 and
c2, the SM would request the minimal region that contained
data from c1 and then apply an inverse transformation (e.g.,
deinterleaving) to recover the original c1 video. Our preliminary
results suggest that joint compression reduces decompression
time by an average of 45% when both videos are needed, and
adds an average of 30% overhead when only one is required.

5. QUERY EXECUTION & OPTIMIZATION
The basic strategy for executing queries in VisualWorldDB is

to translate a query into operations on each video that it touches
(and on relational storage), decompress and process each video,
then combine results. This approach, however, is inefficient.

Our vision for VisualWorldDB’s query optimization and
execution focuses on avoiding expensive operations on video
data, which has been shown to consume a large amounts of
execution time relative to useful work [11,12]. Specifically,
our primary proposed optimization technique involves the
reuse of results between overlapping videos. Consider the
example from Section 3. A user, subsequent to performing
object recognition on camera c1 (i.e., using Q2 from Table 1)
might next apply object recognition to camera c2.

However, note the fields of view between camera c1 and c2
have substantial overlap (see Figure 3), and a corresponding
redundancy in the objects that exist in the world they view. In
this case, VisualWorldDB omits applying object recognition
on the overlapping region and only applies it to the remainder
of the video (plus an optional user-specified margin).

This strategy reduces the work that VisualWorldDB must
perform to identify objects, but possibly reduces accuracy due
to the omitted video data. For example, an automobile might
be occluded on c1 but not on c2 due to an intermediating
vehicle. To avoid this loss in accuracy, VisualWorldDB
additionally refines the overlapping region by automatically
including (i) occluded regions identified using pixel depth
information, and (ii) regions with a suspected object slightly
below the recognition cutoff threshold. This ensures that
important overlapping regions visible to c2 participate in
object recognition.

Having identified the smallest region relevant for
the application of machine learning or computer vision
algorithms, the VisualWorldDB optimizer interacts with
the storage manager to decompress the smallest amount
of video data as possible. For algorithms applied to
overlapping cameras, as in the example above, this might
involve requesting video that has been jointly compressed
(see Section 4.2) and/or only decompressing cropped subsets
of each video frames (e.g., to omit the overlapping areas).

Finally, to improve the performance of ad hoc queries over
a frequently-queried object and its associated pixels, we are
exploring the construction of spatial indexes over highly-dynamic
objects. We envision that the optimizer will leverage this
index in conjunction with spatial semijoins [33] to reduce the
communication cost between the relational store and video file
system (e.g., large joins over pixels associated with many objects).

In addition to the optimizations described above, other
possible enhancements could include predicate pushdown and
other optimizations described by [21], as well as operators
that target heterogeneous hardware [12].

6. RELATED WORK
There has been substantial recent interest in video

analytics—especially in the context of applied deep learning—
and many previous systems [1,2,15,16,18,20,21,22,22,23,23,
26,28,30,40,40,40] target this domain. Each of these systems
target two-dimensional video analytics, forcing developers to
manually map 3D environments onto a 2D video and reconcile
heterogeneous resolutions and frame rates. This results in
applications that are difficult to reason about, optimize,
maintain, and evolve. VDMS supports rich metadata queries
similar to those in VisualWorldDB but only over 2D video
frames [30]. Vignette offers improved compression performance
by targeting perceptual cues, which are complimentary to
optimizations offered by VisualWorldDB [24].

The array-based data models proposed by [4, 5, 25] are
similar to the model proposed herein. However, these
models generally target scientific workloads and fail to take
advantage of video compression optimizations and offer
drastically reduced performance for the types of applications
that VisualWorldDB targets. Finally, the VisualWorldDB
model shares similarities with the model proposed in [12];
however, this model is not optimized to construct and reason
about semantically-rich worlds using deep learning and other
inference techniques.

Finally, VStore improves performance by offering videos in
various formats and resolutions [39] (an approach advocated in
prior work [11]). While this interface is similar to that offered
by VisualWorldDB’s video file system, it requires extensive a
priori knowledge of target workloads and is not designed for
evolution, ad hoc queries, or online, incremental adaptation.

7. CONCLUSION
In this paper we presented our vision for VisualWorldDB, a

new DBMS designed to efficiently support workloads on visual
world applications (VWAs), applications that operate on many
videos perspective in a real or virtual world. VisualWorldDB
comes with a data model, query execution engine, optimizer,
storage system, and file system that coordinate to push the
state of the art in efficiently executing queries over VWAs.
VisualWorldDB allows developers to model high-level objects,
quickly identify relationships between those objects and the
underlying video data, and extract new perspectives of the world.
As our storage system evolves, we will explore the use of other
compression-aware techniques such as incremental refinement,
new physical transformations and reorganization approaches, and
indexing techniques to further improve query performance.

Acknowledgments. This work is supported by the NSF through
grants CCF-1703051, CCF-1518703, IIS-1546083, IIS-1651489, OAC-
1739419; DARPA award FA8750-16-2-0032; DOE award DE-
SC0016260; a Google Faculty Research Award; an award from the
University of Washington Reality Lab; Intel Science and Technology
Center for Big Data; Intel-NSF CAPA center; Adobe; Huawei; Google;
NVIDIA; CRISP, one of six centers in JUMP, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.

8. REFERENCES
[1] G. Ananthanarayanan, P. Bahl, P. Bod́ık, K. Chintalapudi,

M. Philipose, L. Ravindranath, and S. Sinha. Real-time video
analytics: The killer app for edge computing. IEEE Computer,
50(10):58–67, 2017.

[2] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter. Sprocket: A
serverless video processing framework. In SoCC, pages 263–274,
2018.

[3] E. N. Barmpounakis, E. I. Vlahogianni, and J. C. Golias.
Unmanned aerial aircraft systems for transportation
engineering: Current practice and future challenges. IJTST,
5(3):111–122, 2016.

[4] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and
N. Widmann. The multidimensional database system rasdaman.
In SIGMOD, pages 575–577, 1998.

[5] P. G. Brown. Overview of SciDB: large scale array storage,
processing and analysis. In SIGMOD, pages 963–968, 2010.

[6] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova. Depth
prediction without the sensors: Leveraging structure for
unsupervised learning from monocular videos. In AAAI, pages
8001–8008, 2019.

[7] A. Chowdhery and M. Chiang. Model predictive compression
for drone video analytics. In SECON, pages 19–23, 2018.

[8] Epic Games. Unreal Engine 4. https://www.unrealengine.com,
2019.

[9] S. George, J. Wang, M. Bala, T. Eiszler, P. Pillai, and
M. Satyanarayanan. Towards drone-sourced live video analytics
for the construction industry. In HotMobile, pages 3–8, 2019.

[10] Google Poly. https://poly.google.com.

[11] V. Gupta-Cledat, L. Remis, and C. R. Strong. Addressing the
dark side of vision research: Storage. In HotStorage, 2017.

[12] B. Haynes, A. Mazumdar, A. Alaghi, M. Balazinska, L. Ceze,
and A. Cheung. LightDB: A DBMS for virtual reality video.
PVLDB, 11(10):1192–1205, 2018.

[13] B. Haynes, A. Mazumdar, M. Balazinska, L. Ceze, and
A. Cheung. Visual Road: A video data management benchmark.
In SIGMOD, pages 972–987, 2019.

[14] D. Held, S. Thrun, and S. Savarese. Learning to track at 100
FPS with deep regression networks. In ECCV, pages 749–765,
2016.

[15] K. Hsieh, G. Ananthanarayanan, P. Bod́ık, S. Venkataraman,
P. Bahl, M. Philipose, P. B. Gibbons, and O. Mutlu. Focus:
Querying large video datasets with low latency and low cost. In
OSDI, pages 269–286, 2018.

[16] Q. Huang, P. Ang, P. Knowles, T. Nykiel, I. Tverdokhlib,
A. Yajurvedi, P. D. IV, X. Yan, M. Bykov, C. Liang, M. Talwar,
A. Mathur, S. Kulkarni, M. Burke, and W. Lloyd. SVE:
distributed video processing at Facebook scale. In SOSP, pages
87–103, 2017.

[17] S. Idreos, M. L. Kersten, and S. Manegold. Database cracking.
In CIDR, pages 68–78, 2007.

[18] J. Jiang, G. Ananthanarayanan, P. Bod́ık, S. Sen, and I. Stoica.
Chameleon: scalable adaptation of video analytics. In
SIGCOMM, pages 253–266, 2018.

[19] D. Kang, P. Bailis, and M. Zaharia. Blazeit: Fast exploratory
video queries using neural networks. CoRR, abs/1805.01046,
2018.

[20] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia.
NoScope: Optimizing deep CNN-based queries over video
streams at scale. PVLDB, 10(11):1586–1597, 2017.

[21] S. Krishnan, A. Dziedzic, and A. J. Elmore. DeepLens:
Towards a visual data management system. In CIDR, 2019.

[22] S. Liu, J. Pu, Q. Luo, H. Qu, L. M. Ni, and R. Krishnan. VAIT:
A visual analytics system for metropolitan transportation. ITS,
14(4):1586–1596, 2013.

[23] Y. Lu, A. Chowdhery, and S. Kandula. Optasia: A relational
platform for efficient large-scale video analytics. In SoCC,
pages 57–70, 2016.

[24] A. Mazumdar, B. Haynes, M. Balazinska, L. Ceze, A. Cheung,
and M. Oskin. Perceptual compression for video storage and
processing systems. In SoCC, pages 179–192, 2019.

[25] S. Papadopoulos, K. Datta, S. Madden, and T. G. Mattson.
The TileDB array data storage manager. PVLDB,
10(4):349–360, 2016.

[26] Y. Peng, H. Ye, Y. Lin, Y. Bao, Z. Zhao, H. Qiu, Y. Lu,
L. Wang, and Y. Zheng. Large-scale video classification with
elastic streaming sequential data processing system. In LSVC,
2017.

[27] F. Perazzi, A. Sorkine-Hornung, H. Zimmer, P. Kaufmann,
O. Wang, S. Watson, and M. H. Gross. Panoramic video from
unstructured camera arrays. Comput. Graph. Forum,
34(2):57–68, 2015.

[28] A. Poms, W. Crichton, P. Hanrahan, and K. Fatahalian.
Scanner: efficient video analysis at scale. TOG,
37(4):138:1–138:13, 2018.

[29] J. Redmon and A. Farhadi. YOLO9000: better, faster, stronger.
In CVPR, pages 6517–6525, 2017.

[30] L. Remis, V. Gupta-Cledat, C. R. Strong, and R. Altarawneh.
VDMS: an efficient big-visual-data access for machine learning
workloads. CoRR, abs/1810.11832, 2018.

[31] A. W. Senior, L. M. Brown, A. Hampapur, C. Shu, Y. Zhai,
R. S. Feris, Y. Tian, S. Borger, and C. R. Carlson. Video
analytics for retail. In AVSS, pages 423–428, 2007.

[32] G. J. Sullivan, J. Ohm, W. Han, and T. Wiegand. Overview of
the high efficiency video coding (HEVC) standard. TCSVT,
22(12):1649–1668, 2012.

[33] K. Tan, B. C. Ooi, and D. J. Abel. Exploiting spatial indexes
for semijoin-based join processing in distributed spatial
databases. TKDE, 12(6):920–937, 2000.

[34] Google VR View. //developers.google.com/vr/concepts/vrview.

[35] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai,
S. Yang, and M. Satyanarayanan. Bandwidth-efficient live video
analytics for drones via edge computing. In SEC, pages
159–173, 2018.

[36] X. Wang, A. Chowdhery, and M. Chiang. SkyEyes: adaptive
video streaming from UAVs. In HotWireless, pages 2–6, 2016.

[37] X. Wang, A. Chowdhery, and M. Chiang. Networked drone
cameras for sports streaming. In ICDCS, pages 308–318, 2017.

[38] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra.
Overview of the H.264/AVC video coding standard. TCSVT,
13(7):560–576, 2003.

[39] T. Xu, L. M. Botelho, and F. X. Lin. VStore: A data store for
analytics on large videos. In EuroSys, pages 16:1–16:17, 2019.

[40] H. Zhang, G. Ananthanarayanan, P. Bod́ık, M. Philipose,
P. Bahl, and M. J. Freedman. Live video analytics at scale with
approximation and delay-tolerance. In NSDI, pages 377–392,
2017.

[41] J. Zhou, R. Q. Hu, and Y. Qian. A scalable vehicular network
architecture for traffic information sharing. J-SAC,
31(9-Supplement):85–93, 2013.

