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ABSTRACT

GPUs are becoming increasingly popular in large scale data center
installations due to their strong, embarrassingly parallel, process-
ing capabilities. Data management systems are riding the wave
by using GPUs to accelerate query execution, mainly for analyti-
cal workloads. However, this acceleration comes at the price of a
slow interconnect which imposes strong restrictions in bandwidth
and latency when bringing data from the main memory to the GPU
for processing. The related research in data management systems
mostly relies on late materialization and data sharing to mitigate
the overheads introduced by slow interconnects even in the stan-
dard CPU processing case. Finally, workload trends move beyond
analytical to fresh data processing, typically referred to as Hybrid
Transactional and Analytical Processing (HTAP).

Therefore, we experience an evolution in three different axes:
interconnect technology, GPU architecture, and workload charac-
teristics. In this paper, we break the evolution of the technologi-
cal landscape into steps and we study the applicability and perfor-
mance of late materialization and data sharing in each one of them.
We demonstrate that the standard PCle interconnect substantially
limits the performance of state-of-the-art GPUs and we propose a
hybrid materialization approach which combines eager with lazy
data transfers. Further, we show that the wide gap between GPU
and PCle throughput can be bridged through efficient data sharing
techniques. Finally, we provide an HTAP system design which
removes software-level interference and we show that the interfer-
ence in the memory bus is minimal, allowing data transfer opti-
mizations as in OLAP workloads.

1. INTRODUCTION

GPUs have become an increasingly mainstream processing unit
for data management systems due to their parallel processing ca-
pabilities and their high bandwidth memory which fit the require-
ments of several, mainly analytical, workloads. However, high per-
formance processing comes with the overhead of data transfers over
an interconnect which becomes a bottleneck and results into degra-
dation of the overall query execution time. Accordingly, a large
portion of the research in GPUs for data management systems fo-
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cuses on techniques to mask the overheads coming from the inter-
connect and maximize the utilization of the GPUs.

The memory interconnect is also a bottleneck in traditional data
analytics executed in the CPU and it is mitigated by several tech-
niques. We focus on late materialization and data transfer sharing
and we adjust them to the GPU context. Late materialization is a
standard technique that brings data to the GPU only when they are
needed, usually after the application of filters and selective joins,
as opposed to the early approach where data are transferred ea-
gerly before the GPU execution starts. Data transfer sharing adapts
the traditional scan sharing techniques to the GPU memory hierar-
chy in order to amortize the transfer costs from the low-level main
memory to the higher-level GPU device memory across queries. To
the best of our knowledge, data transfer sharing has not been used
in GPUs to date. Both techniques overcome the bandwidth and la-
tency bottleneck of the interconnect by transferring data only when
it is necessary and when they satisfy the most possible queries.

The progress in GPU data processing is not limited to the soft-
ware, but also expands to the hardware. Since the first papers
demonstrating GPU utility for data management systems, the archi-
tecture of GPUs has evolved rendering them faster and with more
memory, which allows them to keep more data locally, thereby
boosting query execution. Moreover, NVIDIA, which is one of
the major GPU vendors, has recently set restrictions to the use
of consumer-grade GPUs, like GeForce, to data center installa-
tions [20]. Therefore, there is a transition in the architecture of
GPUs which renders the GPU execution faster.

Interconnects have also evolved with some of the most popular
standards being PCI express (PCle) and NVLink. In particular, the
first version of PCle was introduced in 2003 and evolved slowly un-
til PCle version 4 was introduced in 2017. A new version follows
two years later, showing the acute interest in fighting the intercon-
nect bottleneck from the hardware side. Each version of PCle and
NVLink increases the performance and can, potentially, eliminate
overheads met in the past and introduce new ones. Nevertheless,
a data management system should be able to work transparently
regardless the architecture of the GPU and the interconnect.

GPU-accelerated data management systems are mostly evaluated
against Online Analytical Processing (OLAP) workloads. Despite
their wide applicability, these workloads also guarantee that the un-
derlying data are immutable. Hybrid Transactional and Analytical
Processing (HTAP) workloads instead, consider data to be updated
regularly and the analytical processing part of the system has to
process data coming from transactions, while maintaining consis-
tency and minimizing interference. Therefore, HTAP systems in-
troduce further challenges and they are in the research spotlight,
affecting the design of data management systems.



HTAP workloads affect mainly the selection of late vs early ma-
terialization approach in the data transfers. Currently, in HTAP sys-
tems, a transactional engine either generates a snapshot and sends it
eagerly to the analytical engine [17] or it updates data lazily using
copy-on-write [15]. Therefore, the selection of the HTAP system
design is expected to have a direct impact on the selection of the
materialization approach, where there is no clear winner. Instead,
in this paper, we show that by eliminating the software-level inter-
ference and by separating out the transactional from the analytical
query execution, using CPUs and GPUs respectively, the perfor-
mance of both engines involved, is minimally affected.

This paper evaluates late materialization and data transfer shar-
ing techniques in the face of the evolution on the hardware and on
the workload side and it provides insights to data management sys-
tems developers and administrators on the interplay among GPU ar-
chitecture — interconnect — workload. We follow the hardware evo-
lution by using three different hardware configurations that provide
different combinations of GPU architectures and interconnects. We
follow the workload evolution and evaluate heterogeneous HTAP
system design by isolating task-parallel OLTP and data-parallel
OLAP workload on CPUs and GPUs, respectively. Our contribu-
tions are summarized as follows:

e We show that data management workloads stress the inter-
connect at a point where even high-end GPU architectures
do not meet the expected performance.

e We extend a state-of-the-art GPU analytical engine with a
novel hybrid tuple reconstruction strategy that mixes early
and late materialization and adapts the concept of scan shar-
ing to the GPU memory hierarchy.

e We demonstrate that, despite the interconnect bottleneck, late
materialization and data transfer sharing increase the effec-
tive bandwidth, allowing us to take advantage of highly se-
lective queries. This effect is horizontal across the different
generations of hardware and the different workloads.

e We show that using a multi-tiered, multi-versioned, storage
software interference in the performance of hybrid workloads
in heterogeneous HTAP systems is eliminated and we eval-
uate the impact of interconnect optimizations on the perfor-
mance of hybrid workloads.

2. BACKGROUND

In recent years, there has been increased interest on GPU accel-
erated DBMS because of the computational throughput, the high
bandwidth memory and programmability that modern GPUs offer.
In this section, we provide an overview of the design of systems
that perform GPU-based analytical processing as well as heteroge-
neous HTAP.

2.1 GPU-accelerated Analytical Processing

Analytical operations have been acknowledged as a target for
acceleration since the early days of General-Purpose computing on
Graphics Processing Units (GPGPU) due to their data-parallel na-
ture. Since then, analytics on GPUs have received significant trac-
tion, and related research has spanned by a broad field of work. A
multitude of GPU-accelerated analytical DBMS are available, both
academic and commercial. We describe the design principles of the
state-of-the-art in such systems.

Existing GPU-accelerated DBMS tightly couple their design prin-
ciples with the topology and hardware of CPU-GPU servers that
contain multiple CPU and multiple GPUs. An interconnect, such

as PCle and NVLink, connects GPUs to main memory, enabling
data transfers from and to GPU memory. Compared to the main
memory of the server, GPU memory has limited capacity and can
only store up to medium-sized databases. For this reason, DBMS
store the database in the main memory, commonly in columnar lay-
out, and transfer the data on-demand to the GPU through the in-
terconnect. The interconnect has much lower bandwidth than GPU
memory and often becomes the performance bottleneck. The band-
width discrepancy between the interconnect and the GPU is a driv-
ing force in the hardware-software co-design of GPU-accelerated
DBMS, especially for complex analytical operators such as sorting
and joins.

The execution model of GPU-accelerated DBMS considers two
factors, the programming model of GPUs and data transfers. GPUs
process through a series of data-parallel operations called kernels.
The first generation of GPU-accelerated DBMS uses an operator-
at-a-time execution model. They map each operator of the query
plan to a kernel and they execute the plan bottom-up. The op-
erators consume the complete intermediate input and produce the
complete intermediate output before the DBMS executes their par-
ent. In many cases, the intermediate tuples cannot fit in the lim-
ited GPU memory and are transferred to the main memory, in-
curring a high overhead. To fit the intermediate results in GPU
memory and to avoid unnecessary transfers, subsequent genera-
tions of GPU-accelerated systems follow a vector-at-a-time execu-
tion model, based on which the GPU processes data in vectors and
pipelines the partial intermediate results through the query plan.
Despite decreasing data movement, the vector-at-a-time execution
model wastes GPU memory bandwidth by materializing interme-
diate results in-between kernels and risks making GPU processing
the new bottleneck. To further eliminate inter-operator intermedi-
ate results, state-of-the-art DBMS compile sequences of operators
into unified data-parallel kernels. Both research [5, 6] and commer-
cial [18] systems use just-in-time code generation to improve query
performance.

Modern GPU-accelerated systems also overlap execution with
data transfers to reduce the total execution time of queries. One ap-
proach is to access the main memory directly from the kernels, over
the interconnect, by taking advantage of the unified address space
for the main memory and the GPU memory. Another approach,
which is compatible with the vector-at-a-time execution model, is
to use asynchronous data transfers to pipeline the use of the inter-
connect and the GPU. The GPU processes a vector of data, while
the transfer of the next vector is on-the-fly. Overlapping transfers
and relational processing hides a major portion of the time spent
on GPU execution, making the interconnect bottleneck even more
profound. We advocate for a data transfer-centric GPU-accelerated
engine design that combines reduced pressure to the interconnect
and an analytical throughput that exceed the interconnect capacity.

2.2 HTAP on heterogeneous hardware.

Data analytics have long considered that the underlying dataset
remains immutable. However, business analytics requirements have
lately raised the bar by putting freshness as an additional property
that OLAP systems should satisfy. The demand for freshness led to
the introduction of Hybrid Transactional and Analytical Processing
(HTAP) systems, which combine both transactional and analytical
functionality. Most commercial systems including, but not limited
to, DB2, SQL Server/Hekaton, SAP HANA and Oracle DB are ex-
amples of HTAP systems. HTAP focuses on the freshness aspect
of the data in par with the performance of transactions and analyt-
ics by providing fresh data efficiently from the transactional to the
analytical part of the system.



The primary concern for HTAP systems is the interference be-
tween two logically (or physically) separated engines working on
the same dataset, with one of them updating it. A significant factor
that determines the interference is the mechanism for propagating
updates from the transactional to the analytical engine. The choice
of a mechanism spans a broad spectrum of HTAP architectures.
On one extreme of the spectrum, HTAP architectures co-locate the
engines in a single system and use an efficient snapshotting mech-
anism to mitigate interference. [14] is a typical example follow-
ing this approach. These systems rely on hardware-assisted copy-
on-write (COW) to separate read-only from read-write data. The
transactional engine writes on the new page, transparently, since
the new page has the same virtual address for the application while
the old page is moved to the page table of the analytical engine and
again maintains the old virtual address. On the other extreme of
the spectrum, systems such as [17] follow an HTAP architecture
that executes queries in batches. In this case, the transactional and
the analytical engines run in isolation in different nodes of the sys-
tem. Upon the end of an epoch, the transactional engine extracts a
delta log and sends it to the analytical engine. The analytical en-
gine applies the log to its storage and then executes the batch of
queries that have been waiting for their execution. Compared with
the previous, COW-based, architecture, this one opts for isolation,
whereas the other opts for freshness since it takes a snapshot every
time an analytical query session is about to start.

The adoption of GPUs for analytical processing has sparked in-
terest in Heterogeneous HTAP (H 2 TAP) [3]. Heterogeneous HTAP
uses hardware and workload heterogeneity in a synergetic fash-
ion. It assigns the latency-critical transactional workload to one
or more CPU nodes and the bandwidth-critical analytical workload
to GPUs. Caldera [3] is a prototype H2TAP that performs HTAP
over heterogeneous hardware using COW software snapshotting.
Caldera demonstrates that COW introduces overheads because it
stresses the memory bandwidth in two directions: copying the data
inside the DRAM for the write operations and copying the data
from DRAM to the GPU for the analytical processing. We study
the transactional-analytical interference in the H2TAP context and
in conjunction with the utilization of the interconnect. We elim-
inate COW and we use a two-tiered, multi-versioned storage to
send fresh data from the DRAM to the GPU for analytical pro-
cessing, moving the focus from the software to the hardware-level
interference, especially at the interconnect level, in H 2TAP.

3. THE INTERCONNECT BOTTLENECK

H2TAP systems bridge the GPU-accelerated analytical engine
with the transactional storage via the interconnect. The intercon-
nect is the central component of H*TAP and the most critical factor
in the performance profile of the two constituent engines. First, the
interconnect bandwidth imposes a hard limit to analytical through-
put, because the engine needs to transfer to-be-scanned columns
to the GPU for any analytical processing. Second, interconnect
utilization consumes memory bandwidth and therefore serves as a
metric for resource sharing between the transactional and the ana-
Iytical engine.

Figure 1 presents the impact of interconnect in analytical query
processing by showing execution times of query family 2 from Star
Schema Benchmark across combination of consumer- and server-
grade GPUs with slow and fast interconnects.

The bars represent the execution time for executing queries Q2.1,
Q2.2 and Q2.3, which have the same query template and decreasing
selectivities from 1 to 3, with combination of server-grade GPUs
with PCIe and NVLink, and, consumer-grade GPU with PCle. The
dashed lines represent the time required for transferring the work-

-« PCle Transfer

PCle-Tesla
=+ NVLink Transfer

PCle-GeForce
NVLink-Tesla

)
IS

Execution time (se

o
i

Q2.1 Q2.2 Q2.3
SSB Query

Figure 1: GPU query execution on CPU-resident SSB (SF=1000)
across different GPU architectures & interconnects

ing set of the queries (9.2 GB) to the GPUs using different intercon-
nect technologies, specifically PCle (black) and NVLink (green).
Based on this experiment, we observe the following properties hold
for GPU-accelerated data management systems:

e GPU Underutilization. GPU-accelerated query processing
is interconnect-bound. Figure 1 shows that the execution
time for all queries is at most 11% higher than the transfer
time that the interconnect requires for the given configura-
tion. For PCle-based configurations, upgrading the GPUs
from consumer-grade GTX 1080 (320 GB/sec) to server grade
V100 (900 GB/sec) brings a marginal performance improve-
ment of 0.5 —2.7%. By contrast, upgrading the interconnect
from PCle to NVLink in a V100-based configuration yields a
speedup of 3.94 — 5.42. The interconnect bandwidth dictates
the query execution time, whereas the processing capabilities
of the GPU are underutilized, especially for slower intercon-
nects. Recent work shows that even expensive queries are
interconnect-bound when PCle is used [24, 8, 9]

o Selectivity-Insensitive Performance. The size of the work-
ing set determines the execution time of the query. Figure 1
shows that the execution time of the query is roughly con-
stant, even though the selectivity is decreasing. The obser-
vation is counter-intuitive. Users expect queries with more
selective filters to have a shorter time to result. The expec-
tation holds for CPU-based analytical systems which access
main-memory directly at fine granularity, but not for GPU-
accelerated systems that eagerly transfer the whole working
set of the query over the interconnect, one vector-at-a-time.

These two properties of GPU-accelerated OLAP engines are un-
desirable. It indicates that the analytical engine fails to fully take
the advantage of hardware and workload characteristics in the exe-
cution environment.

In H2TAP systems, the shared main-memory bandwidth is also a
source of performance degradation of either, analytical or trans-
actional throughput, or both: OLTP reads and updates at tuple-
granularity while OLAP reads at column-granularity. This del-
egates to the underlying memory sub-system — CPU DMA con-
trollers — to schedule and prioritize incoming requests. In gen-
eral, sequential scans consume full memory bandwidth while starv-
ing small, random-access requests. Moreover, not only at hard-
ware level, but also, HTAP systems presents a challenge of data-
freshness, that is, OLAP to access data updated by OLTP engine
with snapshot isolation guarantees.



In Section 5, we discuss modifications to the execution paradigm
that enable our engine to overcome these challenges by reducing
pressure over interconnect and main-memory.

4. AN H’TAP ENGINE

In this section, we provide an overview of our H2TAP proto-
type engine that combines an analytical GPU-accelerated engine
with a CPU-based transactional engine. First, we discuss the de-
sign principles of the transactional and the analytical components
of our system. Then, we discuss the interface between the two that
enables HTAP.

4.1 GPU-accelerated Analytical Engine

The analytical component of our H2TAP prototype is Proteus [8,
9], a state-of-the-art GPU-accelerated analytical engine. Proteus
targets multi-CPU multi-GPU servers by exploiting the heteroge-
neous parallelism across all processing units. However, we focus
on execution configurations that only use the GPUs. By using data
and control-flow operators, it combines state-of-the-art scalability
and performance with data and device-agnostic operators.

Proteus is a columnar DBMS that uses the main memory for
storage. To process queries using the GPUs, it transmits blocks
of data over the interconnect using asynchronous transfers and sub-
sequently consumes it using a vector-at-a-time execution model.
It schedules execution and transfers using CUDA streams. To in-
crease the inter-operator efficiency and eliminate the materializa-
tion of intermediate results, Proteus uses just-in-time code gener-
ation to fuse sequences of pipelined operators into unified kernels
using LLVM. Concerning data transfers and the execution model,
Proteus incorporates all the latest optimizations of state-of-the-art
systems. In Section 5, we extend Proteus with interconnect-related
optimizations, specifically optimizing data access method per-query
and sharing data across queries.

4.2 CPU-based Transactional Engine

On the transactional side, we use a two-tiered, multi-version stor-
age in order to separate out effects of resource interference at hard-
ware and software level. The first tier is a two-versioned storage
similar to the Twin Blocks [7, 19]. During every epoch, only one
version is updated and the other is shared with the analytical en-
gine. The epoch can either change periodically or through explicit
requests. The second tier is a multi-versioned storage used by the
transactions. Every transaction commit is written to the first tier
update-reserved version, in order to be immediately available to
the analytical side upon the change of the epoch.

4.3 Heterogeneous HTAP

Proteus is extended to be a complete HTAP system by introduc-
ing snapshot plugins, which are interfaces from OLTP engine to
OLAP engine for getting data pointers to fresh transactional snap-
shots. Snapshots are triggered either on-demand or periodically on
epochs, while maintaining the bounded staleness on transactionally
inactive versions. This allows the two engines to be isolated at soft-
ware level by removing high-latency copy-on-write operations for
OLTP or OLAP traversing version-chains at tuple-level. With two-
tiered storage manager in OLTP engine, Proteus can access one an-
alytical snapshot-at-a-time and can execute all analytical queries in
a batch, similar to [17]. However, in case where the system needs
to maintain snapshots of variable freshness, this approach can be
extended by updating OLTP storage manager from two-tiered to
n-tiered, having a circular buffer of consistent data snapshots.

At hardware level, the two, analytical and transactional engines
are isolated by explicit scheduling of compute resources. Task-

parallel OLTP workload is executed on CPUs while data-parallel
analytics on GPUs.

S. TRANSFER OPTIMIZATIONS

This section first describes the two approaches that we study
in this paper for mitigating the GPU overheads, namely lazy data
transfers and data transfer sharing.

5.1 Lazy transfers

Although the cost of transferring data is high, GPU-accelerated
DBMS eagerly transfer data to GPUs before processing. Prefetch-
ing blocks of data has multiple advantages. First, it guarantees to
the subsequent operations that the data are in an accessible memory,
as depending on the hardware configuration, a GPU may not have
direct access for reading data in any other memory location in the
system. Second, the access pattern over the interconnect is sequen-
tial, and thus, it allows full utilization of the available bandwidth.
Third, kernels access data stored in GPU memory and benefit from
the high memory bandwidth and low memory latency as a result.
Fourth, the copy of the data in the GPU memory can be used multi-
ple times within the lifetime of a query. However, despite the ben-
efits of asynchronously prefetching data to the GPU, the approach
tends to over-fetch by transferring data that is not required. Query
performance becomes insensitive to selectivity.

Modern GPUs have a unified address space and allow on-demand
access to data in the CPU memory. The mechanism constitutes
a lazy way of transferring data by pulling into the GPU and can
bring significant benefits to GPU query processing. Primarily, it re-
duces the amount of transferred data for highly selective queries by
leveraging the higher granularity of interconnect accesses. The ker-
nels load columns accessed after the evaluation of predicates only
partially. Furthermore, the memory footprint of query processing
decreases because intermediate buffers are unnecessary. Finally,
lazy accesses allow optimizations such as compression and invis-
ible joins. The two data transfer methods correspond to the tuple
reconstruction policies. Eager prefetching corresponds to early ma-
terialization, while lazy transfers correspond to late materialization.
The two approaches define a trade-off between the utilization of
GPU and interconnect hardware and the decrease of data transfer
requirements.

We extend our system to support a hybrid transfer strategy that
enforces a transfer policy at the column level. We route, transfer
and process data in blocks, which are logical horizontal partitions.
A data transfer operator copies the eagerly transferred columns of
the block, or any columns inaccessible from the GPU, to GPU
memory and forwards a pinned main memory pointer for the lazily
transferred columns. Then, during execution, the GPU transpar-
ently reads the former from the GPU memory and the latter over
the interconnect using the UVA. With the proposed design, we
achieve more complex reconstruction policies that deliver better
performance than both pure eager and pure lazy transfer strategies
because we optimize for each column judiciously, without adding
extra complexity to the query engine design.

5.2 Transfer sharing

Data movement from the main memory to the GPU constitutes
the main bottleneck for query processing due to the bandwidth dis-
parity between the GPU device memory and the interconnect, for
all interconnect technologies. Transfers over the interconnect are
in the critical path of the execution. Thus, as long as no transfers
are redundant, we cannot decrease the latency of GPU-accelerated
query processing further. However, in an environment of concur-
rent query execution, we can reduce the overall data movement



for query processing by sharing transferred data across multiple
queries. As a result, we can amortize the cost of transfers over
the interconnect and increase the throughput of the DBMS. The
described technique mirrors the concept of scan sharing from disk-
based DBMS but adjusted to the GPU memory hierarchy.

To achieve transfer sharing, we implement a buffer pool inside
the high bandwidth memory of each GPU. We model transfers as
mem-move operators [9] and for each such operator, we match the
subtrees across queries to identify sharing opportunities. Unlike
scan-sharing, it is possible to share intermediate results of the query
plan as well, for example, when shuffling data between multiple
GPUs. When a query demands a block of data for processing, it
registers the request in the buffer pool of the respective GPU. If a
request already exists for the block in question, the consumer oper-
ators synchronize to wait until the transfer is complete. Otherwise,
the system initiates a new transfer to an empty buffer and registers
the request in the buffer pool. The design is flexible both in terms of
the content of shared data and policies of the buffer pool regarding
evictions, pinning, or priorities. In our current implementation, we
assume query batches and pin buffers to ensure maximum sharing
and evict the most-recently unpinned buffer. This design allows en-
capsulating sharing in the buffer pool management and the transfer
operator in a non-intrusive manner.

5.3 Global Transfer Plan

We present two techniques for improving the utilization of the
interconnect. On the one hand, transfer sharing amortizes the cost
of data transfers across queries. On the other hand, the hybrid trans-
fer strategy optimizes transfers within each query by maintaining a
balance between reducing the amount of data accessed and increas-
ing the interconnect and GPU efficiency. The two techniques can
co-exist, but they are not orthogonal. Lazy transfers occur directly
over the interconnect and thus preclude any form of sharing. How-
ever, sharing is still possible for the prefetched columns.

In this context, the transfer policy is a cross-query optimization
problem. The query optimizer needs to decide which columns to
pull lazily and which columns to push eagerly, and express the de-
cision on the physical query plan. The optimizer decides to share
eagerly pushed data by default because transfer sharing incurs no
extra effort. Also, it decides against using lazy transfers if a copy
of the data is available in the buffer pool, due to other concurrent
queries. In that case, sharing is again preferable. To determine the
transfer that should be lazy, the optimizer examines the access pat-
tern for the column in question, the aggregate amount of required
data across queries, and a cost model that represents the impact
of interconnect latency. The decision takes the observed execution
time into account, which is the maximum of the GPU execution
time and the required time for transfers over the interconnect.

6. EVALUATION

This section includes the results of our experimental evaluation.
First, we describe the hardware that we used to execute our exper-
iments, and the benchmarks that we used to derive our workload,
the software used and the undertaken evaluation methodology.

Then, we present the experimental results of the proposed data-
transfer techniques per query and transfer-sharing approach across
queries, to show the corresponding benefits and trade-offs with
each approach. Finally, we show the performance interference in
HTAP workloads combined with different data-transfer techniques.

6.1 Hardware and Software

Hardware. To study the effects across consumer- and server-
grade GPUs connected over relatively slow and fast interconnects,

we executed our experiments on three different servers. The first
and the second server have 2 x 12-core Intel Xeon Gold 5118 CPU
(Skylake) clocked at 2.30-GHz with HyperThreads, that is, 48 log-
ical threads and a total of 376-GB of DRAM. The first server has
2 x NVIDIA GeForce 1080 GPUs (consumer-grade), whereas the
second one has 2 x NVIDIA Tesla V100 GPUs (server-grade), over
PCle v3 in both cases. The third server is based on IBM POWER9
equipped with 2x16-core SMT-4 CPUs clocked at 2.6-GHz, a to-
tal of 128 logical threads and 512-GB of DRAM. Like the second
server, it has 4 x NVIDIA Tesla v100 GPUs, but they are connected
to CPUs over NVLink 2.0 interconnect with 3-links per GPU. In
all the experiments, we use 2 GPUs, one local to each CPU socket,
even in the 4-GPU server. In the rest of the section, we will re-
fer to these servers as PG for the first one, PT for the second one
and NT for the third one. We use the first letter, P and N, to signify
the interconnect standard (PCIe/NVLink) and the second, G and T,
for the GPU architecture (GeForce/Tesla). Currently, there is no
consumer-grade GPU with support for NVLink.

We use the three hardware configurations to show how the evolu-
tion of GPU architectures and interconnects affect the performance
of the access methods and data transfer sharing. By comparing PG
with PT, where we change only the GPU architecture, we observe
how the increased GPU capabilities affect performance. Then, by
comparing PG with NT, we keep the same GPUs, but we change the
interconnect from PCle to NVLink, thereby evaluating the effect of
the interconnect to the query performance. Migration from Intel to
POWER CPU architecture was necessary, since NVLink is avail-
able as a CPU-GPU interconnect only on IBM POWER servers, to
the best of our knowledge.

Software. We use in-house, open-source software for our eval-
uation. OLAP queries are executed on Proteus, a state-of-the-art
query engine which executes queries on both CPUs and GPUs and
relies on code-generation [9, 8]. We extended Proteus by adding
CPU-only OLTP engine, named Aeolus. Aeolus is configured with
amulti-versioned storage manager and uses a columnar storage lay-
out, whereas its transaction manager uses MV2PL with deadlock
avoidance for concurrency control. The snapshot manager of Aeo-
lus, pre-faults memory chunks sizing to main-data size in order to
provide fresh snapshots to OLAP.

For the scope of this study, we execute all OLTP workloads on
CPUs. For OLAP, all experiments use 2-GPUs, one per NUMA
node and GPU-Only execution mode of Proteus. For explicit re-
source allocation, OLAP reserves 1-physical core per socket (4-
logical threads in PG & PT, and 8-logical threads in NT) for final
data reduction and management threads.

Benchmarks. We evaluate our methods using two benchmarks.
For OLAP-only experiments we use the Star Schema Benchmark
(SSB) [21] with scale factor 100. HTAP experiments are performed
using the CH-benchmark [10] which combines two industry stan-
dard benchmarks, TPC-C and TPC-H, for transactional and analyt-
ical processing systems, respectively. We use the schema as de-
fined by the benchmark, which inherits the relations specified in
TPC-C and adds three more relations specified in TPC-H, which
are Supplier, Nation and Region. To better study the HTAP
effects, we scale the database size following the TPC-H approach
by a scale factor SF. Accordingly, the size of the LineIten ta-
ble becomes SF x6,001,215. We fix 15 OrderLines per Order
when initializing the database and we scale the number of records
in OrderLine to SF %6,001,215. In contrast to TPC-H, and as per
TPC-C specification, every NewOrder transaction generates five to
ten order lines per order. Unless stated otherwise, all experiments
are conducted on initial database with scale factor 100. For the
transactional workload, we assign one warehouse to each available



worker thread, which generates and executes transactions simulat-
ing complete transactional queue. As the CH benchmark does not
specify selectivities for conditions on dates, we select values for
100% selectivity, which is the worst case for join and groupby oper-
ations. To study the interference between the hybrid workloads, all
experiments begin by acquiring the snapshot of the initial transac-
tional data, in order to keep analytical working set constant across
queries while transaction executes in parallel.

6.2 Reducing transfers

To evaluate data access methods per-query and transfer sharing
across queries, we use Star Schema Benchmark with a scale factor
(SF) 100 and pre-load the data on the CPU side. We use a columnar
layout and each of the queries of the first three flights has a working
set of 9.2GB, while queries of the last group have a working set of
13.8GB. Prefetching and explicit bulk copies over the interconnect
happen in the granularity of blocks (2MB huge pages in our system)
and transfers overlap with execution [9].

6.2.1 Lazy data transfers

Methodology. This section evaluates the performance of dif-
ferent data transfer techniques across two axes: the interconnect
characteristics and the query selectivity. First, we show how the
interconnect bandwidth affects query execution and then evaluate
the performance gain achieved by lazily accessing the input. Each
query fetches the required data over the interconnect and any trans-
fer sharing or caching is disabled, to simulate the case of reading
fresh data from the CPU. Eager prefetches all the data to the GPU
memory. In the lazy method, all data are accessed directly from
the GPU threads during execution, without an explicit bulk copy.
As aresult, during kernel execution, GPU threads are experiencing
a higher latency during load instructions for input data, compared
to the eager method, where data are accessed from the local GPU
memory. To reduce requests to remote data, and as a result the ac-
tual transferred volume, in the generated code, all read requests are
pushed as high into the query plan as possible. For the SemiLazy
method, we prefetch the firstly accessed column of the fact table
for each query and access the rest of the working set using the lazy
method. For query groups 2-4 the first column is the foreign key
using in the first join, while for query group 1 that filters the fact
table before the first join, we prefetch the two columns that are used
in the filter predicates.

Eager access methods achieve throughput (working set over ex-
ecution time) very close to the interconnect bandwidth for all three
hardware configurations. The only exception is Q3.1 on NT, which
has the lowest selectivity and combined with the multiple joins
stressing the GPU caches, it causes high memory stalls. The band-
width of the PCle interconnect is low enough that these stalls have
a minimal impact on the execution time, as they are hidden by the
transfer time. In contrast, the ~5x higher bandwidth of NVLink
2, makes transfer times slower than kernel execution times, caus-
ing the stalls to become the new bottleneck. For all other queries,
kernel execution is overlapped and hidden by data transfers.

Lazy access methods allow for reducing the transferred volume.
SSB queries are highly selective and thus performance improves
in almost all queries, except of query 3.1. As Q3.1 is compute-
heavy, its performance degrades due to the increased latency that
materializes as memory stalls. Inside each query group, the bene-
fit compared with the Eager method increases, as queries become
more selective.

SemiLazy improves upon Lazy by reducing the main penalty for
lazy access methods. While laziness reduces the transferred data, it
does so in the cost of higher memory latency. Nevertheless, some
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Figure 2: Performance of the different access methods on SSB
(SF=100) on the three different configurations.

columns are accessed almost at whole. Prefeching those columns
decreases the overhead of laziness at the expense of fetching extra
tuples. This approach brings the performance closer to the expected
execution times predicted by taking into consideration the selectiv-
ity of each individual operation. The higher effect of SemilLazy
is on the low-end GPU, where compute resources are limited com-
pared to the server-grade GPUs. Additionally, while Lazy improves
mostly the performance of very selective queries, SemiLazy access
methods improve queries that are less selective and have multiple
dependent operations, like Q2.1. The smaller latency of NVLink,
compared to PCle, reduces the impact of this method.
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Figure 3: Transfer sharing with eager and semi-lazy transfers

Summary. Eager methods reduces memory stalls during exe-
cution and allows greater opportunities for caching & sharing data
transferred to the GPUs. Eagerness transfers unnecessary data and
penalizes query execution on selective queries. On the other hand,
Lazy access methods reduce the execution time of highly selective
queries, by avoiding unnecessary transfers, at the expense of mem-
ory stalls and data dependencies which are combined with partially
transferred columns that impede column reusability. Semilazy
adapts between the two to achieve the best of both worlds, by using
a different method for each column: if a query is going to touch
most of a column, it will be prefetched eagerly, while columns that
are only accessed depending on evaluated conditions are lazily ac-
cessed. This results in Semil.azy adapting between the two meth-
ods and improving the performance of queries that are selective but
also compute-intensive.

6.2.2 Data transfer sharing

Methodology. To evaluate the impact of transfer sharing, we
execute queries in batches of variable size. Each batch contains
independent instances of the same query (Q4.3 of SSB SF=100).
We reserve a buffer pool for each transferred relation and we avoid
any other work sharing opportunities, for example by not sharing
join hash tables across queries. We report the execution time of the
whole batch, from the moment it was submitted until the moment
that the last query finishes, and compare the results on the three
hardware configurations, PG, PT and NT.

Figure 3 shows the execution time of batches of 1 to 10 instances
of the join-heavy query 4.3. In this plot, we observe the impact of
transfer sharing Eager and Semil.azy access methods. Full-lazy
access methods are incompatible with transfer sharing as they do
not materialize results to GPU memory and thus transfers can not
be shared. We leave as future work caching lazily fetched tuples
in memory and accessing them in following executions. In Semi-
Lazy accesses, we select the same columns as in the experiments
of section 6.2.1 for eager prefetching as well as sharing across the
queries in the same batch.

The desktop GPU in PG has smaller memory than the server-
grade GPUs in PT and NT. The limited memory can fit the data
structures, such as hash-tables and pinned input buffers, for up to
7 concurrent queries without using out-of-GPU joins. While our
system supports joins without materializing the whole hash-table
on the GPU [24], we temporarily disable it and for PG we report
up to its limit of 7 queries, to allow for a fare comparison.

Eager transfers in the PCle-based configurations initially have a
marginal increase in execution time because shared transfers mask
GPU execution and only happen for the first access to each block
of input data. PG and PT have a sharper slope starting at 5 and

6 queries respectively because the corresponding GPUs become
execution-bound and are unable to mask outstanding processing.
By contrast, NVLink cannot mask execution for any batch size >2
and NT shows increasing execution time throughout. For more than
7 queries, the execution time of NT is only slightly lower than that
of PT. Thus, with sufficient sharing the interconnect becomes in-
creasingly irrelevant for performance and the GPU becomes the
dominant factor, as transfer sharing reverses the bottleneck. After
8 queries, NT and PT have very similar performance and execution
time grows with the same slope.

SemiLazy accesses combined with transfer sharing allows for
a lower execution time per-batch for smaller batches, but incurs a
higher penalty for each query added to a batch. The execution time
increases with the number of queries even from the second query
added to a batch, as lazily accessed columns are still accessed over
the interconnect in a per-query basis. Nevertheless, for a small
number of queries, the avoided traffic reduces the total execution
time. Both GPU and interconnect hardware influence performance
when the engine combines shared and lazy transfers. Semil.azy-
enabled transfer sharing has a higher slope for PG compared to PT
and NT due to the kernel scheduling: thread blocks from different
kernels that access the same inputs overlap and run concurrently
in the server-grade GPUs, due to their launch configuration and the
more available resources like Streaming Multiprocessors and regis-
ters. Thus, they reuse lazily fetched data as they are accessed. The
offset between the PT and NT configuration is due to the intercon-
nect bandwidth, which is used to fetch the lazily fetched data.

Summary. Data transfer sharing masks interconnect bottleneck
up to the point where the workload becomes execution-bound, hence
maximizing GPU utilization overall. When combined with ac-
cess method, the speedup by SemilLazy access methods cascades to
sharing opportunities; the query batch shares the eager-scan of the
query and fetches only the qualifying tuples over interconnect. Ad-
ditionally, combining Semil.aziness with sharing allows for pack-
ing more queries in to the same batch and improves the perfor-
mance gains for smaller batches.

6.3 HTAP effect

This section evaluates the effect of a hybrid transactional and an-
alytical workload in a heterogeneous HTAP system design, where
OLAP execute queries on GPUs while OLTP executes transactions
on CPU, simulating full task-parallel workload on CPUs while data-
parallel workload on GPUs.

Methodology. To evaluate performance interference in hybrid
workloads in the presences of shared main-memory, we use three
queries of CH-benchmark, executed on initial database snapshot,
sized of TPC-H SF100. Representative operations and working set
of each query used for this experiment is presented in 1. Each an-
alytical query is executed as a sequence of five queries on GPUs
with concurrent OLTP workload on CPUs. For analytical queries,
we measure absolute response times in seconds, while for transac-
tional workload, we measure the percentage drop in transactional
throughput during the lifetime of analytical query sequence, rela-
tive to the throughput before execution of the analytical query se-
quence. Each analytical query sequence is executed with different
access methods, i.e., eager, semilazy and lazy. and, all experiments
are conducted across three-servers; PG, PT and NT.

Figure 4a, 4c, and 4e shows the execution times of three analyti-
cal queries from the CH-benchmark with different access methods.
Figure 4b, 4d, and 4f shows the corresponding relative percentage
drop in OLTP throughput while executing analytical queries con-
currently in GPUs.
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Figure 4: Effects of OLAP access methods on performance interference in hybrid workloads

| CH-Query | Query Ops | Working Set |
Q1 scan-filter-group-aggregate | 13.4GB
Q6 scan-filter-aggregate 11.2GB
Q19 scan-join-filter-agg 11.2GB

Table 1: CH-Queries operations and working-set size

In HTAP workloads, OLTP and OLAP have conflicting mem-
ory accesses at different granularities. OLTP reads and updates the
memory one tuple at a time, while OLAP reads at column granu-
larity in general. Contrary to CPU-only HTAP systems, by elimi-
nating performance interference at software level, the performance
interference in H2TAP is dictated by the interconnect and the ac-
cess method used over it.

OLAP-only impact of access methods. Q1 and Q6 have 70%
selectivity and thus the different access methods produce small sav-
ings: most cache lines of the input data are touched. Similarly, Q19
seems small improvements by using the Lazy and SemilLazy access
methods due to the low selectiveness of the predicates. In the PG &
NT configurations, Q19 is faster using the Lazy approach, instead
of the Semil.azy, as our policy for selecting the eagerly transferred
columns selects only the column that is used for joining orderline
with item and thus sees benefits from laziness only in accessing the
last column, that is used for the reduction after the join. Addition-
ally, as we map one warehouse to each physical core, Q19 is more
selective in NT configuration, which explains the relatively bigger
time saving, compared to the other two configurations, when using
Lazy and Semil.azy access methods.



Interference. As OTLP is latency sensitive and OLAP is band-
width sensitive, OLTP see only a ~5% reduction in transactional
throughput, due to the hardware isolation.

Eager access methods experience the least performance interfer-
ence across both GPU architectures and interconnects. In the Eager
access method, every block of data that is going to be consumed by
a GPU kernel is staged into the GPU memory, before the kernel
is executed. Thus, OLAP performance is capped by interconnect
bandwidth and the kernel execution times only depend on accesses
on local GPU memory. The interconnect transfers leave enough
DRAM bandwidth for OLTP to proceed normally: PCle consumes
at max 16% of DRAM bandwidth in PG and PT, while NT can con-
sume up to 50% of DRAM bandwidth. On the other hand, OLTP
workload is dominated by random accesses and is latency sensi-
tive, hence is not effected by eager transfers, as sequential scans
have minimal pressure on CPU memory DMA controllers.

Lazy access methods cause performance interference in OLAP
response times. While laziness reduces the data volume transferred
over the interconnect, it also causes more out-of-order requests to
the CPU memory, as they are spawned from the different concur-
rent thread blocks running in the GPU. This causes a higher ob-
served latency, when the CPU memory is loaded serving requests
to the OLTP engine. Interference in Q6 & Q9 in configuration PG
is smaller compared to PT as there are less thread blocks concur-
rently active in the GPU, can thus access patterns to CPU memory
are more regular.

SemiLazy access methods experiences the same interference as
Lazy ones. For Q6, the total relative interference is reduced com-
pared to the Lazy access method, as some columns are accessed
eagerly and thus the pattern that causes interference for the Lazy
method is now reduced to only some column accesses. For Q19, the
same holds but the OLAP engine experiences the similar interfer-
ence. This is caused by the aforementioned column selection: the
columns whose almost all values are accessed are lazily touched,
while more selectively accessed columns are eagerly transferred.
As aresult, SemiLazy for Q19 converges to a Lazy access method.

Summary H>TAP requires fresh data to be brought from the
CPU memory to the GPUs. To reduce the amount of data trans-
ferred over the interconnect we use sharing of data transfers to in-
crease reusability and lazy accesses to only fetch data we need.
Nevertheless, these two approaches contradict each other. Semi-
Lazy allows reducing the amount of transferred data, while reusing
their bigger portion, by prefetching whole columns, whenever most
of it will either way be accessed. Though, combining HZTAP with
Semil.azy challenges the traditional understanding of OLAP-OLTP
interference: SemilLazy makes GPU accesses to be remote reads on
potentially sparse and thus random locations. These locations cause
the memory bus to treat both the CPU and the GPU as devices that
do random accesses, but now the OLAP engine resides on the re-
mote devices connected over an interconnect. As a result, OLAP,
the engine that runs on the remote device pays the most due to the
multiple and sparse memory requests that happen from a remote
device.

7. DISCUSSION

Our experiments show the effect of the evolution of hardware
and workload on GPU-accelerated data management systems. We
focused on the interconnect bottleneck, since data analytics work-
loads are bottlenecked by the memory interconnect, even when they
are executed in CPUs. We show that even for high-end intercon-
nects with increased bandwidth and reduced latency many queries
are still bound by the transfers. However, this can be attributed
to the high-end GPUs that these interconnects come with, which

makes them process data fast. On the other hand, we show that
if the server is restricted into lower bandwidth setups, we can use
lower-end, and typically more power efficient, GPUs to support
queries that are bottlenecked by the interconnect. Accordingly, data
management specialized GPUs would trade compute power with
more interconnect links or device memory.

On the software side, we show that we can increase the effec-
tive bandwidth of the interconnect, and thus query performance, by
applying late materialization and data transfer sharing over the in-
terconnect. Effectively, late materialization yields more benefits on
queries with highly selective filters and joins. Similarly, data trans-
fer sharing opts for cases where multiple queries transfer similar
data over the interconnect. Both approaches are generic and there-
fore beneficial across newer and older interconnects and servers.

Finally, we show that HTAP systems can fully exploit the hard-
ware isolation offered by a system where transactions and ana-
lytics are executed on different devices. Specifically, in case of
H2TAP, fresh data are generated on the CPU side and the GPUs
have to fetch them to provide fast analytics on fresh data. This
causes excessive data transfers and high interference as both sub-
systems compete for the same resources. To reduce the data trans-
fers and reuse transferred columns, we propose a Semil.azy access
method which allows saving on data transfers by taking advan-
tage of the fine-granularity direct memory accesses, while it also
increases sharing opportunities. Nevertheless, the random access
pattern of Semil.azy increases the number of memory requests and
thus the impact of memory latency to data on the CPU memory.
Secondly, to reduce interference, we minimize OLAP’s access to
CPU memory through Semil.azy accesses and transfer sharing. To
enable both laziness and sharing, we rely on the Twin Block storage
support of the transactional engine that allows the OLAP engine to
avoid costly index traversals. In summary, contrary to the common
belief, when moving OLAP to accelerators, OLTP can also starve
OLAP if there is not enough remaining bandwidth to send data to
the accelerators.

8. RELATED WORK

GPU analytical processing. GPU-accelerated DBMS utilize
GPUs to accelerate analytical query processing. Earlier systems
such as CoGaDB [4] and GDB [13] use an operator-at-a-time model.
GPUDB [25] introduces optimizations to overlap computation with
data transfers. State-of-the-art GPU-accelerated systems follow a
vector-at-a-time execution model to fit intermediate results in GPU
memory. Lastly, academic [5, 6, 22, 9] and commercial [18] sys-
tems extend vector-at-a-time execution with pipelining and query
compilation to eliminate the cost of materializing intermediate re-
sults altogether.

Parallel query execution. Modern servers are typically multi-
socket multi-core machines and in many cases, they contain mul-
tiple accelerators, such as GPUs. To fully take advantage of the
underlying hardware, DBMS need to exploit the available paral-
lelism, both within and beyond device boundaries. In the past,
two conventional approaches have enabled the parallel execution of
analytical query plans in multi-CPU environments, Exchange [11]
and morsel-driven parallelism [16]. The former encapsulates par-
allelism and parallelizes standard single-threaded operator imple-
mentations, whereas the latter exposes the operators to parallelism
and the corresponding shared data structures. However, neither of
them supports the parallel execution of queries over heterogeneous
hardware because of the lack of system-wide cache-coherence. Pirk
et al. [23] propose a declarative algebra that can be compiled to ef-
ficient parallel code in either CPU or GPU but does not provide
support for concurrent CPU-GPU execution. Chrysogelos et al. [9]



propose HetExchange, a framework that encapsulates the hetero-
geneous hardware parallelism and allows parallel execution across
both CPUs and GPUs concurrently. We adopt the design of HetEx-
change and extend it with data transfer optimizations to build the
analytical engine of our H2TAP system.

Late materialization. Columnar DBMS are the mainstream op-
tion for analytical workloads because they allow queries to access
only the required columns. Columnar engines reconstruct inter-
mediate tuples at a later point during option. Tuple reconstruction
is either eager, with early materialization, or lazy, with late ma-
terialization [1]. Despite the performance penalty for reaccessing
columns, late materialization reduces memory accesses for selec-
tive queries by deferring the reconstruction of tuples later in the
plan. Also, it enables several optimizations such as operations on
compressed data and invisible joins [2]. For the case of GPU query
processing, data transfers from the main memory, especially over
the PCle bus, incur a high overhead. To alleviate the bottleneck for
highly selective queries and to reduce the data movement, Yuan et
al. [25, 4] studied the effects of different transfer optimizations on
query performance such as compression, invisible joins and trans-
fer overlapping [25]. In this work, we provide a hybrid materializa-
tion strategy, show how the different access methods can be used
to reduce the volume of transferred data and examine the effect on
performance for different interconnect technologies.

Scan Sharing. Traditional DBMS are disk-based and the cost of
query processing on them heavily depends on I/O. To improve over-
all performance, several commercial systems, such as Microsoft
SQL Server, RedBrick and Teradata, support optimizations that
share disk scans across different queries, consequently reducing
the number of I/O requests and amortizing the respective cost. In
[12], Harizopoulos et al. define the technique as scan sharing. Fur-
thermore, in [26], Zukowski et al. propose the Cooperative Scans
framework that optimizes the scheduling of I/O requests for concur-
rent scans to maximize bandwidth sharing without latency penal-
ties. We observe that data transfers from the main memory to the
GPU are the counterpart of I/O accesses and we adapt the idea of
shared scans in this context.

HTAP. Hybrid Transactional and Analytical Processing (HTAP)
systems focus on efficiently combining transactional and analyti-
cal workloads to provide timeliness in terms of both response time
and data freshness. Commercial systems such as DB2, Hekaton,
SAP HANA and Oracle DB fall to this category. The HTAP design
space forms a spectrum, with the two extremes targetting freshness
and isolation, respectively. Freshness-oriented systems, such as the
original HTAP of Hyper [14], co-locate the engines and use an ef-
ficient snapshotting mechanism to mitigate interference. For the
case of Hyper, the snapshotting mechanism is a hardware-assisted
copy-on-write (COW). Caldera [3] uses COW to perform HTAP
over heterogeneous hardware. Isolation-oriented systems such as
BatchDB[17] run the transactional and the analytical engines in dif-
ferent nodes of the system to minimize interference. In BatchDB,
the analytical engine applies a delta log, produced by the transac-
tional engine, to update its storage. The frequency of updates de-
fines an epoch, during which a batch of queries shares the same ver-
sion of the storage. Therefore, the system design sacrifices fresh-
ness in favor of isolation.

9. CONCLUSION

In this paper, we evaluate lazy data loading and data transfer
sharing techniques in the view of hardware and workload evolution.
‘We describe each one of the approaches, with data transfer sharing
being the first time to be used for GPUs in the literature, to the best
of our knowledge. Moreover, we provide a non-intrusive HTAP

system design which does not restrict the analytical engine to eager
or lazy data loading, through a two-tiered, multi-versioned storage.
The hardware configuration that we use represents three steps in
the evolution of GPU hardware: we start from a slow GPU over
a slow interconnect, then we move to a faster GPU over the same
interconnect and we end up with the same faster GPU over a faster
interconnect. Our analysis reveals that the interconnect remains a
bottleneck in several OLAP workloads, and that we can increase its
effective bandwidth by applying lazy data loading and data transfer
sharing. Finally, we suggest some rules of thumb for tuning GPU-
accelerated data management systems, based on the workload.
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