
It Takes Two: Instrumenting the Interaction between
In-Memory Databases and Solid-State Drives

Alberto Lerner1 Jaewook Kwak2 Sangjin Lee2 Kibin Park2

Yong Ho Song2,3 Philippe Cudré-Mauroux1

1 XI Lab – University of Fribourg, Switzerland
2 ENC Lab – Hanyang University, Korea

3 Samsung Electronics, Korea

ABSTRACT
In-memory databases rely on non-volatile storage devices for
services such as durability and recovery. SSDs can provide
the high-performance these services require. When perfor-
mance problems occur, however, SSDs offer no mechanism
to help analyze them. The only alternative is to instrument
the database side of the problem and conjecture about what
might be the cause of performance degradation.

In this paper, we show that SSDs can in fact produce per-
formance profiling information. We extend the Cosmos+
OpenSSD, a full-fledged SSD with open-source firmware, to
track performance information on a per-IO-request granular-
ity. We use such information, for instance, to analyze the in-
teraction between a modern transaction log and checkpoint
workloads, offering explanations to problems that were quite
obscure before. We believe that an SSD providing such level
of instrumentation is an essential tool towards co-designing
a new class of high-performance storage/database stack.

1. INTRODUCTION
In-memory databases have a simple interface to storage.

They use a transaction log for durability and checkpoints
for fast recovery. The transaction log, in particular, is the
central bottleneck of an in-memory database [24]. Transac-
tions need to wait while their changes become durable. To
reduce the wait, some recent systems adopt parallel logging
by allowing multiple threads to issue log writes simultane-
ously [29, 40]. This increases the workload’s parallelism, giv-
ing more opportunities for an SSD to deliver performance.
Checkpoints are also critical; they are needed to accelerate
the time it takes to reboot a crashed system. Recent check-
pointing techniques not only adopt increased parallelism,
but also increase the size of the writes request they use,
compared to transaction logs [29, 30, 40].

These changes may have brought performance improve-
ments but the intrinsic reasons why are unclear. Current

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2020.
10th Annual Conference on Innovative Data Systems Research (CIDR ‘20)
January 12-15, 2020, Amsterdam, Netherlands.

SSDs do not provide any visibility into their internal pro-
cesses that could explain why the tradeoffs were beneficial.
In the absence of concrete information, system designers use
intuition and empiricism instead. For instance, it is under-
stood that the two in-memory workloads above – different
block sizes and parallelism degrees – interfere with one an-
other. The interference causes the large-block workload to
get better response times than the small-block one [34]. This
may explain why transaction log writes can become very er-
ratic when a checkpoint workload against the same SSD is
not carefully throttled [40]. Interferences also prevent the
device from achieving full bandwidth when servicing both
workloads, even if it does so when servicing either of them
separately. We can only speculate about the root causes of
such performance losses.

Many works try to address this lack of transparency. Some
works propose ways of benchmarking SSDs [6, 8, 9, 35], oth-
ers try to extract models for their behavior [11, 14, 19, 20,
33, 38], yet others offer sophisticated SSD simulators [12,
23, 34, 39, 42]. There are even works that try to reverse-
engineer an actual SSD controller in the search for perfor-
mance clues [41]. To the best of our knowledge, no SSD
exists that exposes performance profiling information.

In this paper, we present an instrumentation approach
that can be used to clarify many issues that occur when try-
ing to understand and optimize IO workloads. Our approach
is based on three mechanisms. First, we track each request
inside the SSD and annotate it with timestamps that reflect
its progress. Second, we keep counters in strategic places
on the device that capture how available its resources are
at a given point in time. Third, we keep records holding
the information above in a designated area on the SSD and
provide user commands to control how the area is used and
when to transfer that information for analysis.

We implement our approach on the Cosmos+ OpenSSD [22],
a full-fledged device whose controller is built on a System-
on-a-Chip (SoC) FPGA. The Cosmos+’s firmware, Host-
Interface Controller (HIC), and storage controller are open-
source. We make all our firmware changes available as well1.

These mechanisms allow us to study workloads that are
commonly generated by in-memory databases. We found
that these workloads, when applied against SSDs, introduce
several acute problems, including: (a) some Flash Transla-
tion Layer (FTL) mechanisms are not efficient – for instance

1https://github.com/eXascaleInfolab/2020 cidr
instrumented ssd

… …

…

Channel

Device

Workload

Outstanding
Write Requests

Blocks/
Pages

Prior Requests
Completion

✓

✓

Request/
Pages

…

Package

“Way”

…

…

…

Figure 1: The device decides to which physical location to
send each page in a request.

Host Command

Slice Command

Host DMA Operation

Flash DMA Operation

Flash Operation

Main Memory

(Host System)

Flash Device

Data Buffer

Completions

Host DMA

Operation Queue

Control Word

Queue

Data
Path

Data
Path

Operation
Sets

Figure 2: A command (e.g., a write request) may generate
a number of operations and data transfers.

applying garbage collection and wear leveling to a circular
file such as the transaction log may be unnecessary; (b) the
log and the checkpoint interfere with one another – but in
ways that were impossible to understand in a closed-source
device.

Instrumenting the SSD allows us to find root causes for
each of those problems. Explaining the problems is only the
initial benefit of having an instrumented SSD. Again, to the
best of our knowledge, ours is the first work addressing the
performance profiling issue by having the device itself record
progress information on a per-IO granularity.

The rest of this paper is organized as follows. We briefly
introduce SSD architectures in Section 2 and then discuss
each of our contributions, which are as follows:
• We propose a systematic approach to place meters and

counters inside an SSD (Section 3);
• We discuss techniques to collect and expose the data the

instrumentation produces with little impact on perfor-
mance (Section 4);

• We show how the data can help in the performance anal-
ysis of different in-memory workloads (Section 5);

• We discuss a research agenda motivated by the insights
we gained from the instrumentation data (Section 6).

We conclude the paper in Section 7.

2. BACKGROUND
The first aspect to note about an SSD is that it is, by

design, a parallel device [2]. The main components of SSDs,
NAND-flash packages (chips), are parallel themselves. Each
package combines several dies, each of which containing one
or more planes. To simplify, we call a die-plan a way. A
way has access to a disjoint set of blocks of pages and can
independently service one page or block operation at a time.

There is latency in setting up an operation. To hide such
latency, the device tries to issue several operations in paral-
lel – in a carefully interleaved fashion – each to a different
way. While one operation is being set up, the previous may
have started executing, and the one before that could be
ready to produce results. If carefully scheduled, a series of
operations can produce a continuous stream of results. We
call a channel the architectural feature that groups ways so
they can be scheduled as we describe above. A device can
contain any number of channels that can themselves work in
parallel, as Figure 1 shows. Request interleaving and chan-
nel parallelism are the reasons why SSDs can deliver on the

order of GB’s per second performance while packages them-
selves offer only tens of MB’s per second.

For the same reasons, SSDs are capable of servicing several
requests at a time. Figure 1 also shows that an application
may issue new requests without waiting for the result of
the previous one. The maximum number of outstanding
requests in a workload is referred to as its queue depth.

Managing such parallelism entails quite a bit of bookkeep-
ing [26]. An SSD breaks down host commands (e.g., write
requests) in page-sized command units, called slices. In turn,
each such command generates an operation set. This latter
takes care of the transfer of the request data to a staging
buffer area in the device, and subsequently of moving the
data again, this time into the area where it will reside. The
data transfer tasks are queued for execution in different ar-
eas of the device. The device needs to keep track of all
the command’s components before announcing its comple-
tion. Figure 2 shows the workflow of how an SSD may break
down a command and handle the resulting operations.

A critical process inside SSDs is called garbage collection.
This process entails keeping track of blocks with invalid (i.e.,
no longer used) pages. When an empty block is needed, the
garbage collector selects the block with the fewer valid en-
tries, moves them out, and erases the block. This process is
necessary because NAND-flash can only erase entire blocks
at a time. We will see in Section 5 how garbage collection
can be responsible for introducing very high latency varia-
tions to write requests.

It takes nothing short than a computer to perform what
we describe above. A modern SSD is indeed a complete,
autonomous embedded system – so far one without any per-
formance introspection means.

3. INSTRUMENTING REQUESTS
To understand the performance profile of an SSD we look

at the path a request takes inside the device, which is long.
Figure 3 depicts such a path in more detail. We altered the
way the Cosmos+ works so that it annotates, for each IO
request, the path it takes inside the device and the time it
takes to do so. We call the resulting device the Instrumented
Cosmos+.

A write request goes through the following steps: (1) the
IO request (host command) is issued by the application and
eventually reaches the device driver; (2) the NVMe Protocol
Controller issues a DMA operation to bring the host com-

Application/OS

NVMe Device Driver Main Memory

PCIe Controller

Host DMA Engine

NVMe
Manager

Flash Translation Layer Low Level Scheduler

Data Buffer

Command
Filters

Flash Driver

ECC Engine

Data Scrambler

Flash Devices

Slice Command Queue Operation Queue Operation Queue

Firmware

Host DMA
Operation Queue

Host
Interface

Controller

Host
Command Queue

NVMe Protocol Controller

Completion QueueSubmisson Queue

Command Dispatcher

Control Word Queue

Storage
Controller

Flash Channel Controller

Data PathControl Path

Host

System

Cosmos+

OpenSSD

11

!

"

#
$ %

& '

(

)

10

10

Data Buffer

Management

Address
Translation

Garbage
Collection

Dependency
Check

!"

!#

!$

!%

!&

!'

!(

Figure 3: Internal architecture of the Cosmos+ along with the timestamping and counter stations that we added on its
instrumented version. The solid arrows represent the submission steps while the dashed arrows show the completion ones.
The arrows in red represent timestamping steps. The squares in green are counter stations. We consider the example of a
buffered write. Buffering a write means that the page being written will be held at the device’s data buffer instead of being
written to flash; what is written to flash is the contents of the buffer page that is displaced to make space for the new request.
We chose this mode because this is the most commonly implemented write mode in SSDs. Our approach applies just as well
to other write modes.

mand into the device (as the PCIe controller’s role is sim-
ply to packetize / depacketize messages between the host
system and the NVMe Protocol Controller); (3) the FTL
transforms the host command into slice commands (as the
NVMe manager simply provides the command fetch path to
the FTL); (4) the FTL determines the physical page to use
and whether garbage collection is needed to make a page
available (this is a complex step, which we break down in
the yellow box on the left); (5) the FTL transforms the slice
command into an operation set; (6) the Low-Level Sched-
uler decides which channel/way should perform the request
and transfers the operation accordingly; (7) assuming the
request is a write, the Storage Controller issues a DMA op-
eration to bring the page from the buffer (which was previ-
ously brought from the host); (8) the Command Dispatcher
notifies the scheduler of the completion of the flash opera-
tion; (9) the Low-Level Scheduler issues a DMA operation
to bring the page corresponding to the slice; (10) the Host
DMA Engine notifies the scheduler and NVMe controller of
the DMA completion; and (11) when all steps of the com-
mand are done, the NVMe Protocol Controller notifies the
NVMe driver of the write completion.

In the Instrumented Cosmos+, we record a timestamp
every time a request goes through one of the steps between
(3) and (11). The timestamps have nanosecond precision.
This allows us to precisely determine how long is the wait
on many of the queues in the system.

Besides the time the request takes, it is also useful to con-
sider whether certain areas in the device are busy or not at
a particular time. The Instrumented Cosmos+ also main-
tains a number of internal counters for that reason. The
counters are as follows: (A) number of completed IOPS; (B)
buffer hit count; (C) read-modify-write request count; (D)
block erase count; (E) several channel utilization metrics;
(F) intra-device throughput; and (G) host-device through-
put. These counters are incremented as a side-effect of ser-
vicing requests. We describe next how this data is generated,
where it is stored, and how it is accessed.

4. INSTRUMENTATION DATA
The Instrumented Cosmos+ collects performance data in

the form of records. We call these records performance event
records (PEVs). There are different PEV types for different
kinds of performance events as Table 1 shows. For instance,
the execution of an IO request will generate a number of
IO_TIMESTAMP records, one for each step we detailed in Fig-
ure 3. As another example, our instrumentation generates
one PERFORMANCE_INDEX record per second, with the values
of the several performance counters placed on the device.

We store the PEVs in an Instrumentation Cache Area in
the device’s Data Buffer (DRAM). This cache is filled in
a circular fashion and is sized to hold at least 10 seconds
worth of records. We found that this window of time rep-
resented a good compromise. If we used a bigger area, we

PEV Record Type Freq. Record Attributes

IO TIMESTAMP ts
location in the device, originating NVMe command, target logical
address, channel/way (if assigned), and timestamp

GC TIMESTAMP ts
FTL task, originating NVMe command, target logical address,
channel/way, and timestamp

PERFORMANCE INDEX 1 sec contents of the performance counters at the device level and timestamp
PERFORMANCE INDEX PER CH 1 sec contents of the performance counters at the channel level and timestamp

Table 1: Performance event record types and their descriptions.

would take away too much from the Data Buffer, on which
the device depends for performance. If we used a smaller
area, we would not have information enough to capture how
a problem starts, escalates, and propagates through the de-
vice.

We added a few device-specific NVMe commands to ma-
nipulate the instrumentation cache:
• Transfer the instrumentation cache contents to the host.

This command copies all the PEVs out of the device at
once for analysis. We assume that the device is in a quies-
cent mode, so that the transfer does not disturb an active
workload.

• Set a freezing trigger. This command forces the collec-
tion of instrumentation data to stop if a certain condition
is met. By specifying a stopping criterion, we prevent
the data on the instrumentation cache to be overrun. It
is useful in scenarios where we would like to experiment
for more than 10 seconds and are not sure which, if any,
performance problem might occur.
The instrumentation mechanisms we introduce required

adding approximately 1500 lines of code in the Cosmos+
OpenSSD’s firmware. These changes covered the creation of
the instrumentation cache, the creation of the instrumenta-
tion commands, and the generation of PEV records.

We were particularly careful to minimize the performance
impact of the instrumentation features. The main concern
was avoiding memory contention on the data buffer, as we
can generate peaks of millions of PEVs per second to that
area. This concern proved to be valid. Currently, we are
able to collect instrumentation data using only half of the
8 available channels on the Cosmos+ at once. This means
that the device runs at half its potential speed – but turning
the instrumentation on or off does not alter the performance.
We discuss several techniques we are attempting to overcome
this limitation in Section 6.

5. EXPERIMENTS
Our main (initial) goal is to characterize the sort of perfor-

mance problems that occur on different kinds of in-memory
databases workloads. We use the Instrumented Cosmos+
to record the workloads. We then extract and analyze the
PEV data to find and explain performance issues.

5.1 Setup
The scenarios we pick appear in Table 2. Our choices

reflect the evolution of in-memory DBs towards using work-
loads with increasing queue depths. This is arguably a con-
sequence of designing transaction logs and checkpoints that
work better in machines with higher degrees of parallelism.

The scenarios we adopt are as follows. In the classic
method, we use a transaction logging mechanism such as
ARIES [25], which allows for only one outstanding IO at a
time. A number of techniques exist for scaling ARIES-style

Method
Queue
Depth

Block
Size

(1-1) Classic
ARIES WAL 1 16K
IPP 1 128K

(1-N) CALC
ARIES WAL 1 16K
Parallel CP 8 128K

(M-N) SILO/CPR
Parallel Log 64 16K
Parallel CP 8 128K

Table 2: Different approaches to implement durability and
recovery, along with the workload characteristics we used.

logging [17]. We pair this workload with that of a check-
point that causes minimal interruption to logging such as
the Iterative Ping-Pong (IPP) method from Cao et al. [7].
Because both these workloads have a queue depth of 1, we
call the method (1-1). In the CALC method, we reproduce
the workload introduced by Ren et al. [30]. The logging in
this workload presents, like ARIES, a queue depth 1. The
checkpointing, however, has a queue depth of 8. This allows
to simulate a checkpoint on a multi-core machine typically
used by in-memory databases. We call this method (1-N).
In the Silo/CPR method, we reproduce workloads like the
ones described in Zheng et al. [40] and Prasad et al. [29].
Both workloads have a larger queue depth, 64 for the trans-
action log and 8 for the checkpoint, which is why we refer
to this method as (M-N). We also ran (1-0), (M-0), (0-

1), and (0-N) workloads, i.e., running workloads that only
write to the transaction log with 1 and 64 queue depths, and
similarly for the checkpoint workload, with 1 and 8 queue
depths. These latter workloads serve as baselines.

The workloads were synthetically generated using iome-
ter2, an IO generation tool. We execute each workload
against a raw partition on the device. The advantage of
using a synthetic workload is that it only contains patterns
that we can control. This allows us to learn how to use the
data the Instrumented Cosmos+ generates.

5.2 Time Variance Analysis
The data generated by the Instrumented Cosmos+ exhibit

a large variance in IO request response times. We show in
Figure 4 a representative sample of write operations that
presented delays. We use as a baseline the time it takes to
perform the core of the operation: the NAND-Flash program
(write). The top-most write in the figure comes from a (1-0)

workload and shows that a full write command can, when
undisturbed, be dominated by the flash write time. The
other writes in the figure show that it is not always the
case. When the time deviates from the baseline, we mark
the command step to blame in red.

The surprise here is to observe that garbage collection
is not always the culprit. The second and third writes in

2http://www.iometer.org

Figure 4 exhibit longer times than those from the baseline.
These flash writes could not be serviced immediately by their
designated ways. We note that the third write in Figure 4
also experienced a wait before even designating a way for the
write. When the device is busy, the firmware may not tend
to the FTL and the Low-Level Scheduler as fast as requests
arrive.

Our experiments also show that garbage collection delays
come in two varieties. We present the breakdown of each in
Figure 5. In the first case, the block selected to be erased
no longer contains valid pages. The time to garbage collect
the block is close to the baseline block erase time. In the
other case, however, the valid pages need to be copied back
out of the block before it can be erased. As Figure 5 shows,
this slows down the garbage collection proportionally to the
number of valid pages in the block.

Garbage collection could have been faster in that case.
Both the transaction log and the checkpoints are circular
structures, although each with a different time to complete
a cycle. Mixing pages with different lifetimes within the
same block can cause longer garbage collection times [18].
In our experiments this was one of the causes of interference.

5.3 Interference Analysis
Each workload we tested utilizes the device’s resources

in a different way. The (1-1) workload has low resource
consumption. The requests in this workload often proceed
free of interference. In contrast, the requests in the (M-N)

workload go through markedly more queuing waits, as shown
in Figure 6. We normalize the response times according to
the baseline flash write, with 1±0.3 being the ideal range.
For now, we focus on the IO requests that completed within
1.5× the baseline.

Many more requests in the (1-1) workload finish within
that time than in the (M-N) one. That is what the dominant
peak in the chart represents. We also see two smaller peaks
surrounding it, due to small variances in the flash write
times. Curiously, the first two peaks consist of only transac-
tion log writes. The third peak mixes those and checkpoint
writes – which are much larger writes than the former.

The instrumentation data can explain why such different
IO requests take the same time. During our tests, we con-
figured the Cosmos+ to have 4 channels, each with 8 ways.
This setup supports 32 flash operations in parallel, provided
they get properly scheduled. We look into two random IO
requests on the third peak, one against the transaction log
and one against the checkpoint. Figure 7 shows how the
flash writes of each of the IO requests were scheduled. The
log write was serviced with just one flash write, to channel
2/way 3. The checkpoint write was distributed across the
four channels, using two ways in each. At the time, there
were resources enough to perform all these flash writes in
parallel. Both the IO requests took approximately the same
time.

The question arises as to how interference among oper-
ations occurs. We selected a checkpoint write that took
around twice the time as the perfectly scheduled one men-
tioned above. Figure 8 shows that 1 out of its 8 flash writes
could not be scheduled immediately. Eventually, that write
went to channel 3/way 6. The instrumentation the device
collects allows us to pinpoint that a flash erase interfered
with that operation. The erase was due to a log write that
required garbage collection. Without the instrumentation

!"#$%&'(()*+%%%%%%%,%-'

./0)12%345-$%%%%%%%%%%%%%6%-'%7

.8'1-%9:#;%9<%%%%%%=%-'

!"#$%&'(()*+%%%%%%%,%-'

./0)12%345-$%%%%%%%%%%%%%6%-'%7

.8'1-%9:#;%9<%%%%%%=%-'

!"#$%&'(()*+%%%%%%%%,%-'

./0)12%345-$%%%%%%%%%%%%%%6%-'%7

.8'1-%9:#;%9<%%%%%%%=%-'

.>)4?)@$%A'00$&-5'*%B%-'%C

1.03x

1.53x

14.12x

!"#$%&'(()*+%%%%%%%%,%-'

./0)12%345-$%%%%%%%%%%%%%%6%-'%7

.8'1-%9:#;%9<%%%%%%%=%-'

7.67x

!"#$%&'(()*+%%%%%%%%,%-'

./0)12%345-$%%%%%%%%%%%%%%6%-'%7

.8'1-%9:#;%9<%%%%%%%=%-'

9.64x

.>)4?)@$%A'00$&-5'*%B%-'%C

D)1$05*$%/0)12

345-$%E5($

+$-)50%)4$)1

FF

FG

FF

FG

FF

FG

FF

FG

FF

FG

Figure 4: A sample of log writes’ latencies across the work-
loads, and the reason they deviate from the baseline (in red)
and by how much. Garbage collection is the root cause of
delays for the last two requests only. The details of the
steps in those two cases (detail areas) are given in Figure 5.

!"#$"%&'()**&+,-).'/',)'0
12"*-3'4"%&'()56

12"*-3'4"%&'()56

12"*-3'4"%&'()56

12"*-3'4"%&'()56

12"*-3'4"%&'()56

17879':#";&

!"#$"%&'()**&+,-).'/',)'0
17879':#";&

<";&*-.&'=*";>

:#";&'?-@&

1.69x

1.10x

Figure 5: The breakdown of garbage collecting a block in
the two cases indicated in Figure 4. The baseline is the
time it takes to erase a block. Note that in the second case
some valid pages were relocated prior to erasing the block.

 0

 20

 40

 60

 80

 100

 120

 0.6 0.8 1 1.2 1.4

main peak

secondary peaks

#
 o

f
IO

 r
e
q
u
e
s
t

(x
1
0
0
0
)

normalized response time

1-1
1-N
M-N

Figure 6: Response time distribution for requests from the
three workloads. A response time of 1±0.3 means the re-
quest finished without interference of any sort.

data, we could not separate operations that are waiting for
available slots from those waiting on garbage collection.

Another relevant aspect of interference within the work-
loads appears when we analyze their tail behavior. Figure 9
shows the cumulative distribution function for each of the
workloads. The (1-1) workload may have a large number
of fast IOs since that workload does not fully utilize the de-
vice’s resources. It also has the largest response time tail
among all the workloads. The instrumentation data we col-
lect allows us to infer the reasons for this behavior. Figure 10
shows the distribution of valid copies in each workload, that
is, the number of records relocated due to garbage collec-
tion. We can see that the (1-1) workload presented a larger
number of valid copies in general.

We note that our goal here is not to determine which work-
load is best, mainly because we study workload simulations.
The objective is to find how instrumentation data can give
a database or FTL designer better visibility into when and
how the loss of performance occurs in the device.

5.4 Instrumentation Data Size
Each workload we study generates instrumentation data

at a different pace. The more parallel the workload, the
faster its request stream. For this reason, the (M-N) work-
load can circle the instrumentation cache far faster than the
(1-1) can. Figure 11 illustrates the time windows for which
the device can keep instrumentation. The charts show the
logical block addresses to which a workload writes as time
progresses. We can observe that the device separated the
log (purple) and the checkpoint (green) in disjoint areas.
We can also see that the checkpoints were being rewritten
from scratch at each time, whereas the log writes were circu-
lar. The device can store from 6 minutes down to 18 seconds
worth of instrumentation data, depending on the workload.

One question was whether there was enough information
in case of fast workloads. Figure 11 shows the device can fit
almost two entire checkpoint cycles for the (M-N) case. That
proved enough to perform interference analysis, as discussed
in Section 5.3.

6. RESEARCH AGENDA
We believe that the Instrumented Cosmos+ is a powerful

tool to design and evaluate in-memory database systems.
We continue to improve its instrumentation options. Also,
at least two other possibilities arise from this effort. First,
at times we wished the device not only produced perfor-
mance data but also processed it internally – and reacted
based upon its findings. Second, as the device acquires data
processing capabilities, it could offer those to the database
system running atop of it. We describe these fronts next.

6.1 Improved Instrumentation
The number and layouts of PEV records presented in Sec-

tion 3 continues to evolve. On several occasions, we missed
additional information to characterize a problem scenario
further. For instance, when garbage collection delays a write
because of the copying of valid pages, we may want more in-
formation about those pages: when were they written, to
which workload they belong, etc. Adding simple details to
a PEV – enough to identify the logical blocks address of the
page being copied back during post-processing – would help.

Another area of investigation is triggering, the ability to
stop data collection and to freeze the instrumentation data

!"#$$%&'() !"#$$%&'(* !"#$$%&'(+ !"#$$%&'(,

&-.'/0

!"%!12-3$4'/0

5
#
6'
(
)

5
#
6'
(
7

Figure 7: Distribution of flash writes for a log and a check-
point IO requests. Both can have the same duration if all
the flash writes in each request are scheduled in parallel.

!"#$$%&'() !"#$$%&'(* !"#$$%&'(+ !"#$$%&'(,

!"%!-./0$1'23

4
#
5'
(
)

4
#
5'
(
6

.%$70$8'9&#:"';%<=%:1

/$8/0$8'%;#:%

Figure 8: A delay in a checkpoint IO request. One flash
write cannot be scheduled because of an ongoing garbage
collection, triggered by a different request.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40 45

p
ro

b
a
b
il
it

y

normalized response time

1-1
1-N
M-N

Figure 9: Cumulative distribution function for the response
times in the three workloads.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45

#
 o

f
re

q
u
e
s
t

valid copies prior to an erase

1-1
1-N

Figure 10: Distribution of IO request per number of valid
copies they triggered. There were no valid copies for the
(M-N) workload during the instrumentation period.

when a problematic scenario arises. We initially thought
that we could build triggers based on threshold durations:
if a request took longer than usual in a given step, that was a
sign of a problem. We discovered that large variations in the
times are normal. We are currently focusing our attention on
contextual triggering instead. We consider both the duration
taken on a step and the instantaneous activity level that the
counters show.

We would also like to allow instrumenting the Cosmos+
in an 8-channel configuration. Currently, this causes a 40%
performance degradation due to the DRAM contention cre-
ated by the instrumentation cache. We are looking into two

Figure 11: “Tip” of the log and checkpoint writing timelines (purple and green lines, respectively) for the different workloads.
The instrumentation buffer fills faster with more parallel workloads.

options. The first one would be to instrument only a sample
of the workloads. This option is useful whenever it suffices
to get an approximate view of the performance issues arising
in a given workload. The second option is to selectively turn
some instrumentation points off. This option can help when
studying problems in specific areas of the device.

6.2 Real-Time Signal Generation
When post-processing the instrumentation data, at times

we wished the device took different scheduling decisions. For
instance, if there is a queue up of requests, e.g., due to
garbage collection activities, how should the device prior-
itize the pending requests? Should transaction log writes
always take priority over checkpoint writes? Usually, yes –
but not always. The optimal decision depends on the re-
cent write rate for each of the streams. It also depends on
recovery-time thresholds in the database and how close or
not the checkpoint can meet them at a given moment. Fair
scheduling schemes, e.g., as Tavakkol et al. [36] suggest, and
multi-streams schemes, e.g., as Kang et al. [18] propose, do
not take such contextual information into consideration.

One can argue that the database can decide on how to
throttle the streams without the device’s help. The database
knows about recovery thresholds and it can measure the re-
sponse times for log and checkpoint writes as they complete.
The problems in such scheduling are at least two fold. First,
the database cannot tell why a given write took longer than
usual. It has no information on the source of interference
and therefore may treat all slow writes as equally problem-
atic. Second, the database needs to wait for writes to finish
to make future decisions. This may compromise its ability to
produce the maximum queue depth possible, which is essen-
tial for heavy parallel SSDs to maintain peak performance.

To support this kind of collaborative scheduling we are
building a few new capabilities into the device. The FTL can
now take hints on how to reorder pending operations. These
hints can come from either the database or from within the
device. Internal hints are obtained by processing the PEV
records inside the device as they are generated. Such an
ability to process data inside the device has been explored
by other works [10, 16, 21]. The peculiarity here is that the
device is processing workload metadata – the generation of
which the device controls – rather than the workload itself.

6.3 DB-SSD Co-design
The exciting possibility about the Instrumented Cosmos+

is that it can more actively participate in some of database’s
tasks. This is not a new idea [31] and has evolved into

a discipline called Near-Data Processing (NDP) [3]. Only
recently has there been a class of storage devices powerful
enough to take extra tasks [15, 32, 37]. The Cosmos+ has
such capacity left, and we are actively looking into ways to
support such database-device integration.

The first step to NDP is to have FTLs cede some control of
its allocation decisions to applications. There is an ongoing
effort to allow this via an OpenChannel SSDs Interface [4].
This interface allows an application to be fully responsible
for managing flash memory, effectively taking over the role
of an FTL, as suggested by Ouyang et al. [27]. There is
a growing body of work, however, that strikes a balance
between a fully closed and a fully open FTL. Bonnet et
al. [5] argue that SSDs can provide certain guarantees atop
which to build database services. Picolini at al. [28] discuss
a framework called Ox to customize FTLs functionalities.

The second step towards moving database tasks to a stor-
age device is to provide a programming model. One such
model was proposed in the past by Acharya et al. [1]. The
model was recently revisited by Gu et al. where the authors
encapsulate application tasks in SSDlets [13]. While that
abstraction is useful, the framework does not address how
SSDlets interact with the device’s state. It also implies that
all custom functionality is implemented via software. We are
investigating how to better integrate application and device
logic, and are also looking into allowing application logic to
be implemented by reconfigurable hardware (FPGAs).

7. CONCLUSION
In this paper, we introduced the Instrumented Cosmos+,

the first SSD to provide performance profiling capabilities.
We analyzed how the two components of in-memory data-
bases workloads interact: the transaction log and the check-
point. The instrumentation produced by the device allowed
us to explain performance problems that were completely
opaque before. While instrumenting a device is just a first
step toward better integrating in-memory databases and fast
storage devices, we are excited by the prospects that this
work creates. We continue to explore such an integration
as we believe it could be a key ingredient in a whole new
generation of database systems and SSDs.

ACKNOWLEDGMENT
This project has received funding from the European Re-

search Council (ERC) under the European Unions Horizon
2020 research and innovation programme (grant agreement
683253/GraphInt).

REFERENCES
[1] A. Acharya, M. Uysal, and J. Saltz. Active disks:

Programming model, algorithms and evaluation. ASPLOS
’98, 1998.

[2] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis,
M. Manasse, and R. Panigrahy. Design tradeoffs for ssd
performance. USENIX ’08.

[3] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno,
R. Murphy, R. Nair, and S. Swanson. Near-data processing:
Insights from a micro-46 workshop. IEEE Micro, 34(4),
2014.

[4] M. Bjørling, J. Gonzalez, and P. Bonnet. Lightnvm: The
linux open-channel SSD subsystem. FAST’17, 2017.

[5] P. Bonnet and L. Bouganim. Flash device support for
database management. CIDR ’11.

[6] L. Bouganim, B. Jónsson, and P. Bonnet. uflip:
Understanding flash io patterns. CIDR ’09.

[7] T. Cao, M. Salles, B. Sowell, Y. Yue, A. Demers, J. Gehrke,
and W. White. Fast checkpoint recovery algorithms for
frequently consistent applications. SIGMOD ’11.

[8] F. Chen, B. Hou, and R. Lee. Internal parallelism of flash
memory-based solid-state drives. Trans. Storage, 12(3),
2016.

[9] C. Dirik and B. Jacob. The performance of pc solid-state
disks (ssds) as a function of bandwidth, concurrency, device
architecture, and system organization. ISCA ’09.

[10] J. Do, Y.-S. Kee, J. M. Patel, C. Park, K. Park, and D. J.
DeWitt. Query processing on smart ssds: Opportunities
and challenges. SIGMOD ’13, 2013.

[11] A. Fevgas, L. Akritidis, P. Bozanis, and Y. Manolopoulos.
Indexing in flash storage devices: a survey on challenges,
current approaches, and future trends. The VLDB Journal,
Aug 2019.

[12] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim,
M. Kandemir, and M. Jung. Amber*: Enabling precise
full-system simulation with detailed modeling of all ssd
resources. MICRO’18, 2018.

[13] B. Gu, A. S. Yoon, D. Bae, I. Jo, J. Lee, J. Yoon, J. Kang,
M. Kwon, C. Yoon, S. Cho, J. Jeong, and D. Chang.
Biscuit: A framework for near-data processing of big data
workloads. ISCA’16, 2016.

[14] J. He, S. Kannan, A. Arpaci-Dusseau, and
R. Arpaci-Dusseau. The unwritten contract of solid state
drives. EuroSys ’17.

[15] Z. István, D. Sidler, and G. Alonso. Caribou: Intelligent
distributed storage. Proc. VLDB Endow., 10(11), 2017.

[16] I. Jo, D. Bae, A. Yoon, J. Kang, S. Cho, D. Lee, and
J. Jeong. Yoursql: A high-performance database system
leveraging in-storage computing. Proc. VLDB Endow.,
9(12), 2016.

[17] R. Johnson, I. Pandis, R. Stoica, M. Athanassoulis, and
A. Ailamaki. Aether: A scalable approach to logging. Proc.
VLDB Endow., 3(1-2), 2010.

[18] J. Kang, J. Hyun, H. Maeng, and S. Cho. The
multi-streamed solid-state drive. HotStorage ’14.

[19] J. Kim, P. Park, J. Ahn, J. Kim, J. Kim, and J. Kim.
Ssdcheck: Timely and accurate prediction of irregular
behaviors in black-box ssds. MICRO ’18.

[20] J. Kim, K. Salem, and K. Daudjee. Write amplification: An
analysis of in-memory database durability techniques.
IMDM ’15, 2015.

[21] S. Kim, H. Oh, C. Park, S. Cho, S. Lee, and B. Moon.
In-storage processing of database scans and joins.
Information Sciences, 327, 2016.

[22] J. Kwak, S. Lee, K. Park, J. Jeong, and Y. H. Song.
Cosmos+ openssd: Rapid prototype for flash storage

systems. ACM Transactions on Storage (to appear).
[23] H. Li, M. Hao, M. Tong, S. Sundararaman, M. Bjørling,

and H. Gunawi. The CASE of FEMU: Cheap, accurate,
scalable and extensible flash emulator. FAST ’18.

[24] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker.

Rethinking main memory oltp recovery. ICDE ’14.

[25] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and
P. Schwarz. Aries: a transaction recovery method
supporting fine-granularity locking and partial rollbacks
using write-ahead logging. ACM Transactions on Database
Systems (TODS), 17(1), 1992.

[26] E. H. Nam, B. S. J. Kim, H. Eom, and S. L. Min. Ozone
(o3): An out-of-order flash memory controller architecture.
IEEE Transactions on Computers, 60(5), 2011.

[27] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and
Y. Wang. Sdf: Software-defined flash for web-scale internet
storage systems. ASPLOS ’14.

[28] I. Picoli, P. Tözün, A. Wasowski, and P. Bonnet.
Programming storage controllers with ox. NVMW ’19,
2019.

[29] G. Prasaad, B. Chandramouli, and D. Kossmann.
Concurrent prefix recovery: Performing cpr on a database.
SIGMOD ’19.

[30] K. Ren, T. Diamond, D. Abadi, and A. Thomson.
Low-overhead asynchronous checkpointing in main-memory
database systems. SIGMOD ’16.

[31] E. Riedel, C. Faloutsos, G. A. Gibson, and D. Nagle. Active
disks for large-scale data processing. Computer, 34(6), 2001.

[32] S. Seshadri, M. Gahagan, S. Bhaskaran, T. Bunker, A. De,
Y. Jin, Y. Liu, and S. Swanson. Willow: A
user-programmable SSD. OSDI’14, 2014.

[33] R. Stoica and A. Ailamaki. Improving flash write
performance by using update frequency. Proc. VLDB
Endow., 6(9), 2013.

[34] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose,
and O. Mutlu. Mqsim: A framework for enabling realistic
studies of modern multi-queue SSD devices. FAST ’18.

[35] A. Tavakkol, P. Mehrvarzy, M. Arjomand, and
H. Sarbazi-Azad. Performance evaluation of dynamic page
allocation strategies in ssds. ACM Trans. Model. Perform.
Eval. Comput. Syst., 1(2), 2016.

[36] A. Tavakkol, M. Sadrosadati, S. Ghose, J. Kim, Y. Luo,
Y. Wang, N. Mansouri Ghiasi, L. Orosa, J. Gómez-Luna,
and O. Mutlu. Flin: Enabling fairness and enhancing
performance in modern nvme solid state drives. ISCA ’18.

[37] L. Woods, Z. István, and G. Alonso. Ibex: An intelligent
storage engine with support for advanced sql offloading.
Proc. VLDB Endow., 7(11), 2014.

[38] K. Wu, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
Towards an unwritten contract of intel optane SSD.
HotStorage ’19, 2019.

[39] J. Yoo, Y. Won, J. Hwang, S. Kang, J. Choil, S. Yoon, and
J. Cha. Vssim: Virtual machine based ssd simulator.
MSST’13, 2013.

[40] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases
with fast durability and recovery through multicore
parallelism. OSDI ’14.

[41] A. Zuck, P. Gühring, T. Zhang, D. Porter, and D. Tsafrir.
Why and how to increase ssd performance transparency.
HotOS ’19.

[42] L. Zuolo, C. Zambelli, R. Micheloni, M. Indaco, S. D.
Carlo, P. Prinetto, D. Bertozzi, and P. Olivo. Ssdexplorer:
A virtual platform for performance/reliability-oriented
fine-grained design space exploration of solid state drives.
IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 34(10), 2015.

