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ABSTRACT
The broadening adoption of machine learning in the enter-
prise is increasing the pressure for strict governance and
cost-effective performance, in particular for the common and
consequential steps of model storage and inference.

The RDBMS provides a natural starting point, given its
mature infrastructure for fast data access and processing,
along with support for enterprise features, such as encryp-
tion, auditing, and high-availability. To take advantage of
all of the above, we need to address a key concern: Can
in-RDBMS scoring of ML models match (outperform?) the
performance of dedicated frameworks?

We answer the above positively by building Raven, a sys-
tem that leverages native integration of ML runtimes (such
as ONNX Runtime) deep within SQL Server and a unified
intermediate representation (IR) to enable advanced cross-
optimizations between ML and database operators. In this
optimization space, we discover the most exciting research
opportunities that combine DB/compiler/ML thinking. Our
initial evaluation on real data demonstrates performance
gains of up to 5.5× from the native integration of ML in
SQL Server and up to 24× from cross-optimizations. An
early preview of the ONNX Runtime integration is currently
available with Azure’s SQL Database Edge.

1. INTRODUCTION
Advances in machine learning (ML), first proven in high-

value web applications, are fueling a trend towards digitally
transforming almost every industry—in large part due to the
excitement around using ML to complement traditional data
analysis, discover new insights, and amplify weak signals.

However, safely and effectively adopting ML in enterprise
settings comes with many new challenges across model train-
ing, tracking, deployment, and inference. We consider all
those aspects of what we term Enterprise Grade Machine
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Learning as part of our broader research agenda [3], and
focus this paper on model inference in particular.

As more and more data is analyzed and monetized, con-
cerns about securing sensitive data and risks to individual
privacy have been growing considerably [15]—this extends
to ML models. In fact, based on interactions with enter-
prise customers, we expect that storage and inference of ML
models will be subject to the same scrutiny and performance
requirements of sensitive/mission-critical operational data.

When it comes to data, database management systems
(DBMSs) have been the trusted repositories for the enter-
prise. They provide fast data access and processing, as well
as a mature infrastructure that delivers features such as
rich connectivity, transactions, versioning, security, audit-
ing, high-availability, and application/tool integration. We
thus propose to store and serve ML models from within the
DBMS in order to extend the above described guarantees
to models as well as data. However, given the current rudi-
mentary support for ML in DBMSs, a key concern is to do
so with no detriment to inference performance. This leads
us to the key question we investigate in this paper: Can
in-RDBMS scoring of ML models match (outperform?) the
performance of dedicated frameworks?

In parallel, an interesting trend has emerged with respect
to inference of ML models. Most widely studied or promis-
ing model families can be uniformly represented [25], and
given a particular model, we can express how to score it on
a given input using an appropriate algebra [30, 43]. These
algebraic structures can then be executed on different en-
vironments and hardware [1, 11, 31, 36]. Among these ef-
forts, ONNX is worth mentioning as a recent attempt for an
open format to standardize ML model representation in an
engine-agnostic manner, similar to the role of relational alge-
bra in RDBMSs. Taken together, these observations suggest
that we need to consider how to incorporate ML scoring as a
foundational extension of relational algebra and an integral
part of SQL query optimizers and runtimes.

Specifically, we are building Raven, a system that supports
in-DB model inference and leverages sophisticated cross-
optimizations and tight integration of ML runtimes in the
DB to outperform common practical solutions by up to 24×.

In our vision, data scientists should be able to design and
train ML models with their favorite ML framework. Once
trained, these models, combined with any required data pre-
processing steps and library dependencies, form what we call
a model pipeline. Raven supports model pipelines expressed
in a generic and portable model format [25] that is com-
patible with MLflow [24], and stores them in the RDBMS.



INSERT INTO model (name, model) AS
(“duration_of_stay”, 
“from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from …
model_pipeline = 
Pipeline([(‘union’, FeatureUnion(…  

(‘scaler’,StandardScaler()), …))
(‘clf’,DecisionTreeClassifier())])”);

M:model pipeline (Data Scientist)

Q: SQL query invoking model (Data Analyst)
DECLARE @model varbinary(max) = (

SELECT model FROM scoring_models
WHERE model_name = ”duration_of_stay“ );

WITH data AS(
SELECT * 
FROM patient_info AS pi 
JOIN blood_tests AS be ON pi.id = be.id 
JOIN prenatal_tests AS pt ON be.id = pt.id

);
SELECT d.id, p.length_of_stay
FROM PREDICT(MODEL=@model, DATA=data AS d) 
WITH(length_of_stay Pred float) AS p
WHERE d.pregnant = 1 AND p.length_of_stay > 7;
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Figure 1: Running example: find pregnant patients with predicted length of stay in the hospital longer than a week.

Users can then invoke them (on data stored in the DB or
on fresh data coming from an application) by issuing SQL
commands. We term inference query a query that invokes
a model pipeline.

As we show in the rest of this paper, delivering compet-
itive performance for in-DB inference requires a substan-
tial engineering and research effort. Our running example
touches upon several of the interesting opportunities we dis-
covered in doing so (§2). Raven introduces an intermediate
representation (IR) that includes both ML and relational
operators. Input inference queries are captured in this IR
by means of static analysis (§3). The IR is then analyzed
and optimized using novel cross-operator optimizations and
transformations that Raven proposes (§4). Finally, the op-
timized IR is fed for execution to the DBMS that supports
different ML runtimes. To achieve best-in-class performance
for our optimized plans, we integrated ONNX Runtime1 na-
tively within SQL Server (§5). Given that support for native
execution of all ML pipelines is elusive, Raven also employs
out-of-process [14] and containerized execution [40] as re-
quired to achieve 100% coverage.

We show that (i) SQL Server with integrated ONNX
Runtime is a solid building block for high-performance
inference—yielding up to 5.5× speedups over standalone so-
lutions; (ii) Raven’s cross-optimizations yield benefits of up
to 24× compared to unoptimized inference queries.

We have made an early preview of the ONNX Runtime
integration available with Azure’s SQL Database Edge [13],
and our plan is to also make it available in other SQL Server
offerings, both on-premises and in the cloud. While Raven is
far from a finished system, the existing implementation al-
ready demonstrates the great potential for both research and
industrial impact, by extending DBMSs with their robust
capabilities to handle inference. We are busy incorporating
the techniques we present in this paper in a full-fledged cost-
based optimizer—hardware acceleration and multi-query op-
timization will make this even more fun.

1ONNX Runtime [31] is a state-of-the-art inference engine with
support for diverse environments and backends, which we built
and open-sourced at Microsoft. It supports all models that can
be expressed in ONNX [30], i.e., the vast majority of models.

2. Raven OVERVIEW
Our running example is predicting the duration of stay in

a hospital,2 depicted in Fig. 1.
A data scientist has developed a decision tree model M

that predicts a patient’s length of stay in a hospital, by
combining patient_info with results from blood_tests and
prenatal_tests. The model is trained over large amounts of
data (e.g., across all hospitals in an insurance network) and
is deployed/stored within the RDBMS. At a later time, an
analyst, employed by a specific hospital, issues a SQL query
Q to apply the model on local data in order to “find pregnant
patients with a high likelihood of staying in the hospital for
more than a week” and inform the medical staff.

By storing and scoring the model within the RDBMS, we
inherit ease of access via SQL, along with several desirable
properties regarding updates to the deployed model: trans-
actionality (a change to the model can be handled as part of
a transaction), high availability, and auditability. To achieve
good performance, Raven employs several optimizations and
performs inference natively in the RDBMS, invoking an ML
runtime as an integral part of the database runtime.

The input inference query QM, which includes both the
SQL query Q and the model pipeline M (in Python here), is
handled as follows. First, Raven’s Static Analyzer parses
QM and performs static analysis on the SQL and Python
scripts. The result is a DAG expressed in Raven’s unified
IR (detailed in §3), as shown in Fig. 1.

The IR is fed to the Cross Optimizer, which performs var-
ious optimizations (passing information between the data
and ML operators) and operator transformations. It also
determines which part of the IR will be executed by SQL
Server and which by the integrated ML runtime (ONNX
Runtime here). The optimization space is very rich—below
we provide some representative optimizations, which we fur-
ther discuss in §4:

• predicate-based model pruning: the condition pregnant=1

is pushed upward and into the decision tree, resulting in
the right subtree being pruned.

2The example is based on [34], with changes designed to showcase
several Raven optimizations.



• model-projection pushdown: unused or zero-weight fea-
tures can be projected-out early in the query plan—this is
common due to model regularization or due to the above
pruning (e.g., gender is no longer used).

• model/query splitting: the pruned model can be parti-
tioned in a cheap model (for age<=35) and a more com-
plex one (for age>35). Model and query are thus split in
two branches and separately optimized.3

• model inlining: small decision trees can be inlined thanks
to SQL Server’s recent UDF inlining feature [37].

• NN translation: Raven can transform many classical ML
models (e.g., decision tree) and featurizers into equivalent
neural networks (NN) to then leverage the highly opti-
mized ONNX Runtime for batch scoring on CPU/GPU.

• standard DB optimizations: such as predicate/projection
pushdown and join elimination can be triggered—in the
inlined left-branch we don’t need to join with prenatal_

tests, and bp>140 can be derived and pushed-down.

• compiler optimizations: we implemented compiler-style
optimizations such as constant-folding within ONNX
Runtime—the pregnant variable is a constant in our ex-
ample query and can be propagated inside the NN.

The optimized Raven IR is passed to the Runtime Code
Generator, which generates a new SQL query, reflecting the
above optimizations. The integrated SQL Server+ONNX
Runtime engine is then invoked for execution.4

It is clear from the above that extensive optimizations
are possible once we bring ML inference into the DBMS.
At the time of writing, we have added native support for
ONNX Runtime within SQL Server. We have designed and
implemented several of these optimizations, and automated
the static analysis process. In the next sections, we describe
the path we are taking towards building an optimizer and
runtime for integrated evaluation of inference queries.

3. Raven IR AND STATIC ANALYSIS
Intermediate representations have been commonly used

for enabling optimizations in various settings. Most
database query optimizers rely on relational algebra,
whereas different IRs have been proposed for ML run-
times [43, 30].

In Raven, we chose to combine both data and ML oper-
ators in a unified IR, as shown in Fig. 1. This allows us to
optimize an inference query that includes both data and ML
operations in a holistic manner: we can perform optimiza-
tions that span data and ML operations, and pick the most
suitable runtime to execute each operator (§4).

Next, we define Raven’s IR and describe the static analysis
process to extract the IR from an inference query.

3.1 Raven IR
Raven’s data and ML operators are chosen to cover most

practical scenarios, based on our analysis of ∼4.6 million
publicly available Python notebooks from GitHub [35]. Our
current operator set, which is easily extensible, can be split
into the following categories.

3This shares commonalities with model cascades [21].
4For inference queries that are not yet supported by our static
analysis or by ONNX Runtime, we support calling external ML
runtimes and containerized execution.

Relational algebra (RA). This includes all the relational
algebra operators, which are found in a typical RDBMS.

Linear Algebra (LA). A large fraction of the operators
used in ML frameworks, and in particular neural network
runtimes [1, 31, 36], fall into this category. Examples include
matrix multiplication and convolution operators.

Other ML operators and data featurizers (MLD).
These are operators widely used in classical (non-NN) ML
frameworks (e.g., scikit-learn [39], ML.NET [5]), but do not
fall in the LA category, such as decision trees and featuriza-
tion operations (e.g., categorical encoding, text featuriza-
tion).

UDFs. When the static analyzer is not able to map part
of the input into operators of the above categories (e.g., a
function containing arbitrary Python code), a UDF operator
is used to wrap the non-optimizable code as a black box.

Note that our IR includes both higher- and lower-level op-
erators. For example, a linear regression operator (higher-
level) can also be expressed as a set of linear algebra opera-
tors (lower-level). We purposely allow diverse operator levels
to unlock different optimizations, similar to MLIR [26].

3.2 Static Analysis
An inference query consumed by Raven (see Fig. 1) is a

SQL query that performs (part of) the data processing and
invokes ML model pipelines.5 The whole inference query can
be instead expressed as a script in some imperative language
(e.g., Python or R). The input scripts are accompanied by
metadata to specify the required runtimes and dependencies
(e.g., Python version, libraries used), and to access the refer-
enced data and models. An open model format, such as the
one defined in MLFlow [25], can be used for this purpose.

Translating the SQL part into the IR is straightforward
(similar to a DB parser that builds a logical plan). The inter-
esting part is analyzing the model scripts expressed in an im-
perative language. Our current prototype supports Python
scripts and notebooks, given their popularity in ML [20].

Given a Python script, the Static Analyzer6 performs lex-
ing, parsing, extraction of variables and their scopes, seman-
tic analysis, type inference, and finally extraction of control
and data flows. To compile the dataflow to an equivalent IR
plan, the Static Analyzer takes as input an in-house knowl-
edge base of APIs of popular data science libraries (e.g.,
Pandas [33], NumPy [29], scikit-learn [39], PyTorch [36]),
along with functions that map dataflow nodes/subgraphs
to equivalent IR operators. Dataflow parts that cannot be
translated to IR operators are translated to UDFs.

This static analysis process comes with several challenges
and limitations (again, we use UDFs when we cannot over-
come them). First, translating loops to relational or linear
algebra operators is known to be a hard, if not undecidable,
problem [4]. In our analysis of the ∼4.6 millions Python
notebooks, however, we found that only ∼17% of all note-
book code cells use such constructs. Thus, the vast majority
of cases can be handled through analysis of straight line code
blocks. Second, conditionals result in potentially multiple
execution paths. In such cases, the Static Analyzer will ex-

5There is no standardized way yet to invoke models in SQL. Here
we use the SQL Server way (as of version 2017) through the PRE-
DICT or the sp_execute_external_script statements [28, 14].
6A full paper with detailed description is in the works along with
plans to open source the Python static code analyzer.



tract one plan per execution path. Hence, downstream com-
ponents in Raven need to operate based on multiple plans.
Third, in dynamically typed languages, such as Python, type
inference may result in assigning a collection of potential
types to variables. We plan to use knowledge from the SQL
part to improve type inference in many practical scenarios.

In most practical cases we tested, static analysis takes less
than 10 msec. Its end result is a Raven IR plan that is given
as input to the Cross Optimizer, discussed next.

4. CROSS-OPTIMIZATIONS
In this section, we focus on the novelty aspects of our

optimizer: cross-IR optimizations that pass information be-
tween data and ML operators (§4.1), and transformations
between operators to allow more efficient engines to be used
for the same operation (§4.2). All our optimizations can
be expressed as transformation rules, applied by Raven’s
Cross Optimizer (§4.3). By using state-of-the-art relational
and ML engines, Raven can also leverage the large body of
work in relational and ML inference optimization [31, 41,
11, 23]—we do not further discuss such techniques here.

While discussing each optimization, we also evaluate its
benefits, using two datasets: (i) patient information to pre-
dict length of stay in hospital (per our running example in
§2); and (ii) flight information to predict whether a flight
will be delayed.7 We use dataset sizes of up to 10M tuples
for inference (1.25 GB on disk). Unless mentioned otherwise,
all experiments are run on an Azure D16s v3 VM instance,
with 16 vCPUs, 64 GB of RAM, and a 1.1 TB SSD. Num-
bers are averages over multiple warm runs, and for each run
we count the time it takes to load the model, perform the
optimization, read the data, and perform inference over it.

4.1 Cross-IR optimizations
In this set of optimizations, we exploit ML operator char-

acteristics (e.g., model weights) to optimize data operations
of the inference query (model-to-data), or leverage relational
operator- and data-properties to optimize the ML part of the
query (data-to-model). Below we present some first such
techniques we have devised—many more can be introduced.

These cross-IR optimizations can be seen as a form of Side-
ways Information Passing (SIP) [8]. However, unlike SIP
that requires adapting physical operators, our techniques
are applied purely at query optimization time.

Predicate-based model pruning. This data-to-model
optimization exploits predicates in the IR (e.g., coming from
the WHERE clause of the SQL query or a Pandas’ filter) to
simplify a model.

In our running example (Fig. 1), we can propagate the
filter pregnant=1 to the downstream decision tree model.
The right branch of the tree can then be eliminated, thereby
improving its prediction time—by 29% in our example.

Predicate-based pruning can also be beneficial for cate-
gorical features. Such features are typically encoded as a
set of binary features, one for each unique value of the orig-
inal feature. If there is a selection on the original feature,
only one of the corresponding binary features will be non-
zero. Hence, the rest of the features can be dropped from
the model. We trained a logistic regression model for the
flight delay and added a filter on the destination airport.
Predicate-based pruning yields a ∼2.1× on this query using

7https://www.kaggle.com/usdot/flight-delays

scikit-learn, regardless of the filter’s selectivity (what mat-
ters in this speed-up is the number of features dropped).

Likewise, we can improve a neural network’s performance
via constant folding,8 i.e., statically computing part of the
model based on the constant input from the predicate.

This technique can also be applied based on data proper-
ties instead of explicit selections. Using data statistics, we
might observe that only specific unique values appear in the
data or that data follows specific distributions (e.g., all pa-
tients are above 35). In these cases, we can derive predicates
to perform predicate-based pruning.

Model-projection pushdown. In this model-to-data op-
timization, we observe properties of an ML operator to sim-
plify the data processing part of the inference query.

Consider a logistic or linear regression model with some
of its weights being zero. This is often the case when L1-
regularization techniques (e.g. Lasso [42]) are applied during
training to improve the model’s generalization ability, size,
and prediction cost. Here we exploit this property further.
The features that will be multiplied with these zero-weights
do not contribute to the prediction, and can therefore be
projected out from the data part and be removed from the
model without affecting the inference result.

We trained logistic regression models for flight delay, us-
ing scikit-learn and various L1-regularization strengths.9 We
picked the two highest-performing models (i.e., with the
highest AUC): the one had 41.75% sparsity (that is, per-
centage of zero weights), the other 80.96%. Fig. 2(a) shows
that model-projection pushdown improves inference time by
∼1.7× for the first model and ∼5.3× for the second.

Even for inference queries that model-projection push-
down is not immediately applicable, it can be enabled by
first applying other optimizations: in Fig. 1, predicate-based
pruning of the right tree branch enables model-projection
pushdown on gender, as this feature is no longer needed.
Similarly, it can enable other optimizations: after eliminat-
ing features, the relational optimizer can drop joins if one of
the joining relations no longer provides features needed by
the model.

There are several more questions we plan to investigate:
What is the impact of physical database design, such as
column stores, when applying model-projection pushdown?
What is the benefit for more complex models, such as NNs?
What would be the impact in runtime and model accu-
racy when applying lossy model-projection pushdown where
small, but non-zero, weights are removed?

Model clustering. Taking predicate-based pruning using
data properties a step further, we may not have a single value
for one or more features, but we could cluster the data in a
way that each cluster has specific values for some features.
We can then precompile optimized models for each cluster.

We performed k-means clustering with an increasing num-
ber of clusters for 700K tuples of flight delay. Fig. 2(b) shows
that model clustering reduces inference time by up to 54%.
The more the clusters the bigger the gain, although the rel-
ative gain diminishes after a point. Model compile time,
i.e., the time to create new models by dropping features, is
negligible. On the other hand, hospital stay does not bene-

8https://github.com/microsoft/onnxruntime/blob/master/
onnxruntime/core/optimizer/constant folding.h
9https://scikit-learn.org/stable/modules/generated/sklearn.
linear model.LogisticRegression.html
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https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
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Figure 2: Left to right: cross-optimizations for flight delay ((a) model-projection pushdown and (b) model clustering) and
operator transformations for hospital stay ((c) model inlining and (d) NN translation).

fit from clustering since its categorical features are already
binary, therefore fewer features are dropped.

Clustering can be relatively expensive, depending on in-
put data size (0.4 to 42 secs in our examples). In practical
settings, clustering can be performed offline on a sample of
historical data. When new data arrives, we use the precom-
piled models whenever possible; if such a model does not
exist, we fall back to the original model.

4.2 Operator Transformations
Along with the logical optimizations presented above,

Raven applies rules that transform (a set of) operator(s)
to another. For example, we can map a linear regression to
a matrix multiplication.

Such transformations enable both additional optimiza-
tions and the use of different runtimes for executing an op-
erator (e.g., a high-performance NN engine might not have
a dedicated linear regression, but would support the lower-
level operator it got translated to). Note that transforma-
tions should preserve semantics (e.g., SQL’s bag semantics
vs. Pandas’ ordered bags).

Model inlining. These transformations translate ML op-
erators (LA and MLD operators, see §3) to relational ones.
Several of these transformations have been studied in the
literature [18, 2, 10, 38]. They are particularly important
in Raven, because they allow us to use the relational opti-
mizations and high performance of SQL Server for data op-
erations (e.g., to execute a join that was initially expressed
in Python). Moreover, we employ the UDF inlining tech-
nique introduced in SQL Server 2019 [37] to further boost
performance.

We trained a decision tree (the same technique would work
for tree ensembles) for the hospital stay in scikit-learn, trans-
lated it to a UDF after expressing its conditions as a SQL
query, and inlined the UDF in the query. Fig. 2(c) demon-
strates that this ML-to-relational operator translation yields
a performance gain of ∼17× for a dataset of 300K tuples
when compared to running the decision tree in scikit-learn
reading data from the DB (reading from a CSV was simi-
lar). Big part of this gain was due to completely avoiding
data transformations by keeping execution inside the DB.
Assuming a query with a selection on a tree’s dimension,
as discussed above, we can further improve runtime by 29%
with predicate-based pruning, leading to a total improve-
ment of 24.5×.

We also experimented with pushing categorical encodings
to SQL Server. Our initial experiments show significant per-
formance improvements when the number of resulting fea-
tures is not too big, but further investigation is required to
draw safe conclusions.

NN translation. Raven introduces novel transformations
from MLD operators (see §3) to linear algebra ones [27].
This allows us to express classical ML operators and data
featurizers, typically written in frameworks like scikit-learn
and ML.NET, to neural-networks that can be executed
in highly efficient engines like ONNX Runtime, PyTorch,
and TensorFlow. This is very important performance-
wise: unlike most traditional ML frameworks, NN en-
gines support out-of-the-box hardware acceleration through
GPUs/FPGAs/NPUs, as well as code generation [11]10.

In Fig. 2(d), we compare a random forest model (RF) for
hospital stay in scikit-learn against the NN translation of
the same model (RF-NN), both on CPU and GPU. Here we
used a machine with similar specs to our VM but equipped
with an Nvidia K80 GPU. For 1K tuples, RF-NN on CPU is
about 2× faster compared to the RF on scikit-learn, whereas
RF-NN on GPU further decreases computation time by 10%.
As we increase the dataset size, the gap between scikit-learn
and RF-NN on CPU closes, and both have performance in-
creasing almost linearly to the dataset size. Conversely, with
larger datasets we can better utilize the parallel architecture
of the GPU, and therefore get a speed-up of up to 15× com-
pared to scikit-learn for 1M tuples.

4.3 Raven’s Cross Optimizer
So far, we discussed various transformation rules (cross-

optimizations and operator transformations) that we have
introduced and implemented in Raven, and showed their
benefits on real models/data. The next important step in
our journey is to integrate all these rules in our optimizer—
we are actively working on this at the time of writing. An
initial version will be heuristic-based, applying all rules in
a specific order. Our goal is to then get to a cost-based
Cascades-style optimizer [16], possibly integrated with SQL
Server’s optimizer, in which each operator will be associated
with a cost. Several plan alternatives will be considered by
applying the rules in different orders and the best will be
picked. Note that as part of the optimization process, we
need to pick the runtime that each operator will be exe-
cuted on (relational engine or ML runtime), based on each
runtime’s capabilities and performance (including special-
ized hardware) and the cost of switching across engines.

5. INFERENCE QUERY EXECUTION
Raven’s Runtime Code Generator builds a new SQL query

that corresponds to the optimized IR (i.e., the output of the
Cross Optimizer). The model invocations that are included
in the optimized SQL query will be executed in one of the

10We are also working on similar translations from traditional ML
pipelines to neural networks for the model training side [44].
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Figure 3: Model inference performance for SQL Server with
in- and out-of-process ONNX Runtime (Raven and Raven
Ext, resp.) and standalone ONNX Runtime (ORT).

following ways, in decreasing level of integration with SQL
Server’s main relational engine:

In-process execution (Raven). Starting with version
2017, SQL Server introduced the PREDICT statement [28] to
allow native inference for a small set of five models (such as
linear and logistic regression, and decesion trees). As part of
realizing our vision, we deeply integrated ONNX Runtime
inside SQL Server. ONNX Runtime is used as a dynam-
ically linked library to create inference sessions, transform
data to tensors, and invoke in-process predictions over any
ONNX model or any model that can be expressed in ONNX
through Raven’s static analysis or ONNX converters [32]. A
user simply needs to store their model in SQL Server and
issue queries that include model inference using the existing
PREDICT statement. This is the tightest-integration option:
apart from in-process execution for performance (e.g., by
avoiding unnecessary data copies/conversions) and security
purposes (by not letting data leave the process boundaries),
it allows us, out-of-the-box, to take advantage of model and
inference-session caching and of SQL Server’s optimizer.

Out-of-process execution (Raven Ext). For model
pipelines not yet supported by our Static Analyzer, we use
the sp_execute_external_script [14] statement, which in-
stantiates an external language runtime to perform out-
of-process inference. Currently supported languages are
Python and R (and Java with SQL Server 2019). Although
not as tightly integrated, this mode of execution has the
advantage of not requiring any changes to the SQL Server
code—any existing SQL Server installation with support for
external scripts can take advantage of it.

Containerized execution. For model pipelines that can-
not be executed with one of the above techniques (i.e., writ-
ten in a language that is supported neither by our Static An-
alyzer nor by sp_execute_external_script), we fall back
to spinning up a Docker container and performing inference
through a REST endpoint [40].

Having shown the substantial benefits of our optimizations
in §4, we turn to the following question: Can our in-process
integration of ONNX Runtime with SQL Server match the
performance of a standalone ONNX Runtime instance when
performing pure model inference (no SQL part)? Or are
there significant overheads in the integration?

We compare: (i) standalone ONNX Runtime (ORT here-
after), (ii) Raven, and (iii) Raven Ext. We use both a ran-
dom forest (RF) and a multi-layer perceptron (MLP) as part
of a pipeline that also includes featurization, and translate
both end-to-end pipelines to NNs to be efficiently executed

in ORT (see NN translation, §4). Fig. 3 shows results for
increasing dataset size.

We make the following observations:
(i) Between 50K and 100K tuples, ORT and Raven have
similar performance, with Raven having an overhead of up
to 15%. We are positive that we can further close this gap
with implementation improvements. That said, this over-
head is insignificant, compared to the improvements of or-
ders of magnitude that Raven’s optimizations provide.11

(ii) For smaller datasets (e.g., up to 50K tuples) and warm
runs, Raven is faster than ORT (e.g., 3msec vs. 20msec
for 100 tuples). This is due to SQL Server’s model and
inference-session caching across queries, instead of loading
the model from disk and relying on the file system cache.
(iii) For 1M and 10M tuples Raven is faster than ORT by
around 5×! This came to our surprise. After investiga-
tion, we observed that for larger datasets, SQL Server auto-
matically parallelizes both the scan and PREDICT operators.
When forcing sequential execution, Raven was about 7%
slower than ORT. This model inference could potentially be
parallelized in ORT as well, but that would not be trivial,
whereas it came for free with SQL Server.
(iv) Raven Ext has a constant overhead of about half a sec-
ond to start the external language runtime and some addi-
tional overheads, most probably due to data transfers. Still
it is a viable option in cases our Static Analyzer does not
support the model pipeline or for SQL Server installations
that do not support in-process execution. We are currently
investigating how the overheads of out-of-process execution
could be reduced.
(v) In our implementation of Raven, we gained about an
order of magnitude by performing batch inference instead of
one prediction per tuple (ideal batch size to be investigated).

6. RELATED WORK
Several previous works have proposed to run machine

learning in the RDBMS [17, 19, 10, 2, 6]. Interestingly
enough, these works have largely focused on model train-
ing, whereas the prime focus of Raven is inference of already
trained machine learning models.

Existing approaches for model inference follow either a
containerized [12] or an in-application [5] model. More re-
cently, Amazon Aurora enabled external calls from SQL
queries to machine learning models in SageMaker, which
would also qualify as a containerized execution approach [7].
Although containerized execution allows for easy integration
of ML runtimes with SQL engines, it introduces overheads
that do not allow for low latency predictions. Google’s Big-
Query ML [9] is closer to Raven (although it relies mostly
on hardcoded models), but targets mainly batch predic-
tions, since it inherits the relatively high startup cost of
queries in BigQuery. Instead, using SQL Server along with
model caching allows Raven to perform even single-tuple
predictions with low latency. Moreover, none of these en-
gines take advantage of a unified representation of data and
ML operators, which enables Raven to perform novel cross-
optimizations that yield significant performance benefits.

Cross-optimization of relational and linear algebra opera-
tors is recently becoming a hot topic [18, 22], whereas spe-

11Some of our optimizations could be applied to an ML runtime
too. However, they would lack the ability of a relational engine
to perform data operations like joins and aggregates in a highly
optimized fashion, as well as the other benefits of an RDBMS §1.



cific optimizers [23, 21] and runtimes [30, 31, 11] for model
inference are also emerging. Our goal with Raven is to bridge
the gap between the two worlds: we propose an optimizer
able to execute both runtime-specific and cross-IR optimiza-
tions in an end-to-end fashion.

7. CONCLUSION
We presented Raven, a system we are building to per-

form in-DB ML inference. Raven performs static analysis
of Python ML pipelines and SQL queries, which are cap-
tured in a unified IR. This enables us to apply novel cross-
optimizations, yielding performance gains of up to 24×.
The target execution environment for this optimized IR
is a deeply integrated version of SQL Server and ONNX
Runtime, which alone provides up to 5.5× performance
gains over standalone ONNX Runtime execution. The ver-
sion of SQL Server integrated with ONNX Runtime is cur-
rently available in public preview in Azure’s SQL Database
Edge [13], and our plan is to bring such capabilities to other
flavors of SQL Server databases, both on-premises and in
the cloud. This is only the beginning of a long journey to
incorporate ML scoring as a foundational extension of rela-
tional algebra and an integral part of SQL query optimizers
and runtimes.
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