Workload Interference Analysis for HTAP*

Utku Sirin Sandhya Dwarkadas Anastasia Ailamaki
utku.sirin@epfl.ch sandhya@cs.rochester.edu anastasia.ailamaki@epfl.ch
EPFL University of Rochester EPFL

Hybrid Transactional and Analytical Processing (HTAP) systems
suffer from workload interference at the software and hardware
level. We examine workload interference for HTAP systems and
highlight investigation directions to mitigate the interference.

We use the popular two-copy HTAP architecture. The OLTP and
OLAP sides are independent components with their own private
copies of the data. The OLTP side is a row-store, whereas the OLAP
side is a column-store. The OLTP and OLAP sides are connected
by means of an intermediate data structure, delta, that keeps track
of the fresh tuples that are generated by the OLTP side, but not
yet transferred to the OLAP side. OLTP transactions register their
modifications to delta before committing. OLAP queries first prop-
agate fresh tuples from the OLTP side to the OLAP side and then
perform query execution over the data at the OLAP side [1].
Benchmarks & hardware. The OLTP benchmark is a transaction
that randomly updates one row. The OLAP benchmark is either an
aggregation or a join query. The database size is 30GB. We use a
commodity Intel server with two CPU sockets, 14 cores per socket,
2 hyper-threads per core, and three levels of caches. The first two
levels of caches are per-core, whereas the last-level cache (LLC) is
per-socket, i.e., shared among the 14 cores of each socket.
Software-level interference. OLAP execution time is composed
of two parts: (i) fresh tuple propagation time and (ii) query process-
ing time. Fresh tuple propagation time is considered software-level
interference.

We fix the number of fresh tuple propagation threads to 1 and
the number of OLAP query processing threads to 10 and vary the
number of OLTP threads. We place OLTP and OLAP threads and
data on separate CPU sockets so that they do not interfere at the
hardware level. The propagation thread and delta are placed on the
same CPU socket as OLAP. For the aggregation query, fresh tuple
propagation time is 2% and 23% of OLAP execution time with 1 and
7 OLTP threads. At these levels of OLTP throughput, software-level
interference can be considered modest.

Fresh tuple propagation time increases exponentially for 14 or

more OLTP threads since the OLTP tuple generation throughput
exceeds the fresh tuple propagation throughput of 1 propagation
thread for 14 or more OLTP threads. In order to avoid this, software
must ensure that tuple propagation throughput keeps pace with
OLTP’s tuple generation throughput.
Hardware-level interference. Hardware-level interference is de-
fined as the amount of throughput drop at the OLTP or OLAP side
when running OLTP and OLAP concurrently on the same CPU
socket compared to when running OLTP or OLAP alone.

This article is published under a Creative Commons Attribution Li-
cense(http://creativecommons.org/licenses/by/3.0/), which permits distribution and
reproduction in any medium as well as allowing derivative works, provided that you
attribute the original work to the author(s) and CIDR 2021. 11th Annual Conference on
Innovative Data Systems Research (CIDR °21). January 10-13, 2020, Chaminade, USA.
© Association for Computing Machinery.

Table 1: Normalized OLTP & OLAP throughput. 1T+12A: 1
OLTP and 12 OLAP threads.

1T+12A | 7T+6A | 12T+1A

Aggregation OLTP 0.58 0.73 0.80
OLAP 0.98 0.99 0.95

Join OLTP 0.78 0.82 0.89
OLAP 0.99 0.98 0.98

We fix the number of fresh tuple propagation threads to 1. We
place the OLTP, OLAP, and propagation threads on the same CPU
socket, where they share LLC and memory bandwidth. We use sin-
gle CPU socket. We fix the total number of OLTP and OLAP threads
at 13 (+one thread used for propagation) and measure throughput
when using 1, 7, and 12 OLTP threads. We do not use hyper-threads.
Table 1 shows that the OLTP throughput is significantly reduced
when running with the aggregation query. The reason is that the
sequential-scan-heavy aggregation query highly stresses the mem-
ory sub-system. As a result, the OLTP threads are blocked by the
OLAP threads at the LLC and memory bandwidth.

The decrease in OLTP throughput is significantly less when

running with the join query compared to when running with the
aggregation query. This is because the join query is random-data-
access-heavy, and hence stresses the memory sub-system less than
the aggregation query. The OLAP throughput does not significantly
drop for all the cases. This is because the OLTP component stresses
the memory sub-system significantly less than the OLAP compo-
nent.
Conclusions. HTAP systems suffer from interference at both the
software and hardware level. Software-level interference depends
on the OLTP and fresh tuple propagation throughput. In order
to minimize interference, HTAP systems should ensure that fresh
tuple propagation throughput is greater than the throughput of the
OLTP transactions that generate the fresh tuples.

Hardware-level interference depends on the demand for shared
resources such as LLC and memory bandwidth by the OLTP and
OLAP workloads. HTAP systems should isolate the OLTP and OLAP
workloads in the shared resources and use micro-architectural re-
source allocation policies that assign the optimal amount of re-
sources to OLTP and OLAP workloads to minimize hardware-level
interference.

References

[1] Darko Makreshanski, Jana Giceva, Claude Barthels, and Gustavo Alonso. 2017.
BatchDB: Efficient Isolated Execution of Hybrid OLTP+OLAP Workloads for
Interactive Applications. In SIGMOD. 37-50.

*This work was supported by US National Science Foundation (NSF) Award CNS-
1900803, the European Union Seventh Framework Programme (ERC-2013-CoG), under
grant agreement no 617508 (ViDa), and Swiss NSF, Project No.: 200021 146407/1
(Workload- and hardware-aware transaction processing).

	References

