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ABSTRACT
In this paper, we propose a simple, yet fast and effective
approach to determine good join orders for arbitrary select-
project-join queries. Our scheme comprises three building
blocks: (i) a simple upper bound for arbitrary multi-joins,
(ii) appropriate join enumeration according to the upper
bound, and (iii) sampling as query execution to provide
fast and near-exact estimates for complex conjunctive filters.
As we are going to show, using the Join-Order-Benchmark
(JOB), our simple approach provides better join orderings
with significantly less optimization overhead, resulting in a
substantially faster response time for all 113 JOB queries
compared to state-of-the-art and recent approaches.

1. INTRODUCTION
Although query optimization has been a core research

topic for decades, it is still far from being solved [7]. This
holds especially true for one of the most studied challenges
in query optimization: finding a good join order [2, 7]. To
tackle this issue, reliable cardinality estimates for arbitrary
joins are required [2, 7]. This includes joins over interme-
diate join results and pre-filtered base tables. However, the
question whether it is even possible to achieve such estimates
without join execution is yet to be answered [15].

Traditional estimation techniques frequently rely on basic
heuristics that may assume predicate independence and a
uniform distribution of attribute values [7]. However, rely-
ing on these assumptions can lead to disastrous join order-
ings [7]. To overcome this issue, various sophisticated tech-
niques for the join cardinality estimation have been proposed
in recent years. On the one hand, sampling approaches seem
appealing at first glance, for example [8, 11, 21], but they
do not scale well to many joins [3, 21]. On the other hand,
we see an increasing popularity of modern machine learning
techniques [6, 20] as they model complex data characteris-
tics. However, these models do not yet cover all relevant
filter predicate types and their training depends on execut-
ing a plethora of joins, which may take days or weeks [19].
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As recently shown by Cai et al. [2], guaranteed bounds
for join cardinalities lead to better and more robust join or-
derings for arbitrary select-project-join (SPJ) queries. How-
ever, their sketch-based approach to generate upper bounds
does not scale well for many joins in terms of optimization
time, as these sketches have to be populated at run time if
filters are present [2]. To comprehensively tackle that short-
coming, we introduce our novel UES concept in this paper.
The most outstanding feature of our concept is its simplicity
which is achieved by three building blocks:
U -Block: Assuming basic attribute statistics and accurate

selectivity estimates for filters over base tables, we
demonstrate a simple, yet effective Upper bound for
an arbitrary number of joins.

E -Block: Appropriately Enumerating joins according to our
upper bound effectively prevents overly aggressive (some-
times disastrous) join orderings.

S -Block: To guarantee accurate selectivity estimates even
for complex filters in SPJ-queries required by the U -
block, we treat Sampling like query execution.

Using the Join-Order-Benchmark (JOB) [7], we demon-
strate that our novel UES concept outperforms built-in state-
of-the-art optimizers of Postgres as well as of MonetDB.
Moreover, we compare our concept with the sketch-based
upper bound approach of Cai et al. [2]. As we are going
to show, our UES concept achieves highly competitive join
orderings, resulting in similar (or slightly better) execution
times for all 113 JOB queries while requiring significantly
less planning time due to the simplicity of our concept com-
pared to the sketch-based technique.†

2. UE-BLOCKS: JOIN ORDERING
This section describes our two fundamental building blocks

U and E for a scalable join ordering. For that, we assume
access to the common statistic of most frequent values (top-
k statistics) and precise filter selectivity estimates. While
histograms may suffice for basic filters, Section 3 details a
more sophisticated approach for complex filters (S -Block).

2.1 U-Block: Simple Upper Bound for Joins
The first building block U includes a simple upper bound

for an arbitrary number of joins. To describe our upper
bound, we start with a single join and discuss arbitrary joins
afterwards. Given the (estimated) cardinality of two (pre-
filtered) tables, we calculate the smallest number of distinct

†All materials to reproduce and further analyze the re-
sults reported in this work are available at: https://github.
com/axhertz/SimplicityDoneRight



Figure 1: Illustration of our upper bound (U -block).

values each table can contain and assume as many joining
values as possible. Note, the näıve worst-case assumption
expects both tables to share the same single distinct value
which leads to a join size equal to the cartesian product.
However, we use top-k statistics to narrow down the upper
bound. Figure 1 illustrates the core concept, using an ex-
ample. The left-hand side depicts the worst-case – used to
derive the upper bound – constrained by the table statistics,
while the right-hand side depicts the actual join. Using table
statistics, we denote MF(R.x), MF(S.y), the maximum fre-
quency a value can occur in attribute x, y of table R,S. Ac-
cording to the example, each value of the joining attributes
can occur at most five times and two times, respectively. Di-
viding the table cardinality by the maximum value frequency
gives the minimum number of distinct values. Thus, in the
worst-case, σ(R.x) contains two and σ(S.y) five distinct val-
ues. As both join partners need to have the same value, we
take min(2, 5) = 2 and multiply it with the respective fre-
quencies. Although the number of distinct values may differ
in reality, the following inequality (upper bound) holds true
in any case:

|σ(R) ./ σ(S)| ≤ upper(|σ(R) ./ σ(S)|)

= min

(
|σ(R)|

MF(R.x)
,
|σ(S)|

MF(S.y)

)
∗MF(R.x) ∗MF(S.y)︸ ︷︷ ︸

=: MF(R ./ S)

The right-hand side of Figure 1 gives an intuition of why
the inequality holds: While value a occurs with the respec-
tive maximum frequency in both tables, value b appears—
contrary to the assumption on the left-hand side—only two
times. Thus, the former bucket of σ(R.x), containing only
value b is split into three buckets (with values b, c, and d).
Since the maximum value frequency in σ(S.y) can be at most
MF(S.y) = 2, each bucket in σ(R.x) is at most twice the size
after the join. Hence, having three smaller buckets of size
2 (value b), size 2 (value c), and size 1 (value d) in σ(R.x)
that can expand by a factor of at most two, we can never
exceed the upper bound given by a single bucket of size 5
(value b) that doubles its size after the join (cf. Figure 1).

Joining multiple tables. In case of multiple joins, we start
by deriving the upper bound for the first two (potentially
pre-filtered) tables according to the stated inequality, giving
an estimate of |σ(R) ./ σ(S)|. The upper bound after joining

an additional table σ(T ) over attribute z, is given by:

upper(|(σ(R) ./ σ(S)) ./ σ(T )|) =

min(
upper(|σ(R) ./ σ(S)|)
MF(S.y) ∗MF(R.x)

,
|σ(T )|

MF(T.z)
) ∗MF(R ./ S ./ T ),

where MF(R ./ S ./ T ) = MF(R.x) ∗MF(S.y) ∗MF(T.z) is
the maximum possible value frequency after joining R,S, T .
Note that similar to the sketch-based approach of [2], the
join order may determine the tightness of our upper bound.

2.2 E-Block: Enumeration Scheme
The second building block E for our scalable join order-

ing is a simple enumeration scheme using our upper bound.
We detail our scheme in Figure 2 on an example query of
the Join-Order-Benchmark, whereby we transform the im-
plicit where clauses (Figure 2a) into an explicit join order
(Figure 2b). The key idea of our enumeration scheme is (i)
to push down the non-expanding operators, i.e. filters and
primary-foreign-key joins (pk-fk joins) and (ii) to enumer-
ate the (potentially expanding) n:m joins according to our
upper bound and to the following greedy heuristic∗:

For all n:m join candidates (red part in Figure 2a), ci, mi,
mi idx, the upper bounds for the pk-fk joins (green part in
Figure 2a) with t, it1, it2, n are derived. Note, we consider
pk-fk joins ”special filters” as they may shrink (but never
expand) n:m candidate sizes before applying the n:m join.
However, we distinguish two cases: Pk-fk joins are either
applied directly or within a subquery. While a subquery
may reduce the size of an n:m join candidate before applying
the n:m join, it employs an additional pipeline-breaker, and
thus result-tuples of preceding joins may need to wait for the
result of the subquery. Therefore, we only employ subqueries
when our upper bound guarantees that the preceding pk-fk
join reduces the size of the respective n:m join candidate.

According to the steps outlined in Figure 2b, we proceed
as follows: 1 We start with the n:m join candidate mi idx,
as it is—according to our upper bound—the smallest can-
didate after applying all non-expanding operations. 2 We
compute the upper bound for the join with the (pre-filtered)
candidates ci and mi. Despite of having no guarantee that
the pk-fk join n.id = ci.person id reduces the size of ci, the
n:m join ci.movie id = mi idx.movie id provides a smaller up-
per bound compared to mi.movie id = mi idx.movie id and
is applied next. Note, the pk-fk join t.id = ci.movie id is not
present in the explicit join order since t.id = mi idx.movie id
has already been applied. 3 Before applying the last n:m
join, mi is filtered by a subquery that is—according to our
upper bound—guaranteed to shrink the table.

2.3 Facing the Join-Order-Benchmark
To show the effectiveness and applicability of our two fun-

damental building blocks U and E for a scalable join or-
dering, we present an evaluation based on the Join-Order-
Benchmark (JOB) [7], which comprises 113 SPJ-queries with
up to 16 joins over real-world data. We run our experiments
on a 64-bit Linux machine with a single-socket Intel Core
i7-6700 CPU, 16GiB of main memory and SSD storage. All
113 JOB queries are evaluated after a warm-up phase on the
following database instances:

∗In favor of focusing on the core concept, a more detailed
discussion of the pseudo-code is postponed to Section 4.



(a) Implicit Syntax – Joins yet to be ordered (b) Explicit Join Order - Physical operators yet to be determined

Figure 2: Rewriting of JOB query 18a according to our UE approach. Non-expanding operators (pk-fk joins, filters) are
highlighted green and potentially expanding operators (n:m joins) are highlighted red.

1. Postgres v. 12.4: The most recent release of the open-
source disk-centric row store [16]. We use the standard
statistics gathered by the autovacuum daemon.

2. Postgres v. 9.6: An instance, modified by Cai et al. [2]
and publicly available at [10].

3. MonetDB v. 11.37.11: The most recent release of the
open-source in-memory column store [13].

For our experiments, we transform all JOB queries into
our explicit join syntax (cf. Figure 2) representing our de-
termined join ordering. For that, we rely on Postgres’ de-
fault histograms and table statistics to derive upper bounds
for joins, i.e. we do not inject external knowledge (e.g. true
filter selectivities). To generate the explicit query string, we
use a python script that parses the implicit query, handles
the statistic requests and applies our enumeration scheme.
This adds a planning time overhead of around 7ms per query,
which we include in all reported results. However, note that
the full integration of our UES concept into the database
system would virtually remove this overhead.

Postgres v. 12.4: In our first experiment, we use Postgres
v. 12.4. to compare the implicit queries to our explicit join
order queries. To bypass reordering of our explicit joins (cf.
Figure 2b), we use ”set join_collapse_limit = 1” and use
the default value for the implicit join order (cf. Figure 2a).
As our external enumeration scheme is agnostic to Post-
gres’ fine tuned cost model, we initially limit our queries to
hash joins (using yet another SQL hint). The implicit JOB
queries are evaluated with (hash) and without (plain) re-
stricting them to hash joins. Table 1 comprises the query
response times (which includes optimization) achieved by
our UE -blocks in comparison to the default Postgres. We
distinguish two index configurations for primary (pk) and
foreign key (fk) indices. The effectiveness of our (rather
passive) approach is most evident with regard to the longest
running queries where we achieve speedups of an order of
magnitude. Despite of forcing the same physical join op-
erator, we demonstrate a considerably smaller cumulative
and maximum query response time compared to hash, thus
confirming more efficient join orderings. In particular, we
achieve faster query response times for 62% of the work-
load. That is, Postgres’ aggressive query optimization actu-
ally finds a better join ordering in many cases. However, in

Postgres v. 12.4 MonetDB
index plain hash UE plain UE∑
pk

464.4 472.5 258.7 90.5 29.8
max 57.4 78.9 5.1 9.9 0.9∑

pk+fk
315.9 387.7 258.1 153.3 34.2

max 47.0 79.9 6.2 45.5 2.1

Table 1: Query response time in [s], using different index
configurations. Sum (

∑
) comprises the cumulative and max

the maximum individual response time.

these cases our response times are at most 1.5 seconds be-
hind those of Postgres, while Postgres’ join orderings require
up to 74 seconds more time to execute.

MonetDB v. 11.37.11: In our second experiment, we use
MonetDB to compare the implicit queries with our explicit
join order queries. Again, our UE approach considerably
reduces query response times in all considered scenarios as
depicted in Table 1. We achieve faster query response times
for 80% of the workload. In this experiment, our response
times are at most 0.3 seconds behind those of MonetDB,
while MonetDB’s plans require up to 9.1 seconds more time
to run the query. Thus, both experiments confirm that our
UE approach produces more efficient join orderings than
query optimizers in state-of-the-art database systems.

Postgres v. 9.6: The most recent work on SPJ-query op-
timization proposes sketches to estimate upper bounds [2].
This approach has been integrated in a Postgres v. 9.6 in-
stance which is publicly available [10]. Thus, we also com-
pare our UE approach with this sketch-based technique and
show the results in Figure 3, using only primary-key indices.
From a query execution plan perspective, both approaches
produce similar plans over all different number of joins re-
sulting in similar query execution times. In some cases,
we still achieve slightly better plans. For example, analyz-
ing the slowest sketch-based query (16b) reveals: While the
sketch-based plan directly applies the n:m join candidate ci
on mk, our UE approach forces all pk-fk joins on mk prior to
the n:m joins, reducing the respective intermediate results.
However, both approaches greatly differ in the time spent to
determine the join order. If filters are present, the sketches
must be populated at runtime [2]. In short: sketches are
compact representations of (potentially prefiltered) tables,
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Figure 3: Comparison of average planning and execution time
grouped by the number of joins, using a Postgres (v. 9.6)
instance, modified by Cai et al. [2]. The black band marks
the standard deviation of the execution time.

partitioned according to some hash function. To derive join
cardinality estimates, Cai et al. [2] combine (join) the eli-
gible hash partitions of each join partner. Although, these
estimates might be sophisticated, this scheme entails two
major drawbacks: First, populating the sketches requires a
full scan on each join attribute. Second, if query graphs be-
come more complex, the number of possible join paths and
therefore the number of sketch combinations grows rapidly.
In particular, as Figure 3 reveals, the planning time of the
sketch-based approach greatly exceeds the execution time
with an increasing number of joins. In contrast, our much
simpler UE approach entails virtually no planning time for
the join ordering, and thus, is barely visible in Figure 3.

Reoptimization. As our scheme is agnostic to the cost
model, it heavily relies on hash joins and therefore does not
benefit from fk-indexes and potentially more efficient index-
based joins. As an alternative, one could cache our plans and
reiterate the choice of physical operators when the query is
issued a second time and intermediate result sizes are known.
To indicate the potential of more fine grained physical oper-
ator selections, we run all JOB queries on Postgres v. 12.4
with and without the restriction to hash joins (while keep-
ing the join order). Running the best of each query reduces
the cumulative response time from 258s to 168s. Note that
individual decisions of physical join operators cannot be con-
trolled with SQL hints and thus require the full integration
of our scheme into the respective optimizer.

3. S-BLOCK: SELECTIVITY ESTIMATES
As shown above, our simple, but effective building blocks

U and E provide better join orderings, resulting in faster
query execution times for all 113 JOB queries with signifi-
cantly less overhead for the optimization compared to state-
of-the-art and recent approaches. However, that only applies
because Postgres’ default histograms are sufficient to esti-
mate filter selectivities in case of the Join-Order-Benchmark.
Without accurate filter selectivity estimates, such as for
complex filter predicates [5], our upper bound may not hold
and can result in a sub-optimal join ordering.

As an illustration, we run a small experiment by artifi-
cially adding multiple like expressions of the form mi.info
like ’%e%’ as conjunctive filter predicate to JOB query 19d.
This leads to a vast underestimate of the filter selectivity
based on histograms, which invalidates our upper bound and
drives our enumerator towards a sub-optimal plan. While

the former join order is executed in 5s in Postgres, this single
mis-estimate causes a join order that takes 25s.

Thus, to guarantee accurate selectivity estimates for com-
plex filter expressions in SPJ-queries, we propose treating
sampling like query execution as our third building block S.
We emphasize that idea to exploit the potential of common
database objects such as indices, zone-maps and histograms.
While recent work of Birler et al. [1] makes sampling feasible
on disk-based database systems, we introduce two sampling
approaches tailored to modern in-memory column-stores:

Focused Sampling: a new approach to accelerate sampling
by exploiting the column-store format.

Conditional Sampling: employs any index structure to in-
crease estimation accuracy.

Inspired by previous work, e.g. [11, 14], our sampling ex-
periments are based on the forest data set [9]. In line with
the related work, we execute 10,000 random range queries
with r predicates according to the following pattern:

SELECT * FROM forest data set WHERE

attribute A1 BETWEEN value v⊥1 AND value v>1 AND

· · ·
attribute Ar BETWEEN value v⊥r AND value v>r

After randomly choosing subsets of attributes, range pred-
icates are generated from two uniformly and randomly se-
lected values from the attribute’s domain. To avoid any in-
terference with the q-error-metric [12] throughout the eval-
uation, we only generate queries with non-empty result sets.

3.1 Focused Sampling
Although sampling might be reasonably fast for in-memory

systems due to efficient random access, ad-hoc sampling en-
tails a considerably stronger overhead in comparison to his-
tograms. In the following, we describe an online sampling
approach that provides fast estimates from fresh data.

Instead of materializing tuples—referenced by sampled tu-
ple identifiers (TIDs)—and evaluating the filter on the ma-
terialized sample afterwards, we directly evaluate the filter
predicates over the respective base columns of the tuples.
The advantages are two-fold: First, there is no need to copy
or update tuples separate from the base table. Second, we
potentially skip page accesses for conjunctive filters: Given
a conjunctive filter of four predicates, we skip the evaluation
of three predicates if the respective attribute of the random
tuple does not qualify the first predicate. This is especially
appealing for in-memory column stores where different at-
tributes of one tuple are stored across different pages. Thus,
the number of random page accesses can be effectively re-
duced during the sampling process. The example given in
Figure 4 summarizes our core idea and demonstrates that

Figure 4: Pages of base table referenced by random tuple
identifiers (TIDs). Grey parts are not accessed.



we skip half of the random accesses due to non-qualifying
values (depicted in red font) of the first attributes. Similar
to traditional sampling, we divide the number of qualifying
tuples by the total number of sample tuples, giving a selec-
tivity estimate of 1/6 for the conjunctive filter. To bypass
the overhead of generating random numbers (TIDs), a vector
of n random numbers is generated only once. Accordingly,
each query evaluated over a sample of size k uses the same
first k TIDs of the vector. Note, the random vector requires
just a fraction of the memory consumed by an equally sized
materialized sample with all attributes (1/55 in case of for-
est data) and only needs to be updated if the base table
cardinality and therefore the sample space changes.

Evaluation: For different sample sizes from 1,000 to 11,000
tuples and filters with r conjunctive predicates, r∈{3, 5, 7},
we measure the cumulative estimation time for 10,000 ran-
dom range queries according to the following approaches:

1. traditional: Generate random TIDs and copy attribute
values of r columns, referenced by the TIDs. Evaluate
r filter predicates over the materialized sample.

2. trad. – fixed TIDs: Same as (1), but instead, random
TIDs are generated only once for each query.

3. focused – w/o enumeration: Filter predicates are eval-

uated over table tuples, referenced by (fixed) random
TIDs, while skipping unnecessary accesses (cf. Fig. 4).

4. focused – with enumeration: Same as (3), but the filter
predicates are sorted in ascending order according to
their single selectivity, e.g. using histograms, to skip
random accesses as early as possible.

In this evaluation, we use a custom storage engine imple-
mentation that imitates a modern in-memory column store.
Again, we run all experiments on a 64-bit Linux machine
with an Intel i7-6700 CPU and share the implementation [4].
As can be seen in Figure 5, reusing random TIDs drastically
reduces the required estimation time. Besides circumvent-
ing the generation overhead, fixed random TIDs increase the
probability of accessing cached values. Further, evaluating
the filter predicates directly over the base table and skip-
ping accesses by focusing on references that still may con-
tribute qualifying tuples, consistently demonstrates fast es-
timates. Prioritizing selective predicates achieves a speedup
of 65% on our focused approach. Irrespective of the num-
ber of predicates, starting with the most selective predicates
results in an average estimation latency of 7µs using 103 ran-
dom TIDs and around 100µs for 104 random TIDs. The gap
between the reported methods continues to widen as filters
become more complex —a likely scenario in real world ap-
plications [18]. Transferred to our UE building blocks with
the assumption of a maximum sample size of 104 tuples, our
focused sampling would entail an additional planning time
overhead of < 1s for all 113 JOB queries in total while the
sketch-based approach of Cai et al. [2] takes > 1000s.

3.2 Conditional Sampling
To improve estimation accuracy, we integrate common in-

dex (or index-like) structures. Thus, our conditional sam-
pling approach can be seen as a conceptual extension of
index-based join sampling [8] to filter selectivity estimation.

Let q := A=1∧B=2∧C=3∧D=4 be a conjunctive filter
over the attributes A, B, C, D. Assuming an available index
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Figure 5: Cumulative sampling time for 10,000 queries.

for attribute A, we proceed as follows: Using the index, we
sample TIDs of tuples that qualify the respective predicate
A = 1, uniformly at random. Similar to our focused sam-
pling approach, we access and count the qualifying tuples
for the subexpression B= 2 ∧ C= 3 ∧D= 4. This gives the
conditional probability, that is the fraction of tuples qualify-
ing B=2∧C=3∧D=4 under the condition A = 1. In other
words, we apply sampling to estimate the conditional prob-
ability p(B= 2, C= 3, D= 4|A= 1). Since we are interested
in the joint probability, we apply Bayes’ rule:

p(A=1, ..., D=4) = p(B=2, C=3, D=4|A=1)p(A=1),

where p(A=1) is given by a traditional histogram or by the
index itself. Figure 6 summarizes our core concept. Here,
we revisit our example from Figure 4 and apply our condi-
tional sampling approach. Due to the predicate selectivity
p(A = 1) = 0.5, we only need to consider half of the ran-
dom TIDs. Since we already know that the residual TIDs
qualify A = 1, there is no need to access the respective at-
tribute. If we use the same number of random accesses as
before, this approach virtually increases the sample size by
a factor of p(A = 1)−1 and therefore improves estimation
quality. Moreover, as we potentially skip a highly selective
predicate, we may circumvent the worst-case for sampling
where no sample tuple qualifies the conjunctive filter.

Evaluation: We consider a fixed budget of sampled tuples
and analyze the effect of our conditional sampling approach
on estimation accuracy. Besides the traditional approach of
directly sampling for the joint probability, we analyze:

1. conditional - random pred.: Using an index, we sample
conditional TIDs (cf. Fig. 6) for a randomly selected
predicate of the conjunctive filter.

2. conditional - most selective: An index is used to sam-
ple conditional TIDs for the most selective predicate.

To measure estimation accuracy, we use the multiplica-
tive error of the actual and estimated selectivity, known as

Figure 6: Conditional Sampling.
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q-error metric [12]. In the difficult case of an empty sample
(i.e. no sample tuple satisfies the filter expression), instead
of returning 0, we use the geometric mean of the proba-
bilistic lower and upper bound for qualifying table tuples as
described in [11]. Note, the conditional sample is still a ran-
dom sample. Therefore, the probabilistic bounds also apply
to the conditional selectivity p(B=2, C=3, D=4|A=1).

Figure 7 comprises the q-error on a logarithmic scale for
conjunctive queries with r = 5 predicates and three differ-
ent sample sizes. The whiskers of each box span the 5% to
95% quantile. That is, we focus on the general performance
rather than the outliers. The relative performance of the
outliers is dictated by the handling of empty samples which
occur far less frequently when using conditional sampling.
In particular, providing a conditional sample for the most
selective predicate yields the smallest maximum q-error in
all considered scenarios and reduces the relative number of
empty samples from 10% to < 1% when using 10k sample
tuples. While using an index for the targeted attribute of a
randomly selected predicate significantly improves over tra-
ditional sampling, we see a tremendous accuracy boost when
conditional TIDs are sampled for the most selective predi-
cate. In fact, conditional sampling with 1k tuples achieves
a median q-error of 1.15 and outperforms traditional sam-
pling using 10k tuples. Interestingly, if the selectivity of the
predicate over the indexed attribute falls below the sample
fraction, the conditional sample explores all qualifying tu-
ples and thus gives an exact estimate.

Discussion. If no full index is provided, we may use a zone-
map [17] on the most selective predicate and sample TIDs
from valid zones. Then, we proceed analogously to the full
index case, except that we may access tuples where the pred-
icate does not qualify. In line with our focused approach,
we reduce the number of random accesses by intersecting all
valid zones for each predicate. If a random TID lies within
a zone that is invalid for at least one predicate, we count the
tuple as non-qualifying without actually accessing it.

4. UES: THE ALGORITHM
This section provides a concluding walk-through of our

building blocks with regard to Algorithm 1. Starting with
the problem definition: The algorithm takes as input a set
of relations and outputs a tree that dictates the join order.
Here, we expect that there is at least one join-path that
connects all tables without using cross-products. If cross-
products are necessary, we apply them as late as possible in
the join tree. S-Block: As we always push-down filter oper-
ators, our scheme relies on precise estimates for the number
of qualifying tuples from the base table. To achieve these
cardinality estimates fast and independent of the filter type,

Algorithm 1: UES

Input: a set of relations to be joined R
Output: join tree T

1 T = empty join tree
2 | · |σ ∼ cardinality estimate for filtered base table
3 n m tab = tables of R that are part of any n:m-join
4 pk fk tab = R \ n m tab // set minus

5 MF = dictionary that maps (table, attribute) pairs to
maximum frequency moments

6 initialize MF according to top-k statistics
7 upper = dictionary mapping n:m candidate to bound
// enumerate n:m joins

8 while n m tab not empty do
// apply non-expanding operations

9 for Ri ∈ n m tab do
10 upper(Ri) =

min{min(|Ri|σ, MF(Ri, fk attr) ∗ |pk rel|σ)
| Sj ∈ joinPartners(Ri, pk fk tab)
∧ (fk attr, pk attr) ∈ joinAttr(Ri, Sj)}

11 if T is empty then
12 T = arg min

Ri∈n m tab
upper(Ri)

13 continue

14 best upper = ∞
15 for Ri ∈ joinPartners(T, n m tab) do

// get minimal possible upper bound if

multiple join attributes are present

16 cur upper =

min{min
(

upper(T )
MF(T,a1)

, upper(Ri)
MF(Ri,a2)

)
∗ MF(T, a1) ∗

MF(Ri, a2) | (a1, a2) ∈ joinAttr(T,Ri)}
// greedy selection of next n:m join

17 if cur upper < best upper then
18 best upper = cur upper
19 next n m = Ri

// update partial join tree

20 if upper(next n m) < |next n m|σ then
/* apply pk-fk joins first */

21 T = (T ./ (...((next n m ./ S1
i ) ./ S2

i )...Sni )),

Sji ∈ joinPartners(next n m, pk fk tab)

such that: |Sji |
σ ≤ |Sj+1

i |σ ∧ Sji 6= Ski , ∀j 6= k
22 else

/* apply n:m join first */

23 T = (...(((T ./ next n m) ./ S1
i ) ./ S2

i )...Sni ),

Sji ∈ joinPartners(next n m, pk fk tab)

such that: |Sji |
σ ≤ |Sj+1

i |σ ∧ Sji 6= Ski , ∀j 6= k
// register new bound and update statistics

24 upper(T ) = best upper
25 for (a1, a2) ∈ joinAttr(T, next n m) do
26 MF(T, a1) = MF(T, a1) ∗ MF(next n m, a2)
27 pk fk tab = pk fk tab \ pk fk jp
28 n m tab = n m tab \ next n m

29 return T

we provide our custom sampling approach (cf. Section 3) in
Line 2. Besides pushing down the regular filter operators, we
always apply pk-fk joins prior to n:m joins. Remember that
pk-fk joins cannot expand the n:m candidates, and thus are
treated as special filters. U-Block: In Line 9-10, we assess
the maximum size of the n:m candidates after applying each



non-expanding operator. Therefore, we combine the bound
formula for pk-fk joins with the sample-based cardinality es-
timates of pre-filtered base tables. Although a combination
of pk-fk joins may reduce the join cardinality beyond a sin-
gle pk-fk join, there is always one pk-fk join that drives the
guaranteed upper bound towards its minimum. Since pk-fk
joins are a special case, we can transform the bound formula
and minimize the following in Line 10:

upper(σ(Ri) ./ σ(Sj))

= min

(
|σ(Ri)|
MF(Ri)

,
|σ(Sj)|
MF(Sj)

)
∗MF(Ri) ∗MF(Sj)

= min

(
|σ(Ri)|
MF(Ri)

,
|σ(Sj)|

1

)
∗MF(Ri) ∗ 1

= min (|σ(Ri)|, |σ(Sj)| ∗MF(Ri))

where Sj is a pk-fk join partner of Ri. E-Block: We initialize
the join tree with the n:m candidate that provides the small-
est estimated cardinality after applying all non-expanding
operators in Line 11-12. In the consecutive iterations, we
order the n:m joins according to the greedy policy whereby
Line 16 determines the minimal upper bound of the next in-
termediate result by considering all pairs of join attributes.
After selecting the next n:m join, we decide the position of
the respective pk-fk joins in Line 20-23. If we are guaranteed
to reduce the size of the n:m candidate, we apply the pk-fk
joins first, thus adding a new branch to the tree. Otherwise
we apply the pk-fk joins after the n:m join which gives a
linear sub-tree. Lastly, in Line 24-28, we register the upper
bound of the intermediate join tree, update the frequency
statistics and remove already considered tables from the re-
maining join candidates.

5. CONCLUSION
This paper presents a simple, yet effective concept to de-

termine good join orders for arbitrary SPJ-queries. Most im-
portantly, our concept is founded on common table statistics
and accurate selectivity estimates. Based on that, we derive
a simple upper bound for join cardinalities and enumerate
the join candidates accordingly. To guarantee accurate se-
lectivity estimates, we use a customized sampling approach
that exploits specific access patterns and index structures.
Using the popular Join-Order-Benchmark, we demonstrate
faster query response times compared to the state-of-the-art
built-in optimizers of Postgres and MonetDB. In comparison
to the most recent sketch-based upper bound approach [2],
we achieve highly competitive execution times while cutting
away the unacceptable planning time overhead. Although
traditional histograms seem sufficient to estimate decent fil-
ter selectivities for the JOB queries, we observe a strong ac-
curacy degradation when adding more complex filter predi-
cates to the JOB queries. Therefore, we envision the integra-
tion of our combined UES -concept into modern in-memory
column-oriented DBMS where complex filter expressions are
no exception in real-world OLAP scenarios.
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