
VergeDB: A Database for IoT Analytics on Edge Devices

John Paparrizos1, Chunwei Liu1, Bruno Barbarioli1, Johnny Hwang1, Ikraduya Edian2,
Aaron J. Elmore1, Michael J. Franklin1, Sanjay Krishnan1

1 University of Chicago 2 Bandung Institute of Technology

{jopa, chunwei, barbarioli, jih, aelmore, mjfranklin, skr}@uchicago.edu

ABSTRACT
The proliferation of Internet-of-Things (IoT) applications re-
quires new systems to collect, store, and analyze time-series
data at an enormous scale. We believe that meeting these
scaling demands will require a significant amount of data
processing to happen on edge devices. This paper presents
VergeDB, a database for adaptive and task-aware compres-
sion of IoT data that supports complex analytical tasks
and machine learning as first-class operations. VergeDB
serves as either a lightweight storage engine that compresses
the data based on downstream tasks or as an edge-based
database that manages both compression and in-situ analyt-
ics on raw and compressed data. By optimizing for available
computation resources, storage capacity, and network band-
width, VergeDB will take decisions to maximize throughput,
data compression, and downstream task accuracy.

1. INTRODUCTION
The rapid growth of the Internet of Things (IoT) has fa-

cilitated new monitoring applications that have revolution-
ized entire industries, such as the automobile, agriculture,
healthcare, retail, manufacturing, transportation, and utili-
ties industry [38]. In the next few years, analysts estimate
that there will be billions of deployed IoT devices generat-
ing zettabytes (ZB) of data [17, 22]. This proliferation of
data, mainly consisting of time series, poses new challenges
for data collection, processing, storage, and analysis [3, 53].

While the database community has extensively studied
analytics over sensor networks in the early 2000s [51], the
hardware and software assumptions that underpinned this
research have dramatically changed since. First, edge de-
vices are significantly more capable than two decades ago
and can perform far more complex operations on the data
before central aggregation. Next, especially for time-series
data, there has been a shift in analytics workloads from SQL-
based analytics towards machine learning. We argue that
today’s IoT data management systems do not adequately
embrace these two transitions in computing.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

(a) (b)

Figure 1: Effectiveness of data reduction methods on two
downstream tasks: (a) autoregressive modeling of a time-
series of particles using different subsampling methods; and
(b) classification accuracy of 128 time-series datasets [11]
using similarity-preserving representation learning methods.

Bringing these two pieces together is challenging because
they are actually profoundly coupled. Capable edge devices
can make complex decisions about: (i) private data that
should be discarded; (ii) useful data for triggering actions
that should be analyzed in real time; and (iii) historic or
unimportant data that should be aggressively compressed
or aggregated. However, machine learning data consumers
are highly sensitive to artifacts in the data collection process
that affect feature distributions. Therefore, small changes in
data compression or aggregation can greatly affect the task
accuracy [48]. While pushing operations on edge devices can
reduce downstream computation, storage, memory, power,
and bandwidth, any choices have to be made conscious of
the downstream task. IoT data management is missing such
an optimization opportunity: an edge-based system that can
rapidly ingest data from sensors while optimizing for com-
pression, aggregation, and filtering based on the needs of a
downstream analytics consumer.

Accordingly, this paper presents VergeDB, a database for
adaptive and task-aware compression of IoT data that sup-
ports complex analytical tasks and machine learning as first-
class operations. VergeDB allows for either lightweight stor-
age engines that compress the data based on downstream
tasks or for edge-based databases that manage both com-
pression and in-situ analytics on raw and compressed data.
One should think of VergeDB as an intermediary between
the “fire hose” of IoT data and user-written analytics pro-
grams. VergeDB will optimize for available computation re-
sources, storage capacity, and bandwidth when making de-



Figure 2: System overview.

cisions in order to maximize throughput, data compression,
and result quality, while adhering to resource constraints.

While the database community has developed an exten-
sive theory on how to appropriately select data compression
schemes [19], much less attention has been given in their ef-
fectiveness for typical IoT analytics tasks, e.g., anomaly de-
tection. As a result, existing IoT solutions suffer from three
main drawbacks: (i) solutions rely on lossless compression
methods that do not support directly any form of analytics
(e.g., byte-oriented compression methods that require full
decompression before any operation can be performed [55])
or support lightweight columnar encoding that has limited
benefits for numeric data types; (ii) solutions rely on lossy
compression methods tailored to support only specific oper-
ations (e.g., sampling methods supporting aggregation op-
erations [1, 9]); or (iii) solutions rely on quantization and
indexing mechanisms that cannot easily be extending to ma-
chine learning tasks (e.g., popular time-series databases1).

To illustrate this point, in Figure 1 we present two exam-
ples of the effectiveness of compression methods in a autore-
gressive modeling task and a classification task. First, we
show how new non-uniform sampling methods [27] and uni-
form sampling may be more accurate than a block sampler
(Section 4.2) in terms of reconstruction error, but can be
significantly worse when compared in terms of end-to-end
performance on an autoregressive model (Figure 1a). Sec-
ond, we demonstrate how a recent time-series sparse coding
method, SIDL [54], that is known it can support aggrega-
tion queries accurately [35], fails to accurately support time-
series classification unlike GRAIL [40] across 128 time-series
datasets of the UCR time-series archive [11] (each circle rep-
resents a dataset in Figure 1b and circles above diagonal
show better classification accuracy for GRAIL).

VergeDB is an important step to move beyond the ba-
sic SQL-like analytics towards anomaly detection, regres-
sion, clustering, and classification. VergeDB sits between
the source of data and a downstream analytics consumer
that optimizes which data to collect, how accurately to rep-
resent it, and how to allocate edge resources. By pushing
algorithms to the edge devices, VergeDB alleviates the strain
of centralized IoT solutions that can have deteriorating per-
formance with the increasingly larger number of IoT devices
and data. However, as our motivating results suggest, the
task must inform these decisions.

1https://crate.io and https://www.timescale.com

2. SYSTEM OVERVIEW
In Figure 2, we outline the key components of VergeDB.

Our initial prototype is written in Rust. We elaborate on
the compression methods in more detail in Section 4.

VergeDB allows the collection and aggregation of data
from multiple device clients. The database can be config-
ured to accept multiple different signals that corresponds to
a metric that the clients produce, such as temperature and
humidity ( 1© and 2©). For each signal, a server-buffered sig-
nal is created when initialized. The server accepts data gen-
erated by the remote clients ( 3©), and the buffered signal seg-
ments the data into fixed size arrays, attaches a timestamp
for the segment, and pushes it to the uncompressed buffer
( 4©). As the uncompressed buffer is being filled, compres-
sion threads offload data from the uncompressed buffer and
process them ( 5©). The compression threads are adaptively
configured to use different compression algorithms based on
storage capacity, network bandwidth, ingestion rate, and
specified analytical task. If the uncompressed buffer exceeds
its capacity, which may happen when the ingestion rate ex-
ceeds the compression speed, the data is flushed to the disk.
The compression threads push the compressed data into a
compressed buffer pool, which can also flush to disk ( 6©).
VergeDB can execute queries or analysis (e.g., clustering or
outlier detection) either over the compressed data or the raw
time-series segments in the uncompressed buffer.

VergeDB currently supports byte-compression techniques,
such as Gzip and Snappy, and lightweight encodings, such
as dictionary encoding, Gorilla [44], and Sprintz [5] for nu-
meric data. VergeDB also supports specialized time-series
representation methods (i.e., lossy compression), such as
Piecewise Aggregate Approximation (PAA) [52, 28], Fourier
transform [15], and sparse and dense representation learning
methods [54, 40] for advanced analytical workloads. These
approaches differ in terms of compression ratio, compression
throughput, and query efficiency and accuracy. There is no
one size fits all approach for any time series or task. With
system resources limitations found in edge devices, such a
system must be able to adaptively switch the compression
approach according to the data features (e.g., data arriving
rate, sortedness, and cardinality) and target tasks. For ex-
ample, by using principled properties of the Fourier trans-
form, we can effectively control computation and memory
usage during training and inference for Convolutional Neu-
ral Networks, while retaining high prediction accuracy and
improving robustness to adversarial attacks [13].

Compression should not only reduce storage requirements,
but also enhance the query performance. Most current nu-
meric compression methods are not query-friendly as data
need to be uncompressed before query execution. Such de-
compression introduces unnecessary overhead for a query
which counters the goal of an efficient edge database. There-
fore, more powerful and efficient compression methods for
time-series data are needed to not only compress the data
effectively but also run queries directly on encoded data
under limited edge resources. In Section 4.1, we present
a precision-aware compression method that works on nu-
meric data of bounded range, which accelerates filtering op-
erations while achieving competitive compression ratio and
throughput. In Section 4.3, we present a solution to quantize
learned similarity-preserving representations in order to en-
able a multitude of data mining and machine learning tasks
to efficiently retrieve similar time series even under resource-



constrained settings. Learning representations that preserve
arbitrary, user-defined, similarity functions is crucial con-
sidering recent studies that have demonstrated significant
trade-offs between accuracy and efficiency for downstream
tasks based on the choice of similarity function [40, 43].

In addition to multiple compression techniques, the sys-
tem also allows for data subsampling methods. Like com-
pression, there is no single sampling scheme that is univer-
sally optimal for a given dataset and analytics. We find that
uniform sampling is effective at capture global properties
(e.g., overall mean), but ineffective at capturing local trends
(e.g., those that would be useful features in an anomaly de-
tector) so we develop new alternatives (Section 4.2). Sub-
samples could be further compressed by the aforementioned
methods in a hierarchical fashion.

Beyond numeric data, VergeDB also supports string at-
tributes that are often associated (as metadata) with time-
varying measurements. Recent projects on string compres-
sion show impressive compression and query benefits, espe-
cially for attributes sharing a distinctive pattern (e.g., IP
address, log tag, and location coordinates) [26, 7, 34].

Currently, VergeDB permits each signal to be associated
with one or more compression schemes so that multiple ap-
plications can be supported. We are working on a controller
to automatically select the compression approach, given the
workload, data arrival rates, and resource capacity.

3. RELATED WORK
We refer the reader to [14] for an extensive overview of

representation methods for time series and to [25] for a sur-
vey on time-series database management systems.
Approximate query processing: Approximate query
processing (AQP) is a widely studied paradigm for accel-
erating computation by enabling analytics over some form
of compressed data. Based on the error guarantees, we di-
vide AQP methods into probabilistic and deterministic meth-
ods. Probabilistic methods approximate the query answers
over a small sample of the data and provide some confi-
dence value for the approximated answer [1, 9, 39, 50]. In
contrast, deterministic methods offer approximate answers
with perfect confidence. The majority of the work has fo-
cused on supporting aggregation operations for a single time
series [10, 20] with the exception of recent work that focuses
on correlation-based queries for multiple time series [32].
Data compression: Database systems rely on data com-
pression techniques (e.g., histograms) [23, 45] to estimate the
cardinality [23] and selectivity [46] of specific queries. Un-
fortunately, such summarization techniques are not suitable
for time-series data. The signal processing and time-series
communities has devoted significant effort to study repre-
sentation methods that reduce the high dimensionality of
time series and lower the storage and computational costs.
Time-series representations: The most prevalent tech-
niques in that context represented time series using Singular
Value Decomposition (SVD) [30, 47], Discrete Fourier Trans-
form (DFT) [2, 15], and Discrete Wavelet Transform (DWT)
[8]. The Piecewise Aggregate Approximation (PAA) [52, 28]
represents time series as mean values of segments, whereas
other approaches, namely, Piecewise Linear Approximation
(PLA) [49] and Adaptive Piecewise Constant Approxima-
tion (APCA) [29], fit a polynomial model or use a constant
approximation for each segment, respectively. The output
of all previous methods is numeric. Symbolic methods ad-

ditionally quantize the numeric output. For example, the
Symbolic Aggregate approXimation (SAX) [33] and rely on
alphabets to transform PAA epresentations into short words.
A number of works exist that rely on dictionary-based com-
pression methods to support more advanced analytics, such
as classification and similarity search. For example, in [36], a
data-aware version of PAA uses vector quantization to con-
structa codebook of segments and develop a multi-resolution
symbolic representation to support similarity search queries.
In [31], a Limpel-Ziv dictionary-based compression method
for time series is proposed, which can be used for time-series
classification [21]. Tristan [35], approximates time series as
a combination of time-series patterns using an extracted dic-
tionary. The sparse weights (or coefficients) that correspond
to each atom in the dictionary serve as the new compressed
representation of the time series.

In addition to high-level time-series representations, there
are many compression techniques for numeric data, which
perform differently based on the time-series distribution.
Record-oriented compression transform each record into
a compact representation. Popular record-oriented com-
pression includes bit-packed encoding, delta encoding, run-
length encoding, dictionary encoding and their hybrid vari-
ations for integer types, and Gorilla [44] and Sprintz [5]
for float types. Bit-packed encoding stores input value us-
ing as few bits as possible to save space. Delta encoding
saves delta between consecutive records. Run-length en-
coding saves consecutive repeated records with tuple<value,
times>. Dictionary encoding [34] uses bijective mapping to
replace records with a more compact code. Gorilla [44] is an
in-memory time-series database developed by Facebook. It
introduces two encoding to improve delta encoding: delta-
of-delta for timestamps, which is usually a increasing inte-
ger sequence. XOR-based encoding for value domain, which
is float type. In the XOR-based float encoding, successive
float values are XORed together, and only the different bits
(delta) are saved. The delta is then stored using control
bits to indicate how many leading and trailing zeroes are in
the XOR value. Gorilla is the state-of-the-art approach for
float data compression. Sprintz [5] was originally designed
for integer time-series compression. Sprintz employs a fore-
cast model to predict each value based on previous records.
Sprintz then encodes the delta between the predicted value
and the actual value. Those delta values are usually closer
to zero than the actual value, making it smaller when en-
coded with bit-packed encoding. It is also possible to apply
Sprintz to floats by first quantizing the float into integer.
Those record-oriented compression maintains entry bound-
aries during compression, which enables direct access and
filtering on compressed records without decoding.
Byte-oriented compression encodes the data stream in
byte level. Popular techniques, such as Gzip and Snappy,
derived from the LZ77 family [55], which looks for repeti-
tive sub-sequence within a sliding window on the input byte
stream, and encodes the recurring sub-sequence as a ref-
erence to its previous occurrence. For better compression
ratio, Gzip applies Huffman encoding on the reference data
stream. Snappy skips Huffman encoding for higher through-
put. Byte-oriented compression treats the input values as
byte stream and encodes them sequentially. The data block
needs to be decompressed before accessing original values.
Time-series subsampling: Time-series subsampling has
been extensively investigated from a theoretical perspective



Volta
ge

PM
U

CPU
Sto

ck
UCR

Tem
p

0.0

0.2

0.4

0.6

0.8

1.0

C
om

pr
es

si
on

R
at

io
(s

m
al

le
r

is
b

et
te

r)

SPLITDOUBLE

GORILLA

SPRINTZ GZIP SNAPPY DICT

(a) Compression Ratio

Volta
ge

PM
U

CPU
Sto

ck
UCR

Tem
p

0

50

100

150

200

250

300

350

400

C
om

pr
es

si
on

T
hr

ou
gh

pu
t(

M
B

/s
)

SPLITDOUBLE

GORILLA

SPRINTZ GZIP SNAPPY DICT

(b) Compression Throughput

Volta
ge

PM
U

CPU
Sto

ck
UCR

Tem
p

0

200

400

600

800

1000

1200

R
an

ge
(M

B
/s

)

SPLITDOUBLE

GORILLA

SPRINTZ GZIP SNAPPY DICT

(c) Range Filtering

Figure 3: Compression performance on representative datasets: Voltage generated by electro-mechanical energy conversion.
PMU recording synchrophasor events in a power grid. CPU usage data from the Azure public dataset. Stock including daily
price for all US-based stocks. UCR time series classification archive. Temp including daily temperature of major cities.

[12, 37], with several efficient algorithms and known guar-
antees. However, most practical systems today choose a
uniform sampling scheme where data points are sampled at
a known interval, and there is substantial work on how to
adaptively tune that interval [18]. Our experiments sug-
gest that uniform sampling, even when adaptive, is not a
panacea and can loose local structure. Non-uniform sam-
pling work includes BlazeIt, a database system that uses
Empirical Bernstein [27] to subsample time series data, we
find that such a method is effective at counting events but
not as good for trend estimation. In VergeDB, we develop
new adaptive sampling schemes that are better tuned for
machine learning data consumers.

4. SYSTEM COMPONENTS
We outline three key novel compression methods for sup-

porting analytics in VergeDB. Individually, these methods
support a wide range of database operations, but the meth-
ods are complementary and can be composed to support a
wider range of advanced analytical operations and machine
learning tasks. For the similarity-preserving compression
method, GRAIL, a preliminary report is available [40].

4.1 Precision-Aware Data Compression
The main goal of compression for time-series databases is

to build an efficient and effective compression approach for
numeric data. The compression should not only keep the
compressed data size smaller, but also support fast query ex-
ecution, which includes fast filtering, aggregations, distance-
based similarity evaluations, and materialization for ma-
chine learning tasks. We start by studying the aforemen-
tioned compression techniques on a wide range of datasets
that cover common IoT use cases.

We measure compression ratio, compression performance,
and range filtering on float values only, as shown in Figure
3. The state-of-the-art approach, Gorilla, does not achieve
satisfactory results on most datasets. On the CPU dataset,
the compressed data is even larger than the original one.
Gorilla performs poorly on those datasets as floats provides
more than required precision which leads to significant bit
changes even with a subtle value change. In terms of com-
pression throughput, as shown in Figure 3b, Sprintz achieves
a good compression throughput overall, but it fails on the

PMU dataset where float quantizing introduces integer over-
flow issue. While Snappy has high compression throughput
and range filtering for many datasets, it does not compress
effectively on most datasets. As expected, GZip exhibits the
inverse behavior. Dictionary encoding (Dict) works well the
cardinality is low enough that recoding float values as inte-
ger keys can provide good compression. Query performance
(i.e., range filtering) varies with different compression tech-
niques as shown in Figure 3c. Sprintz achieves high filtering
throughput overall, since we can partially avoid decoding
the encoded value by predicate rewriting. The float predi-
cate value is translated (quantized) into the target integer
before the filter execution, but Sprintz still needs to decode
the value into an integer for filter evaluation. Except for
Sprintz, full decompression is needed for all the other ap-
proaches when filtering values.

A good numeric data compression should be able to work
directly on encoded data directly without decoding to speed
up query performance. However, the amount of precision
provided with standard float or double formats limits either
the compression ratio or throughput performance. Given
that many IoT domains work on devices with bounded pre-
cision (such as a thermometer giving 1 or 2 decimal points of
precision), we are developing a new compression technique,
SplitDouble, to work on bounded range data with fixed pre-
cision (such as numeric in PostgeSQL) for float types. We
decompose the data into integers and decimals with a colum-
nar format, and use a combination of bit-packing and delta
encoding. As shown in Figure 3, SplitDouble provides good
compression ratios, compression throughput, and range fil-
tering. We are currently exploring methods to improve the
compression throughput and query support for this method.

4.2 Subsampling Compression
Subsampling can be a powerful tool to reduce the amount

of data to be stored and analyzed. However, as we saw in the
introduction, existing methods can fail to capture temporal
structure. We bring ideas from time-series bootstrap [12]
to design a new time-series subsampler that captures local
trend information more accurately than popular alternatives
by sampling contiguous blocks of data. Ideally, this method
should be able to subsample blocks from the data and stop
when the a convergence criteria has been met. There are



Coefficient 1 Coefficient 2
Autoregressive coeficients

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Es

tim
at

ed
 v

al
ue

Original Online Subsampler Uniform Empirical Bernstein

Figure 4: Synthetic generated AR(2) time series and co-
efficients retrieved from 0.35% of the data using different
subsampling methods

two important pieces of the method that are vital to its
effectiveness: the block size and the stopping criteria. We
can build an entire family of samplers by using different
criteria for stopping conditions and block size parameters
(we defer this discussion to future work).

We applied the block subsampling method to a sythetic
time series generated from a autoregressive model of order
2. The goal in this particular scenario is to estimate two au-
toregressive coefficients of the stochastic process. Obtaining
good estimates of coefficients in an autogressive process is
extremely useful in tasks ranging from prediction of future
events to simulating the original stochastic process. Based
on Figure 4, the results of the block subsampling are far
superior to the other methods. They are within 5% of the
ground truth and in this particular case using only 0.35% of
the original data. All subsampling methods were controlled
by the number of data points that they would generate, and
the accuracy can be indirectly controlled by the convergence
rate of the subsampling method.

4.3 Similarity-Preserving Compression
The most accurate time-series mining methods cannot of-

ten scale to millions of time series [14, 4]. This is because, in
addition to large time-series volumes, the temporal ordering
and high-dimensionality complicates the comparison of time
series and increases the computation and storage require-
ments of methods operating directly over time series. The
design of effective solutions require decisions for three core
components [14]: (i) the representation method to compress
time series; (ii) the comparison method to determine the
similarity between time series and (iii) the indexing method
to organize and retrieve similar time series from massive col-
lections. Unfortunately, these components have largely been
investigated and developed independently [40], often result-
ing in mutually incompatible methods.

To address this issue, we recently presented the GRAIL
framework [40] to automate the process of learning how to
compress time series while preserving user-specified similar-
ity functions. This differs substantially from current ap-
proaches (see Section 3) that are agnostic to the similar-
ity function needed in downstream tasks. In Figure 1b, we
illustrated this point by presenting a classification experi-
ment. Specifically, when a common classifier operates over
GRAIL’s representations achieves substantially better clas-
sification accuracy in comparison to when it operates over
compressed data generated with a task-agnostic method.

With GRAIL, we coupled two out of the three core compo-

SIFT1M GIST1M SEISMIC SALD
0.0

0.2

0.4

0.6

0.8

A
cc

u
ra

cy

SIFT1M GIST1M SEISMIC SALD
0

100

200

300

400

R
u

n
ti

m
e(

s)

C-GRAIL BOLT PQ OPQ

Figure 5: Precision (accuracy) and runtime performance of
quantization methods that accelerate similarity search on
established benchmark datasets [6]

nents mentioned before, namely, the representation method
with the comparison method. An important next step is to
couple a method that quantizes numeric vectors and acceler-
ates similarity search. Such a method, in combination with
GRAIL’s representations that preserves time-series similari-
ties will enable data mining and machine learning tasks (e.g.,
clustering, classification, pattern search, anomaly detection,
sampling, and visualization [41, 42, 40]) to efficiently re-
trieve similar time series even under resource-constrained
settings. We are actively exploring such quantization meth-
ods. In particular, we focus on methods that rely on clus-
tering to partition the search space. In simple terms, every
vector is associated with a handful of representative exam-
ples and, therefore, when a new time series arrives, it suf-
fices to compare only against such representative examples,
which avoids looking up the vast portion of dissimilar time
series. In Figure 5 we report preliminary results of our Clus-
tered GRAIL (C-GRAIL) method against rival approaches
for numeric vector quantization. We measure the precision
accuracy of retrieving the true nearest neighbor as well as
the runtime cost it takes to achieve that. We observe that
C-GRAIL achieves comparable runtime performance to one
of the fastest but less accurate methods, namely, Bolt [6].
Interestingly, our method outperforms in terms of accuracy
two state-of-the-art product quantization methods, namely,
PQ [24] and OPQ [16].

5. PROTOTYPE SYSTEM EVALUATION
To evaluate the ingestion throughput of our prototype im-

plementation, we set up an experiment where a remote client
(residing in the same datacenter) is sending messages over
the network to VergeDB. The batch size of each message
was fixed to 64 points of 64-bit float values and, overall,
400M points were received. We measure the time required
to complete the ingestion, from which the throughput was
calculated. We repeat the experiment 10 times and report
the results without compression and with two popular com-
pression methods, namely, GZip and PAA, in Figure 6. We
observe an increase in the throughput as we vary the number
of threads in all three configurations. The sublinear growth
is due to the increasing lock contention. Interestingly, for
PAA, the compression thread completes each segment faster
than in the case of GZip, causing a greater contention on
the uncompressed bufferpool lock. By having a closer look
at the compression rates, PAA compresses almost 100% of
the segments while maintaining on ingestion rate of over
1.8M points/sec even with only one thread. In contrast,



Figure 6: Average ingestion throughput of VergeDB without compression and with two popular compression methods.

Figure 7: Compression throughput for two popular compres-
sion methods with up to 8 compression threads

GZip compresses on average 1% of the ingested segments.
VergeDB is able to ingest data for multiple signals without
loss in the overall throughput. By adaptively changing the
number of available threads for compression based on the
input data rates and compression cost, VergeDB could even-
tually control the rate at which data is being compressed in
order to minimize storing uncompressed data albeit at the
cost of some ingestion throughput.

Figures 7 and 8 show the compression throughput while
varying the number of compression threads and compression
batch sizes (number of segments fetched per lock), respec-
tively. For GZip, we observe that by increasing the num-
ber of compression threads, the compression throughput im-
proves while increasing the compression batch size does not
help because GZip is a computation-intensive compression
workload. On the other hand, PAA is much faster than
GZip so that lock contention becomes the bottleneck. By
increasing the compression batch size, PAA achieves signifi-
cant improvement in compression throughput while adding
more compression threads does not result in an improvement
but adds locking overhead.

These preliminary results demonstrate VergeDB’s ability
to ingest high throughput data and the importance of com-
pression selection while adhering to available resources.

6. CONCLUSION
As IoT adoption grows, so will the amount of data gener-

ated by devices to be stored and analyzed in the cloud. An
edge-based database with adaptive compression and support
for complex analytics is required to minimize the amount of

Figure 8: Compression throughput for two popular compres-
sion methods with different compression batch sizes

data transferred to the cloud while supporting in-situ op-
erations. Such adaptation will need to factor-in available
resources and the downstream tasks when utilizing lossy
compression techniques. We presented VergeDB as a first
step in realizing this vision.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their helpful feed-

back. This work was supported in part by a Google DAPA
Research Award, an Intel Sponsored Research Award, the
CERES Center for Unstoppable Computing, and gifts from
NetApp, Cisco Systems, and Exelon Utilities. Some results
presented in this paper were obtained using the Chameleon
testbed supported by the National Science Foundation.

8. REFERENCES
[1] S. Agarwal, B. Mozafari, A. Panda, H. Milner,

S. Madden, and I. Stoica. Blinkdb: queries with
bounded errors and bounded response times on very
large data. In Proceedings of the 8th ACM European
Conference on Computer Systems, pages 29–42. ACM,
2013.

[2] R. Agrawal, C. Faloutsos, and A. Swami. Efficient
similarity search in sequence databases. FODA, pages
69–84, 1993.

[3] G. Amvrosiadis, A. R. Butt, V. Tarasov, E. Zadok,
M. Zhao, I. Ahmad, R. H. Arpaci-Dusseau, F. Chen,
Y. Chen, Y. Chen, et al. Data storage research vision
2025: Report on nsf visioning workshop held may
30–june 1, 2018. 2018.



[4] A. Bagnall, J. Lines, A. Bostrom, J. Large, and
E. Keogh. The great time series classification bake off:
a review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge
Discovery, 31(3):606–660, 2017.

[5] D. Blalock, S. Madden, and J. Guttag. Sprintz: Time
series compression for the internet of things.
Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, 2(3):1–23,
2018.

[6] D. W. Blalock and J. V. Guttag. Bolt: Accelerated
data mining with fast vector compression. In
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 727–735, 2017.

[7] P. Boncz, T. Neumann, and V. Leis. Fsst: fast random
access string compression. Proceedings of the VLDB
Endowment, 13(12):2649–2661, 2020.

[8] K.-P. Chan and A. W.-C. Fu. Efficient time series
matching by wavelets. In ICDE, pages 126–133. IEEE,
1999.

[9] S. Chaudhuri, G. Das, and V. Narasayya. Optimized
stratified sampling for approximate query processing.
ACM Transactions on Database Systems (TODS),
32(2):9, 2007.

[10] G. Cormode, F. Korn, S. Muthukrishnan, and
D. Srivastava. Effective computation of biased
quantiles over data streams. In 21st International
Conference on Data Engineering (ICDE’05), pages
20–31. IEEE, 2005.

[11] H. A. Dau, E. Keogh, K. Kamgar, C.-C. M. Yeh,
Y. Zhu, S. Gharghabi, C. A. Ratanamahatana,
Yanping, B. Hu, N. Begum, A. Bagnall, A. Mueen,
G. Batista, and Hexagon-ML. The ucr time series
classification archive, October 2018. https:
//www.cs.ucr.edu/˜eamonn/time series data 2018/.

[12] M. W. Dimitris N. Politis, Joseph P. Romano.
Subsampling. Springer Series in Statistics. Springer, 1
edition, 1999.

[13] A. Dziedzic, J. Paparrizos, S. Krishnan, A. Elmore,
and M. Franklin. Band-limited training and inference
for convolutional neural networks. In International
Conference on Machine Learning, pages 1745–1754,
2019.

[14] P. Esling and C. Agon. Time-series data mining. ACM
Computing Surveys (CSUR), 45(1):12, 2012.

[15] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.
Fast subsequence matching in time-series databases.
In SIGMOD, pages 419–429, 1994.

[16] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product
quantization. IEEE transactions on pattern analysis
and machine intelligence, 36(4):744–755, 2013.

[17] S. George. IoT Signals report: IoT’s promise will be
unlocked by addressing skills shortage, complexity and
security., 2019 (accessed August 15, 2020).
https://blogs.microsoft.com/blog/2019/07/30/.

[18] D. Giouroukis, A. Dadiani, J. Traub, S. Zeuch, and
V. Markl. A survey of adaptive sampling and filtering
algorithms for the internet of things. In DEBS’20:
14th ACM International Conference on Distributed
and Event-Based Systems, 2020.

[19] G. Graefe and L. D. Shapiro. Data compression and

database performance. University of Colorado,
Boulder, Department of Computer Science, 1990.

[20] M. Greenwald, S. Khanna, et al. Space-efficient online
computation of quantile summaries. ACM SIGMOD
Record, 30(2):58–66, 2001.

[21] B. Hu, Y. Chen, and E. Keogh. Time series
classification under more realistic assumptions. In
Proceedings of the 2013 SIAM International
Conference on Data Mining, pages 578–586. SIAM,
2013.

[22] M. Hung. Leading the iot, gartner insights on how to
lead in a connected world. Gartner Research, pages
1–29, 2017.

[23] Y. E. Ioannidis and V. Poosala. Balancing histogram
optimality and practicality for query result size
estimation. In Acm Sigmod Record, volume 24, pages
233–244. ACM, 1995.

[24] H. Jegou, M. Douze, and C. Schmid. Product
quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine
intelligence, 33(1):117–128, 2010.

[25] S. K. Jensen, T. B. Pedersen, and C. Thomsen. Time
series management systems: A survey. IEEE
Transactions on Knowledge and Data Engineering,
29(11):2581–2600, 2017.

[26] H. Jiang, C. Liu, Q. Jin, J. Paparrizos, and A. J.
Elmore. Pids: attribute decomposition for improved
compression and query performance in columnar
storage. Proceedings of the VLDB Endowment,
13(6):925–938, 2020.

[27] D. Kang, P. Bailis, and M. Zaharia. Blazeit:
Optimizing declarative aggregation and limit queries
for neural network-based video analytics, 2018.

[28] E. Keogh, K. Chakrabarti, M. Pazzani, and
S. Mehrotra. Dimensionality reduction for fast
similarity search in large time series databases.
Knowledge and information Systems, 3(3):263–286,
2001.

[29] E. Keogh, K. Chakrabarti, M. Pazzani, and
S. Mehrotra. Locally adaptive dimensionality
reduction for indexing large time series databases.
ACM Sigmod Record, 30(2):151–162, 2001.

[30] F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently
supporting ad hoc queries in large datasets of time
sequences. In SIGMOD, SIGMOD ’97, pages 289–300,
New York, NY, USA, 1997. ACM.

[31] W. Lang, M. Morse, and J. M. Patel.
Dictionary-based compression for long time-series
similarity. IEEE transactions on knowledge and data
engineering, 22(11):1609–1622, 2009.

[32] C. Lin, E. Boursier, and Y. Papakonstantinou. Plato:
approximate analytics over compressed time series
with tight deterministic error guarantees. Proceedings
of the VLDB Endowment, 13(7):1105–1118, 2020.

[33] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic
representation of time series, with implications for
streaming algorithms. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining
and knowledge discovery, pages 2–11. ACM, 2003.

[34] C. Liu, M. Umbenhower, H. Jiang, P. Subramaniam,
J. Ma, and A. J. Elmore. Mostly order preserving
dictionaries. In 2019 IEEE 35th International



Conference on Data Engineering (ICDE), pages
1214–1225. IEEE, 2019.

[35] A. Marascu, P. Pompey, E. Bouillet, M. Wurst,
O. Verscheure, M. Grund, and P. Cudre-Mauroux.
Tristan: Real-time analytics on massive time series
using sparse dictionary compression. In 2014 IEEE
International Conference on Big Data (Big Data),
pages 291–300. IEEE, 2014.

[36] V. Megalooikonomou, Q. Wang, G. Li, and
C. Faloutsos. A multiresolution symbolic
representation of time series. In ICDE, pages 668–679.
IEEE, 2005.

[37] V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical
bernstein stopping. In Proceedings of the 25th
International Conference on Machine Learning, ICML
âĂŹ08, page 672âĂŞ679, New York, NY, USA, 2008.
Association for Computing Machinery.

[38] I. C. Ng and S. Y. Wakenshaw. The internet-of-things:
Review and research directions. International Journal
of Research in Marketing, 34(1):3–21, 2017.

[39] N. Pansare, V. R. Borkar, C. Jermaine, and
T. Condie. Online aggregation for large mapreduce
jobs. Proc. VLDB Endow, 4(11):1135–1145, 2011.

[40] J. Paparrizos and M. J. Franklin. Grail: efficient
time-series representation learning. Proceedings of the
VLDB Endowment, 12(11):1762–1777, 2019.

[41] J. Paparrizos and L. Gravano. k-shape: Efficient and
accurate clustering of time series. In SIGMOD, pages
1855–1870. ACM, 2015.

[42] J. Paparrizos and L. Gravano. Fast and accurate
time-series clustering. ACM Transactions on Database
Systems (TODS), 42(2):8, 2017.

[43] J. Paparrizos, C. Liu, A. J. Elmore, and M. J.
Franklin. Debunking four long-standing
misconceptions of time-series distance measures. In
Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 1887–1905,
2020.

[44] T. Pelkonen, S. Franklin, J. Teller, P. Cavallaro,
Q. Huang, J. Meza, and K. Veeraraghavan. Gorilla: A
fast, scalable, in-memory time series database.
Proceedings of the VLDB Endowment,

8(12):1816–1827, 2015.

[45] G. Piatetsky-Shapiro and C. Connell. Accurate
estimation of the number of tuples satisfying a
condition. ACM Sigmod Record, 14(2):256–276, 1984.

[46] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J.
Shekita. Improved histograms for selectivity
estimation of range predicates. In ACM Sigmod
Record, volume 25, pages 294–305. ACM, 1996.

[47] K. V. Ravi Kanth, D. Agrawal, and A. Singh.
Dimensionality reduction for similarity searching in
dynamic databases. In SIGMOD, SIGMOD ’98, pages
166–176, New York, NY, USA, 1998. ACM.

[48] D. Sculley, G. Holt, D. Golovin, E. Davydov,
T. Phillips, D. Ebner, V. Chaudhary, M. Young, J.-F.
Crespo, and D. Dennison. Hidden technical debt in
machine learning systems. In Advances in neural
information processing systems, pages 2503–2511,
2015.

[49] H. Shatkay and S. B. Zdonik. Approximate queries
and representations for large data sequences. In ICDE,
pages 536–545. IEEE, 1996.

[50] L. Sidirourgos, P. Boncz, M. Kersten, et al. Sciborq:
Scientific data management with bounds on runtime
and quality. In CIDR, 2011.

[51] Y. Yao, J. Gehrke, et al. Query processing in sensor
networks. In Cidr, pages 233–244, 2003.

[52] B.-K. Yi and C. Faloutsos. Fast time sequence
indexing for arbitrary lp norms. VLDB, 2000.

[53] S. Zeuch, A. Chaudhary, B. Monte, H. Gavriilidis,
D. Giouroukis, P. Grulich, S. Breß, J. Traub, and
V. Markl. The nebulastream platform: Data and
application management for the internet of things. In
Conference on Innovative Data Systems Research
(CIDR), 2020.

[54] G. Zheng, Y. Yang, and J. Carbonell. Efficient
shift-invariant dictionary learning. In Proceedings of
the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages
2095–2104, 2016.

[55] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on
information theory, 23(3):337–343, 1977.


