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ABSTRACT
Machine Learning (ML) is increasingly used to automate im-
pactful decisions, and the risks arising from this wide-spread
use are garnering attention from policy makers, scientists,
and the media. ML applications are often very brittle with
respect to their input data, which leads to concerns about
their reliability, accountability, and fairness. In this paper
we discuss such hard-to-identify data issues and describe
mlinspect, a library that enables lightweight lineage-based
inspection of ML preprocessing pipelines.

The key idea is to extract a directed acyclic graph repre-
sentation of the dataflow from ML preprocessing pipelines
in Python, and to use this representation to automatically
instrument the code with predefined inspections based on
a lightweight annotation propagation approach. In contrast
to existing work, mlinspect operates on declarative abstrac-
tions of popular data science libraries like estimator/trans-
former pipelines and does not require manual code instru-
mentation. We discuss the design and implementation of
the mlinspect prototype, and give a complex end-to-end
example that illustrates its functionality.

1. INTRODUCTION
Machine Learning (ML) is increasingly used to automate

decisions that impact people’s lives, in domains as varied as
credit and lending, medical diagnosis, and hiring. The risks
and opportunities arising from the wide-spread use of pre-
dictive analytics are garnering much attention from policy
makers, scientists, and the media [Stoyanovich et al. 2020].

The correctness and reliability of ML models critically
depend on their training data. Pre-existing bias, such as
under- or over-representation of particular groups in the
training data [Chen et al. 2018], and technical bias, such
as skew introduced during data preparation [Schelter et al.
2019], can heavily impact performance. In this work we
focus on helping diagnose and mitigate technical bias that
arises during preprocessing steps in an ML pipeline. We re-
fer to these problems collectively as data distribution bugs.
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Data distribution bugs are often introduced during
preprocessing. Input data for ML applications often stems
from various data sources, and has to be preprocessed and
encoded as features first, which can introduce or amplify
representation issues. For example, preprocessing opera-
tions that involve filters or joins can heavily change the
distribution of different groups represented in the training
data [Yang et al. 2020], and missing value imputation can
also introduce skew [Schelter et al. 2019].

Recent ML fairness research, which mostly focuses on the
use of learning algorithms on static datasets [Chouldechova
and Roth 2020], is therefore insufficient because it cannot
address such technical bias originating from the data prepa-
ration stage. Furthermore, we should detect and mitigate
such bias as close to its source as possible.

Data distribution bugs are difficult to catch. In part,
this is because different pipeline steps are implemented us-
ing different libraries and abstractions, and the data rep-
resentation often changes from relational data to matrices
during data preparation. Further, preprocessing in the data
science ecosystem [Psallidas et al. 2019] often combines re-
lational operations on tabular data with estimator/trans-
former pipelines,1 a composable and nestable abstraction
for operations on array data, which originates from scikit-
learn [Pedregosa et al. 2011] and has been adopted by popu-
lar libraries like SparkML [Meng et al. 2016] and Tensorflow
Transform.2

In such cases, tracing problematic featurised entries back
to the pipeline’s initial human-readable input is tedious work.
Finally, complex estimator/transformer pipelines are hard to
inspect because they often result in nested function calls.

We need automated inspection of ML pipelines. Due
to time pressure in their day-to-day activities, most data
scientists will not spend the time and effort to manually
instrument their code or insert logging statements for trac-
ing as required by model management systems [Vartak and
Madden 2018, Zaharia et al. 2018]. We envision support for
data scientists in the form of automated inspections of their
pipelines, similar to the inspections used by modern IDEs to
highlight potentially problematic parts of a program, such
as the use of deprecated code.

Once data scientists become aware of such issues, they
can use data debuggers like Dagger [Madden et al. 2020]
to drill down into the specific intermediate pipeline outputs
and explore the root cause of the issue. We furthermore ar-

1https://scikit-learn.org/stable/modules/compose.html
2https://github.com/tensorflow/transform
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Embedding vectors
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# load input data sources, join to single table
patients = pandas.read_csv(…)
histories = pandas.read_csv(…)
data = pandas.merge([patients, histories], on=['ssn'])

# compute mean complications per age group, append as column
complications = data.groupby('age_group')
 .agg(mean_complications=('complications','mean'))
data = data.merge(complications, on=['age_group'])

# Target variable: people with frequent complications
data['label'] = data['complications'] > 
  1.2 * data['mean_complications']

# Project data to subset of attributes, filter by counties
data = data[['smoker', 'last_name', 'county', 
             'num_children', 'race', 'income', 'label']]
data = data[data['county'].isin(counties_of_interest)]

# Define a nested feature encoding pipeline for the data
impute_and_encode = sklearn.Pipeline([
  (sklearn.SimpleImputer(strategy='most_frequent')),
  (sklearn.OneHotEncoder())])
featurisation = sklearn.ColumnTransformer(transformers=[
  (impute_and_encode, ['smoker', 'county', 'race']),
  (Word2VecTransformer(), 'last_name')
  (sklearn.StandardScaler(), ['num_children', 'income']])

# Define the training pipeline for the model
neural_net = sklearn.KerasClassifier(build_fn=create_model())
pipeline = sklearn.Pipeline([
  ('features', featurisation),
  ('learning_algorithm', neural_net)])

# Train-test split, model training and evaluation
train_data, test_data = train_test_split(data)
model = pipeline.fit(train_data, train_data.label)
print(model.score(test_data, test_data.label))
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Figure 1: Example of an ML pipeline that predicts which patients are at a higher risk of serious complications,
under the requirement to achieve comparable false negative rates across intersectional groups by age and race.
The pipeline is implemented using native constructs from the popular pandas and scikit-learn libraries. On
the left, we highlight potential issues identified by mlinspect. On the right, we show the corresponding
dataflow graph extracted by mlinspect to instrument the code and pinpoint issues. (Operations on the test
set are omitted for readability).

gue that, to be most beneficial, automated inspections need
to work with code natively written with popular ML library
abstractions.

Lightweight pipeline inspection with mlinspect. We
design and implement mlinspect, a library that helps data
scientists automatically detect data distribution bugs in their
ML pipelines and helps to enforce best-practices.

The mlinspect library extracts logical query plans, mod-
eled as directed acyclic graphs (DAGs) of preprocessing op-
erators, from ML pipelines that use popular libraries like
pandas and scikit-learn [Pedregosa et al. 2011], and that
combine estimator/transformer pipelines and relational op-
erators. These plans are then used to automatically instru-
ment the code and trace the impact of operators on proper-
ties like the distribution of sensitive groups in the data. In
this way, mlinspect empowers data scientists to automati-
cally and comfortably check their ML pipeline code for data
distribution bugs.

Importantly, mlinspect implements a library-independent
interface to propagate annotations such as the lineage of tu-
ples across operators from different libraries, and introduces
only constant overhead per tuple flowing through the DAG.
Thereby, mlinspect offers a general runtime for pipeline in-
spection, and allows us to integrate many issue detection
techniques that previously required custom code, such as
automated model validation on data slices [Polyzotis et al.
2019], the identification of distortions with respect to pro-
tected group membership in the training data [Yang et al.
2020], or automated sanity checking for ML datasets [Hynes
et al. 2017].

In summary, we make the following contributions:

• We discuss hard-to-identify issues in ML preprocessing
pipelines with respect to the fairness, transparency, and
correctness of the resulting ML models (Sections 2 and 3.2).

• We describe the design of mlinspect, which enables light-
weight lineage-based inspection of ML preprocessing pipe-
lines. The mlinspect library bases its analysis on declara-
tive abstractions of existing popular data science libraries,
and does not require manual code instrumentation (Sec-
tion 3).

• We provide a prototype implementation of mlinspect at
https://github.com/stefan-grafberger/mlinspect.

2. DATA DISTRIBUTION BUGS
BY EXAMPLE

We illustrate the need for assisting data scientists with the
inspection of their preprocessing pipelines with an example
from the medical domain, shown in Figure 1. Consider a
data scientist who implements a Python pipeline that takes
demographic and clinical history data as input, and trains
a classifier to identify patients at risk for serious compli-
cations. Further, assume that the data scientist is under
a legal obligation to ensure that the resulting ML model
works equally well for patients across different age groups
and races. This obligation is operationalized as an inter-
sectional fairness criterion, requiring equal false negatives
rates for groups of patients identified by a combination of
age_group and race.

https://github.com/stefan-grafberger/mlinspect


The pipeline first reads two CSV files, which contain pa-
tient demographics and their clinical histories, respectively.
Next, the resulting dataframes are joined on the ssn col-
umn. This join may introduce a data distribution bug (as
indicated by issue 1 ) if a large percentage of the records of
some combination of age group and race do not have match-
ing entries in the clinical history dataset.

Next, the pipeline computes the average number of com-
plications per age group and adds the binary target label to
the dataset, indicating which patients had a higher than av-
erage number of complications compared to their age group.
The data is then projected to a subset of the attributes,
to be used by the classification model. This leads to the
second issue 2 in the pipeline: the data scientist needs to
ensure that the model achieves comparable accuracy across
different age groups, but the age group attribute is projected
out here, making it difficult to catch this data distribution
bug later in the pipeline. The data scientist additionally fil-
ters the data to only contain records from patients within a
given set of counties. This may lead to issue 3 : a data dis-
tribution bug may be introduced if populations of different
counties systematically differ in age.

Next, the pipeline creates a feature matrix from the dataset
by applying feature encoders with scikit-learn’s ColumnTrans-
former, before training a neural network on the features.
For the categorical attributes smoker, county, and race, the
pipeline imputes missing values with mode imputation (us-
ing the most frequent attribute value), and subsequently cre-
ates one-hot-encoded vectors from the data. The last_name

is replaced with a corresponding vector from a pretrained
word embedding, and the numerical attributes num_children
and income are normalized.

This feature encoding part of the pipeline introduces sev-
eral potential issues: 4 the imputation of missing values
for the categorical attributes potentially introduces statisti-
cal bias, as it might attribute records with a missing value in
the race attribute to the majority race in the dataset; 5 de-
pending on the legal context (i.e., if the disparate treatment
doctrine is enforced), it might be forbidden to use race as
an input to the classifier; 6 we may not have vectors for
rare non-western names in the word embedding, which may
in turn lead to lower model accuracy for such records.

As illustrated by this example, preprocessing can give rise
to subtle data distribution bugs that are difficult to identify
manually. This motivates the development of automatic in-
spection libraries such as mlinspect.

3. DESIGN OF MLINSPECT
The analysis of Python code for data science pipelines is

difficult because, in contrast to SQL queries, these pipelines
are usually not built on top of an algebraic abstraction. Fur-
ther, these pipelines do not only operate on relational data
but also on tensors, when converting the input data to fea-
ture matrices. However, popular data science libraries ex-
pose a set of declarative abstractions with some algebraic
properties. For example, pandas and pyspark both operate
on dataframes with SQL-like operations, and scikit-learn,
SparkML, and TensorFlow Transform3 rely on potentially

3Note that Tensorflow Transform refers to estimators
and transformers as TensorFlow Transform Analyzers and
TensorFlow Ops https://www.tensorflow.org/tfx/tutorials/
transform/simple?hl=en

nested estimator/transformer chains. We therefore focus on
data science scripts written using only existing library code
(e.g., we do not require manual code instrumentation), but
restrict ourselves to code applying combinations of SQL-
like operations on dataframes with estimator/transformer
pipelines, analogous to our example in Section 2. This cov-
ers a wide range of existing ML code: According to results of
a recent analysis of several million jupyter notebooks, more
than 50% of these use pandas, more than 25% use scikit-
learn, and more than 80% of the cell-level code contains
little to no control flow [Psallidas et al. 2019].

We propose mlinspect, a runtime for lightweight, lineage-
based inspection of such preprocessing pipelines, based on
the original Python code of the data science script. mlin-

spect extracts a directed, acyclic graph (DAG) representing
the dataflow from ML pipelines in Python (using libraries
like pandas and scikit-learn) with logical operators like join,
selection, projection, column encoders, and missing value
imputation. On top of this extraction, mlinspect enables
the automatic instrumentation of the code with predefined
lightweight inspections that detect issues in the pipeline and
give hints to users. In the following, we discuss our proposed
approach. We provide details on the status of our prototype
implementation in Section 5.

3.1 Instrumentation and DAG Representation
Data preparation pipelines that use common declarative

abstractions such as pandas data slicing, scikit-learn’s Colum-
nTransformer and pipelines or SparkML pipelines have a
natural directed acyclic graph (DAG) representation [Schel-
ter et al. 2017]. In our case, the data sources in this DAG are
typically comprised of tables or files holding relational data.
The data flowing through the DAG are either collections of
relational tuples, or tensors. The operators are either rela-
tional operators like join, selection, and projection (consum-
ing relational data and producing relational data), standard
feature encoders like one-hot-encoders (consuming relational
data and outputting vectors), or standard ML preprocessing
operations like normalization or concatenation (consuming
vectors and producing vectors).

Intermediate representation. In order to support ar-
bitrary Python scripts written with pandas operations and
estimator/transformer pipelines, we do not parse the code
ourselves, but rely on the AST created by the Python parser
itself. However, we cannot directly use the AST, as it does
not contain edges between variable definitions and usage,
but only contains load and store nodes that provide addi-
tional context for variable name nodes. Therefore, we first
transform the AST to an intermediate representation (IR),
which we later transform into our dataflow DAG. The main
difference of our IR to the AST is that we create edges be-
tween variable definitions and their usage. To efficiently
create the IR, we maintain two mappings while transform-
ing the AST to the IR, one for variable names to IR nodes
and another for AST nodes to IR nodes. This allows us to
only have to visit each AST node in the AST once for the
transformation to the IR.

Instrumentation and DAG extraction at runtime.
We extract the DAG for the preprocessing pipeline at run-
time during a single execution of the pipeline, and conduct
all of the instrumentation necessary for inspection before-
hand. At runtime, we use Python’s inspect module to re-
trieve the function name and module origin of each function

https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html
https://www.tensorflow.org/tfx/tutorials/transform/simple?hl=en
https://www.tensorflow.org/tfx/tutorials/transform/simple?hl=en


call and subscript operation (e.g., a df[’column’] function
call). We then build up the DAG in two steps: (i) We visit
each node once and remove all nodes that are not subscripts
or function calls. When deleting them, we preserve pre-
vious transitive relationships between parents and children
by adding the corresponding edges to the IR; (ii) Next, we
check each node that survived this filter. For each of these
call nodes and subscripts, we extract its module informa-
tion. We determine whether the function call or subscript
operation has a corresponding DAG operation, and map it
accordingly (e.g., a (’pandas.core.frame’, ’merge’) to a
join operator).

Lineage-based annotation propagation. The main idea
of our lineage-based annotation propagation machinery is
to offer a simple, library-independent interface to propagate
annotations such as the lineage of tuples across operators
from different libraries. We model this with so-called in-
spections. Each inspection retains a fixed-size state that
gets reset after each operator and is invoked only once for
each DAG operator. The inspection has access to the out-
put tuples of the operator and the corresponding annotated
inputs. It annotates the output tuples, and can optionally
annotate the logical operator in the DAG with the computed
result, such as a histogram of the outputs.

# Abstract base class for all inspections
class Inspection(metaclass=abc.ABCMeta ):

# Inspect intermediate data at a DAG operator, based on
# operator information (op_context), and an iterator over
# annotated input rows with the corresponding output
# rows (row_iterator);
# Return computed annotations for output rows
def visit_op(self , op_context ,

row_iterator) -> Iterable

# Persist inspection result for the current DAG node
def op_annotation_after_visit(self)

Users have to specify the inspections to apply in advance,
which allows us to only materialize the state that is required
for the actual inspections configured by the user (and to
avoid materializing arbitrary information from the pipeline).
We use an iterator-to-iterator approach for inspections and
chain the computations of all specified inspections immedi-
ately after each instrumented DAG operator.

As long as each row annotation by each inspection has
a fixed size limit and each inspection only uses a fixed-size
state, the overhead of our framework is constant per in-
spected tuple. Our approach does not introduce additional
memory overhead, as there is only the constant overhead of
a fixed number of additional function calls per user function
call.

We ensure that the input rows of an operator are correctly
mapped to its output rows, and then expose these output
rows along with their corresponding annotated inputs to
each inspection. This input/output mapping is internally
conducted differently depending on the operator semantics.

Operators like projection and transformers are guaranteed
to have the same order and the same number of input and
output elements, so we do not need to do anything there. For
operators like selection, join, and train-test split, we main-
tain the mapping by generating an identifier column, which
we transparently push through the operator (and remove
immediately afterwards to hide it from the user code).

Note that for performance reasons, we only track one pos-
sible source for operators like deduplications and not all pos-

sible sources, as the performance overhead for detailed track-
ing (e.g., the full semiring provenance framework [Green
et al. 2007]) would be too large.

Function call capturing. To allow inspections to access
the output of an operator such as a join (and the correspond-
ing input rows and their annotations), we must efficiently
capture arguments and return values of function calls and
subscripts. For this, we modify the AST from the Python
parser with an ast.NodeTransformer before compiling and
executing it. Our NodeTransformer visits call and subscript
AST nodes. It wraps the AST node in a function call that
captures and returns the output from the original function
call node. We apply the same operation for the object a
function is called from, if there is one, and for the argu-
ments and keyword arguments of the function. As an exam-
ple, the code obj.a_func("arg0", "arg1", my_arg="arg2") is
transformed to after_call(before_call_value(obj).a_func(

*before_call_args("arg0", "arg1"), **before_call_kwargs(

my_arg="arg2"))).

Backends for popular Python libraries. mlinspect is
designed to understand the semantics of preprocessing op-
erations of popular Python frameworks from the data sci-
ence space like scikit-learn and pandas. The instrumenta-
tion based on captured function calls described so far is
independent of the specific library. As stated before, not
all function calls that we need to capture are visible in the
AST (e.g., the fit/transform calls of transformers contained
in scikit-learn pipeline objects). We therefore introduce
library-specific backends in mlinspect that understand the
semantics of popular libraries like scikit-learn. mlinspect

delegates the captured function calls to the library-specific
backend based on module information. For example, dur-
ing the invocation of the after_call function, our library
uses the Python inspection module to find out where the
wrapped function comes from, and delegates the call to the
corresponding backend.

Execution of inspections. Each backend is responsible
for hiding library implementation details from the inspec-
tions. The pandas backend, for example, is responsible to
call the inspections as necessary whenever it is alerted of
a pandas function call. For this, it has access to the argu-
ments and return values as described before. The backend
then needs to map operator output rows to operator input
rows and their corresponding annotations. It needs to cre-
ate efficient iterators to expose the input-/output rows in a
specific format. Afterwards, the backend stores the result-
ing new annotations created by the inspection in an efficient
manner that still hides it from the user, (e.g., as attributes
of the processed dataframe in the case of pandas). We refer
to our backend implementations for details.4

This annotation propagation functionality is enough to
implement a variety of useful inspections. For example, ba-
sic fine-grained lineage tracking on a row-level can be imple-
mented with a simple inspection on top of our annotation
propagation approach as follows: we generate unique identi-
fier annotations for each row after the data source operator,
and propagate these forward through the DAG. For selec-
tions, projections and transformers we can directly forward
the annotations. For joins, we need to forward combinations
of the identifier annotations from all join inputs.

4
https://github.com/stefan-grafberger/mlinspect/tree/

19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/backends

https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/backends
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/backends


3.2 Automatic Inspections and Checks
Inspections serve as our basis for detecting issues in ML

pipelines. But they only annotate the extracted DAG with
information like computed histograms for different DAG nodes.
On top of the extracted and annotated DAG, we provide
checks, a rule-based approach to verify constraints on the
DAG, for example by comparing the change in the histograms
to a threshold.

Before execution, mlinspect checks which inspections are
required by the checks specified by the user. It then instru-
ments the pipeline and executes it using a minimal set of
inspections either required by the checks or directly speci-
fied by the user. After the execution of the instrumented
pipeline and the DAG extraction, each check can access the
final result to evaluate its constraint.

We discuss a set of more complex automatic inspections
and checks for ML preprocessing pipelines that are enabled
by our lineage-based annotation propagation approach.

Fairness and accountability. In recent years, more and
more problems with respect to the fairness and accountabil-
ity of ML-based decision making systems are uncovered [Stoy-
anovich et al. 2020]. Such problems are often non-obvious for
data scientists without appropriate training and are there-
fore in the focus of mlinspect.

As discussed in our example from Section 2 and outlined
in previous work [Yang et al. 2020], operations like join and
selection can accidentally filter out records from protected
groups and thereby introduce or amplify under-representation
issues. mlinspect provides an inspection that computes his-
tograms of operator outputs based on the protected groups,
and alerts the user if the proportions of these groups change
drastically after an operator. A related problem is the miss-
ing coverage for certain protected groups in the data, iden-
tified by certain combinations of attributes [Asudeh et al.
2019]. For that, we need to forward-propagate annotations
identifying the groups of interest and materialize the anno-
tated input and final outputs of the complete pipeline.

Furthermore, there are legal restrictions on the usage of
demographic features such as gender for automated decision
making. We can check the operator DAG based on a list of
sensitive column name candidates, and alert the user about
the places in the code where such an illegal feature is poten-
tially used.

ML models may also perform particularly bad for spe-
cific demographic (sub-)groups in the data (e.g., higher false
positive rates for recidivism predictions about black peo-
ple [Angwin et al. 2016]). The identification of such groups
is in the focus of recent research [Polyzotis et al. 2019]. This
identification might be difficult in cases where the attribute
required to identify the protected group is projected out
early in the pipeline or is only available as a specific dimen-
sion of the feature matrix during feature transformation.
mlinspect allows us to define an inspection that forward-
propagates the sensitive column annotations and then ma-
terializes the minimum amount of information needed for
conducting tests on the performance for different groups:
rows only containing the predicted label and the sensitive
columns.

Methodology. Additionally, there are lot of methodologi-
cal errors that unexperienced data scientists might acciden-
tally make, such as fitting featurizers on the whole data in-
stead of the training set only, forgetting to scale numerical

features even though the model requires that (as in the case
of L2 regularisation), or selecting hyperparameters on the
test set instead of a validation set. All of these issues can
be identified by analyzing our extracted operator DAG.

Performance. In a similar vein, there might be common
performance issues in the relational operations applied by
the pipeline such as selections or projections applied after
instead of before a join, which can be identified from the
operator graph. Another example here might be operations
that cancel themselves out and should be removed; and ex-
ample is up-sampling followed by a duplicate elimination.

Robustness. Furthermore, there might be robustness is-
sues in the pipeline; for example, some scikit-learn trans-
formers cannot handle null values. We can identify such
cases from the operator graph, and recommend the user to
apply a simple imputation technique. Another problem that
can be detected by analysing histograms of operator outputs
are class imbalance issues. We could analyse the DAG to see
if the data scientist already address these with resampling
or reweighing and alert her otherwise.

4. RELATED WORK
The challenges of data management for end-to-end ML

pipelines [Polyzotis et al. 2018] and the Python-based data
science ecosystem [Psallidas et al. 2019, Raasveldt and Müh-
leisen 2020] are coming into the focus of the data manage-
ment community in recent years. Proposed approaches of-
ten borrow ideas from provenance for relational workloads,
a well-studied subject [Cheney et al. 2009].

Experiment tracking and model management. Capturing
high-level provenance, hyperparameters and evaluation re-
sults is in the focus of model management systems such
as ModelDB [Vartak and Madden 2018], mlflow [Zaharia
et al. 2018], and ExperimentTracker [Schelter et al. 2017],
where the latter proposed the analysis of declarative abstrac-
tions like estimator/transformer pipelines. In contrast to our
work, these systems only capture basic metadata and require
users to manually instrument their code with system-specific
logging statements.

Debugging for ML pipelines and data. Dagger [Madden et al.
2020] is a data-centric debugger that allows users to set data-
breakpoints, and store and query intermediate results from
Python-based data pipelines. We see mlinspect as a com-
plementary solution to Dagger: mlinspect can point users
to hard-to-identify issues in their pipeline; Dagger will then
enables them to drill-down and explore the data and iden-
tify the root causes of the issues. Vamsa [Namaki et al.
2020] is a provenance-based analysis approach for data sci-
ence scripts in Python that is technically close to ours. Like,
mlinspect, Vamsa does not require changes to user code and
uses a knowledge base about different ML libraries. How-
ever, Vamsa has a much narrower focus, as it only aims to
identify which columns of the input contributed to a partic-
ular feature used for an ML model. Vizier [Brachmann et al.
2019] is a notebook environment integrating Python, SQL,
and data debugging and exploration techniques. It requires
a tight integration into the user’s development process, and
offers support for fine-grained provenance capture for SQL
queries only. Additional approaches for the validation of ML
data are Deequ [Schelter et al. 2018], which enables “unit
tests for data”, and Mistique [Vartak et al. 2018], a system
to store and query intermediates from deep learning models.



Workflow provenance. There exists a large number of ap-
proaches for tracking provenance in general data processing
workflows [Pimentel et al. 2017, Amsterdamer et al. 2011,
Olston and Reed 2011]. However, none of these approaches
can leverage the semantics of ML-specific operators such as
the components of estimator/transformer pipelines.

Fairness-specific analysis of ML pipelines and predictions.
In recent years, a set of specialised analysis tools with re-
spect to the fairness and accountability of ML-based deci-
sion making systems has been developed. Examples include
SliceFinder [Polyzotis et al. 2019], Coverage [Asudeh et al.
2019], and fairDags [Yang et al. 2020]. mlinspect provides a
general runtime for implementing and integrating these and
similar approaches into a common inspection platform.

5. STATUS OF OUR PROTOTYPE
We provide a prototypical implementation of our proposed

approach at https://github.com/stefan-grafberger/mlinspect.
In the following, we discuss implementation aspects, revisit
our example and present preliminary experiments on mea-
suring the runtime overhead.

5.1 Overview
We implemented the core extraction functionality for the

IR and DAG, together with the instrumentation, and initial
versions of the backends for pandas and scikit-learn. The
instrumentation of complex scripts like our healthcare ex-
ample from Section 2 already works, but we do not com-
prehensively cover all API functions yet. We already offer
implementations of representative inspections5, including an
inspection that materializes the first row output by each op-
erator, an inspection that tracks the detailed lineage of all
rows flowing through the DAG, and an inspection that com-
putes histograms of operator outputs for sensitive groups.
We also offer implementations of so-called “checks”6, which
evaluate a constraint on the outputs of our inspections, e.g.,
a threshold comparison of the magnitude of change in the
proportions of certain groups in the data after a filter.

5.2 Running Example
We provide an executable implementation of our exam-

ple7 from Section 2, along with a jupyter notebook8 that
details and visualises the automatically extracted DAG rep-
resentation and inspection results for this example. We of-
fer a declarative API for users to state their expectations
using the aforementioned checks, which we will then inter-
nally convert to constraints on inspection results, e.g.:

PipelineInspector
.on_pipeline_from_py_file(’healthcare.py’)
.check(NoBiasIntroducedFor ([’age_group ’, ’race’]))
.check(NoIllegalFeatures ())
.check(NoMissingEmbeddings ())

.execute ()

5
https://github.com/stefan-grafberger/mlinspect/tree/

19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/inspections
6
https://github.com/stefan-grafberger/mlinspect/tree/

19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/checks
7
https://github.com/stefan-grafberger/mlinspect/tree/

19ca0d6ae8672249891835190c9e2d9d3c14f28f/example pipelines
8
https://github.com/stefan-grafberger/mlinspect/blob/

19ca0d6ae8672249891835190c9e2d9d3c14f28f/demo/feature
overview/feature overview.ipynb

We discuss the inspections required for our example in the
following. The expectation about the lack of the intro-
duction of technical bias refers to the issues 1 , 2 , 3 and
4 from our example, and requires the aforementioned his-
togram inspection to (i) trace the group membership vari-
ables age_group and race through the DAG, and handle the
fact that the former is projected out early (issue 2 ).

With this in mind, mlinspect proceeds as follows: when
we visit the projection operator that removes the attribute,
we annotate each row with its corresponding age_group

value, and propagate these row annotations forward; (ii)
the join, selection and imputation operators might change
the proportions of groups in the data. To handle this, we use
the propagated group membership annotations, compute a
histogram of group memberships of all inspected operator
outputs and test them for distribution changes afterwards.
To check whether illegal features have been used (issue 5 ),
we simply search the list of projected attributes that are
used as features. This information is available as part of
our DAG. The check for missing embeddings (issue 6 ) only
requires counting the null values in the outputs of the em-
bedding operator.

5.3 Runtime Overhead
We have not yet focused on optimising the performance of

our implementation. However, our design requires us to only
conduct a single scan over operator inputs and outputs, and
to only materialize intermediate results of interest, which
requires only a constant overhead per processed row for our
discussed inspections. Note that the running time of most
end-to-end ML pipelines may, in most cases, be dominated
by model training and not by data preprocessing, especially
if deep neural networks are used.

We present a set of preliminary experiments to measure
the runtime overhead of our mlinspect prototype. We ex-
pect the absolute overhead to be high in comparison to the
non-instrumented operator execution, as both pandas and
scikit-learn internally execute operations based on optimised
C implementations (for example from numpy). As mlin-

spect operates on the level of the Python script and al-
lows for user-defined inspection functions, it naturally runs
in Python, inheriting its overheads. As a consequence, our
preliminary experiments focus on the overhead in terms of
the number of input rows. We designed our approach with a
constant overhead per tuple, and therefore expect the over-
head to be linear in the number of rows. In future work,
we intend to explore whether we can integrate the execution
of our inspections with the execution of the actual library
operators via just-in-time compilation techniques for data
science libraries (e.g. provided by Weld [Palkar et al. 2017]).

Instrumentation overhead. In our first experiment, we
measure the runtime overhead of instrumenting different op-
erators. In particular, we focus on the selection, projection
and join operator of pandas, and the ML-specific one-hot-
encoder operator from scikit-learn, which turns a categorical
string column into a sparse matrix representation. For each
operator, we measure the execution time without instrumen-
tation, instrumentation without inspections (in order to see
the overhead of our instrumentation approach with callback
functions), as well as one to three “empty” inspections that
just read the respective inputs and outputs of operators, but
do not propagate annotations.

https://github.com/stefan-grafberger/mlinspect
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/inspections
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/inspections
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/checks
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/mlinspect/checks
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines
https://github.com/stefan-grafberger/mlinspect/tree/19ca0d6ae8672249891835190c9e2d9d3c14f28f/example_pipelines
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/demo/feature_overview/feature_overview.ipynb
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/demo/feature_overview/feature_overview.ipynb
https://github.com/stefan-grafberger/mlinspect/blob/19ca0d6ae8672249891835190c9e2d9d3c14f28f/demo/feature_overview/feature_overview.ipynb
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(d) One-Hot-Encoder.

Figure 2: Instrumentation overhead for different op-
erators. We compare the runtime of the execution of
a given operator with no instrumentation (no inst),
instrumentation without inspections (instrum), and
with one to three empty inspections. We find that
the overhead is linear in the number of rows to pro-
cess.

We report the average runtime from 20 repetitions of the
experiment for 1,000, 10,000, 100,000 and 1,000,000 input
rows. The results are shown in Figure 5.3. We observe the
expected increase in the absolute runtime stemming from
our usage of Python. The overhead per tuple is constant
however, as the runtime overhead grows linearly with the
number of input rows for all operators. The only exception
is the projection operator, which is a special case, as the
projection operation in pandas is nearly constant due to the
underlying columnar data layout.

Inspection overhead. We repeat our experiment with the
four previously chosen operators and measure the runtime
overhead of our existing inspections. For each instrumented
operator, we compare the execution time of the “empty” in-
spection (which has also been used in the previous exper-
iment) to the execution time of the following inspections
(each of which scans all processed rows):

• Materialise a sample of output rows for each operator
• Track the lineage via annotation propagation for a sample

of output rows for each operator
• Compute histograms over one or three columns of the out-

puts for each operator

We report the average runtime from 20 repetitions of the
experiment for 1,000, 10,000, 100,000 and 1,000,000 input
rows. The results are shown in Figure 5.3. We again observe
an overhead for all inspections that is linear in the number of
input rows. We see that the overhead for the actual inspec-
tion logic (e.g., lineage tracking via annotation propagation)
is low compared to the empty inspection, which indicates
that most of the overhead stems from instrumentation and
data access.
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Figure 3: Runtime overhead for different inspec-
tions in various operators. We compare the run-
time of the execution of a given instrumented oper-
ator with an “empty” inspection (empty) to inspec-
tions for materialisation (materialise), lineage track-
ing (lineage) and histogram computation for one and
three columns (hist_one and hist_three). We find
that the overhead is linear in the number of rows to
process.

As a consequence, the overhead for running multiple in-
spections during one run is low. We achieve this with loop
fusion techniques: We implement our inspections with gener-
ator-like iterators that yield their elements, and execute the
inspections in a way that allows us to avoid multiple scans
over the data by exposing each record to all inspections dur-
ing a single scan over the data.

5.4 Next Steps
We are currently finishing the implementation of our pro-

totype with a focus on the scikit-learn and pandas backends,
and aim to implement all outlined inspections soon. A fu-
ture challenge is to also assist data scientists in the analysis
of the outputs of mlinspect. Complex pipelines can produce
a variety of inspection results and it may be helpful to ex-
plore anomaly detection techniques to point data scientists
to potentially problematic cases or to suggest thresholds for
checks to them.

Furthermore, we aim to add support for custom functions
and control flow like branches and loops, even though re-
cent research indicates that a large fraction of data science
scripts contain very little control flow [Psallidas et al. 2019].
We also plan to incorporate more backends for popular ML
libraries into mlinspect, such as Tensorflow Transform and
Apache SparkML [Meng et al. 2016]. For those it will be
challenging to find efficient ways to include inspections dur-
ing the distributed execution of Beam and Spark operators.

As outlined in Section 5.3, we intend to explore just-in-
time compilation techniques for pandas and scikit-learn op-
erators from Weld as a means to reduce the runtime over-
head induced by Python.
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