
Machine Learning, Linear Algebra, and More:
Is SQL All You Need?

Mark Blacher, Joachim Giesen, Sören Laue, Julien Klaus
University of Jena

{mark.blacher,joachim.giesen,soeren.laue,julien.klaus}@uni-jena.de

Viktor Leis
University of Erlangen-Nuremberg

viktor.leis@fau.de

ABSTRACT
SQL is the standard language for retrieving and manipulating re-
lational data. Although SQL is ubiquitous for simple analytical
queries, it is rarely used for more complex computations like ma-
chine learning, linear algebra, and other computationally-intensive
algorithms. These algorithms are often programmed in a procedural
fashion and look very different from declarative SQL queries. How-
ever, SQL actually does provide constructs to perform all kinds of
computations. In this paper, we show how to translate procedural
constructs to SQL – enabling complex SQL-only algorithms. Using
SQL for algorithms keeps computations close to the data, requires
minimal user permissions, and increases software portability. The
performance of the resulting SQL algorithms depends heavily on
the underlying DBMS and the SQL code. Surprisingly, we find that
query engines like HyPer can achieve very high performance –
in some cases even outperforming state-of-the-art linear algebra
packages like NumPy.

1 INTRODUCTION
It is well-known that SQL is Turing complete [1] and that, theoreti-
cally, arbitrary computations can be expressed in SQL. However,
this is usually considered to be a theoretical observation rather
than a practical approach. One hurdle to directly expressing com-
plex algorithms in SQL is that algorithms are usually expressed
in a procedural language. The declarative nature of SQL makes
it non-trivial to write queries that perform complex, algorithmic
computations like statistical learning or optimization algorithms.

Currently, complex algorithms are implemented outside of data-
base systems, using user defined functions (UDFs), or by relying on
system-specific in-DBMS operators. Expressing algorithms directly
in SQL would have four major benefits:

(i) Near-data computation: Transferring data to external ap-
plications can be expensive. With SQL algorithms, the data remains
in the database and the SQL query engine can start computations
immediately. In addition, higher data privacy can be ensured if only
the results of computations, but not the underlying data, are visible.

(ii) Flexibility: Many DBMSs provide in-house implementa-
tions of algorithms that allow users to perform advanced analytical
computations. However, the spectrum of implemented algorithms
varies greatly from DBMS to DBMS. Furthermore, customizabil-
ity and extensibility of in-house implementations are limited. SQL
algorithms, on the other hand, can be tailored specifically to use
cases and modified as needed. Unlike stored procedures and user

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.

defined functions, SQL algorithms require only minimal user per-
missions. Users with only read permissions can perform all kinds
of computations.

(iii) High degree of abstraction: SQL is a language that ab-
stracts strongly from the architectural details of a DBMS. Vectorized,
parallel or even distributed execution of SQL algorithms is done
automatically by the underlying DBMS.

(iv) Portability: If SQL algorithms use a common SQL subset
supported by multiple DBMS vendors, then the algorithms can be
run on other DBMSs without modifications.

How to map algorithmic primitives such as variables, functions,
conditions, loops, and error handling to SQL is not obvious. In this
paper, we show that by using UNION ALL, the WITH clause, and
its even more powerful extension WITH RECURSIVE, the basic
imperative primitives for writing algorithms can be expressed in
SQL. The performance of these SQL algorithms strongly depends
on the DBMS and the structure of SQL code itself. Using a logistic
regression case study, we present two styles for writing linear alge-
bra code in SQL. It turns out that by choosing a database-friendly
SQL coding style compiled queries can be even faster than proce-
dural code written in NumPy. Thus, SQL-only analytics is not only
possible, but practical.

The source code for the algorithmic primitives examples
and the case study from the paper can be downloaded from
https://github.com/mark-blacher/sql-algorithms. We chose logistic
regression for our case study primarily for expositionary and
space reasons. To show that our approach is applicable to far more
complex algorithms, the repository includes an SQL-only Linear
Programming solver. Other computationally-intensive algorithms,
including Neural Networks, can be solved straightforwardly using
our approach as well.

2 RELATEDWORK
Much work has been done to incorporate compute-intensive analyt-
ics into database systems [2]. Kawaguchi et al. implement a Linear
Programming solver using stored procedures [3]. Cohen et al. use a
set of UDFs as library functions to realize complex analytical tasks
such as solving a system of linear equations or computing ordinary
least squares problems [4]. Raasveldt et al. integrate machine learn-
ing pipelines into MonetDB by using vectorized UDFs [5]. Schüle
et al. incorporate gradient descent and tensor data types into HyPer
to enable machine learning tasks such as regression, clustering, and
classification [6]. However, these approaches rely on external tools,
non-portable UDFs or require changes to the DBMS itself.

Du [7] and Hirn and Grust [8] present approaches for SQL-only
analytics. Du shows how to implement common deep learning
operations in SQL [7]. Du uses what we refer to in this paper
as COO style linear algebra to implement the classification parts

https://github.com/mark-blacher/sql-algorithms


of a Convolutional Neural Network and a Graph Convolutional
Network. The classification part of a neural network (the forward
pass) is a sequence of different tensor operations and does not
require iterative constructs. Still, his ideas can be used to run already
trained neural networks in the database, using nothing but SQL.

Hirn and Grust compile PL/SQL UDFs to plain SQL queries [8].
On PostgreSQL the plain SQL queries improve execution times by
about a factor of two compared to their PL/SQL UDFs counterparts.
The speedup comes from avoiding PL/SQL inherent frictions in the
computations such as context switches between SQL and PL/SQL
parts of the code. Hirns and Grusts approach of compiling PL/SQL
into SQL is very promising and shows us that a compiler could also
be something for us to pursue in the future. Also, Ramachandra
et al. [9] demonstrate similar techniques for compiling imperative
UDFs into SQL. However, our goal is not to speed up UDFs. Our
goal is to demonstrate how a procedurally-minded, SQL-savvy
developer can efficiently translate their ideas directly into plain SQL
algorithms. Furthermore, there are conceptual differences between
Hirn and Grust, and us, in terms of the SQL style that is used
to write algorithms. Hirn and Grust use, for example, LATERAL
subqueries to implement challenging iterative constructs, whereas
we use recursive references in subqueries instead. Overall, we think
that it takes both a performance-aware SQL developer to write
the bottleneck part of the algorithm and a compiler to create the
boilerplate code around it.

3 SQL ALGORITHM PRIMITIVES
In this section, we map algorithmic primitives of procedural lan-
guages to SQL’s declarative syntax. To demonstrate the translation,
we show code snippets in Python and their counterparts in Post-
greSQL’s SQL dialect.

3.1 Variables
In SQL, variables can be represented as relations or as values within
relations. Relations are suitable for modeling all required data struc-
tures for computations, such as scalars, vectors, matrices, tensors,
sets, hash tables, and even trees and graphs [1, 7]. During a compu-
tation in SQL, new variables can be created using the WITH clause.
The WITH clause allows one to name subqueries. These named
subqueries can then be referenced in several places within the main
query. However, unlike variables in procedural languages, variables
created with the WITH clause in SQL are immutable. To update an
SQL variable, a new variable must be created (see Listing 1).

Listing 1: Creating and updating variables.

x = 1; x += 1; print(x) # x is mutable

WITH x(x) AS ( -- x is immutable
VALUES (1)

), x2(x) AS ( -- create new variable
SELECT x + 1 FROM x

) SELECT x FROM x2; -- print result

3.2 Functions
Functions are essential in most programming languages. They en-
able code reuse and parameter passing. While the SQL standard

nowadays allows creating SQL functions, this is not supported by
all systems and often requires special permissions. A practical al-
ternative is to use the WITH construct, which allows embedding
local functions into a SQL query (see Listing 2).

Listing 2: Calling functions.

def kelvin_to_celsius(temperature):
return [k - 273.15 for k in temperature]

def kelvin_to_fahrenheit(temperature):
return [k * 9 / 5 - 459.67 for k in temperature]

temperature = [300, 170]
print(kelvin_to_fahrenheit(temperature))

WITH params(temperature) AS (
VALUES (300::float), (170)

), kelvin_to_celsius(temperature) AS ( -- inline
SELECT temperature - 273.15 FROM params

), kelvin_to_fahrenheit(temperature) AS ( -- inline
SELECT temperature * 9 / 5 - 459.67 FROM params

) SELECT * FROM kelvin_to_fahrenheit;

Note that Listing 2 contains two functions for converting Kelvins.
The user selects the desired conversion method. In this example, the
user chooses to convert Kelvin to Fahrenheit. Programs written in
SQL can therefore provide interfaces similar to procedural programs
that allow users to choose the desired computations. From the
developer’s perspective, additional functions in SQL code can be
used for debugging purposes.

3.3 Conditions
Standard SQL does not provide branching constructs, e.g. if-else, to
control the program flow. In SQL, the construct that is closest to an
if-else statement is the CASE statement. However, the CASE state-
ment determines the results of expressions and therefore resembles
a ternary operator rather than a control structure.

To emulate conditional control flow in SQL the UNION ALL
construct is suitable. The UNION ALL construct combines the re-
sults of two or more SELECT statements. By combining only those
results that satisfy conditions in the WHERE clauses of the SELECT
statements, it is possible to emulate conditional control flow (see
Listing 3). The only restriction for UNION ALL is that the number
of columns and the data types of the columns in the individual
SELECT statements must match.

Listing 3: Conditional assignment.

if random.random() > 0.5: # random condition
A = kelvin_to_celsius(temperatures)

else:
A = kelvin_to_fahrenheit(temperatures)

print(A)

...
), condition AS ( -- random condition

VALUES (random() > 0.5)
), A(A) AS ( -- only one relation is selected

SELECT * FROM kelvin_to_celsius WHERE
(SELECT * FROM condition)

UNION ALL
SELECT * FROM kelvin_to_fahrenheit WHERE

NOT (SELECT * FROM condition)
) SELECT * FROM A

2



3.4 Loops
Expressing loops in complex computations by recursive queries
is gradually becoming common practice [8, 10]. In SQL, there are
two variants of loops that are realized by recursive queries and
comply with the SQL standard [11]. The first variant is supported
by most DBMSs and is a simple loop without recursive references
in subqueries (see Listing 4). The second variant contains recursive
references in subqueries and, to our knowledge, is fully supported
only in PostgreSQL, DuckDB, and HyPer (see Listing 5).

Listing 4: Loop without recursive reference in a subquery.

# Taylor series for approximating e^x
from math import factorial
x = [1.5, 4.0]
e_pow_x = [1.0] * len(x) # make list of ones
for i in range(1, 20):

for j in range(len(x)):
e_pow_x[j] += x[j] ** i / factorial(i)

print(e_pow_x) # e^x = 1 + x^1/1! + x^2/2! + ...

WITH RECURSIVE exp(x, i, e_pow_x) AS (
VALUES (1.5::float, 1, 1.0::float),

(4.0 , 1, 1.0 )
UNION ALL
SELECT x, i + 1, e_pow_x + POWER(x, i) / !!i

FROM exp WHERE i < 20 -- no recursive reference
) SELECT e_pow_x FROM exp WHERE i = 20;

The second loop variant allows the recursive working table, x in
Listing 5, to be used within subqueries in the FROM clause. These
subqueries may also be recursive. PostgreSQL generates an error
if the recursive reference to the working table appears more than
once within the FROM clause. This error can be avoided by creating
a new variable within the FROM clause and referencing it in further
computations (see workaround for PostgreSQL in Listing 5). This
workaround allows referencing the recursiveworking tablemultiple
times.1 We heavily exploit recursive references in subqueries to
implement all kinds of algorithms in SQL. By supporting recursive
references in subqueries, DBMS vendors could enable SQL-only
algorithms in their products.

The limiting factor in recursive queries is the lacking possibil-
ity of having multiple working tables. Only one working table is
allowed within the recursion. If an algorithm needs to update mul-
tiple variables in each iteration, they must all be packed into the
working table at once. During an iteration, these variables then
must be unpacked from the working table and afterwards packed
again for the next iteration.

3.5 Errors
The input data for an algorithm may be incorrect. SQL programs
of practical value should provide feedback on incorrect input data.
To implement input validation in SQL, we use the UNION ALL
construct. In Listing 6, the entropy of a probability distribution on
three states is computed. A property of probabilities is that they
are greater than or equal to zero and their sum over all states is
one. These preconditions are checked in the WHERE clauses when
creating the errors relation. If an erroneous input is detected, the

1This workaround is the missing link to complete Reprintsev’s Turing completeness
proof for SQL [12].

Listing 5: Loop with recursive references in subqueries.

# Newton's method: compute x so that
# f(x) = x^2 + cos(x) + 2 * sin(x) is minimized
from math import sin, cos
x = 0
while True:

fD = 2 * x - sin(x) + 2 * cos(x) # f'
if abs(fD) < 1e-6:

break
fD2 = 2 - cos(x) - 2 * sin(x) # f''
x -= fD / fD2 # update x

print(x) # -0.975012

WITH RECURSIVE x(x, i) AS (
VALUES (0::float, 0::int)

UNION ALL
SELECT x, i + 1 FROM (

WITH x(x, i) AS ( -- recursive reference of x
SELECT * FROM x -- workaround for PostgreSQL

), fD(fD) AS ( -- f'
SELECT 2 * x - SIN(x) + 2 * COS(x) FROM x

), fD2(fD2) AS ( -- f''
SELECT 2 - COS(x) - 2 * SIN(x) FROM x

) SELECT x - fD / fD2, fD, i FROM x, fD, fD2
) AS x_new(x, fD, i) WHERE ABS(fD) > 1e-6

) SELECT x FROM x WHERE i = (SELECT MAX(i) FROM x);

errors relation contains the corresponding error messages. In our
example, the entropy is only computed if the errors relation is
empty.

Listing 6: Error handling in the input data.

from math import log2
probs = [0.1, 0.4, 0.5]
errors = []
if any(p < 0 for p in probs) == True:

errors += ["ERROR: negative probabilities"]
if abs(sum(probs) - 1.0) > 1e-16:

errors += ["ERROR: sum of probabilities != 1.0"]
if len(errors):

print(*errors, sep='\n')
else:

entropy = -sum([p * log2(p) for p in probs])
print(entropy)

WITH probs(p) AS (
VALUES (0.1::float), (0.4), (0.5)

), errors AS ( -- table contains all errors
SELECT 'ERROR: negative probabilities'

WHERE (SELECT 0 > ANY(SELECT * FROM probs))
UNION ALL
SELECT 'ERROR: sum of probabilities != 1.0'

WHERE (SELECT ABS(SUM(p) - 1.0) > 1e-16
FROM probs)

), entropy(entropy) AS ( -- compute if no errors
SELECT -SUM(p * LOG(p) / LOG(2.0)) FROM probs

WHERE NOT EXISTS(SELECT 1 FROM errors)
), result(result) AS (

SELECT * FROM errors
UNION ALL
SELECT entropy::text FROM entropy

) SELECT * FROM result WHERE result IS NOT NULL

3



4 CASE STUDY
We use gradient descent-based logistic regression as a case study
to demonstrate that SQL algorithms written in a database-friendly
style can be practical. Logistic regression is a popular machine
learning method for binary classification that leads to the following
convex optimization problem:

min
𝑤

0.5 ·𝑤⊤ ·𝑤 + 𝑐 · sum(log(111 + exp(−𝑦 ⊙ (𝑋 ·𝑤)))).

Here 𝑐 ∈ R is a regularization parameter, 𝑋 ∈ R𝑛×𝑚 a data matrix
with 𝑛 data points (examples) and𝑚 features, whereby each data
point 𝑖 is assigned a label 𝑦𝑖 ∈ {−1, 1}. The operator ⊙ denotes
element-wise multiplication.

To find the solution vector 𝑤 ∈ R𝑚 that minimizes the given
objective function, gradient descent can be used as a numerical op-
timization algorithm. Minimization in gradient descent is achieved
by repeatedly updating the parameter vector𝑤 using the following
formula:

𝑤 (𝑡 + 1) = 𝑤 (𝑡) − 𝛼
𝜕𝑓 (𝑤)
𝜕𝑤

,

where 𝜕𝑓 (𝑤)
𝜕𝑤 is the derivative of the objective function with re-

spect to the parameter vector 𝑤 , that is, the gradient, and 𝛼 the
learning rate. To compute the derivative of the objective function,
we use Matrix Calculus, an online tool for computing vector and
matrix derivatives [13–15]. The full gradient descent-based logistic
regression algorithm that we use for the case study is shown in
Listing 7.

Listing 7: Gradient descent-based logistic regression.

def gradient(X, c, w, y):
cse = np.exp(-(y * X.dot(w)))
return w - c * X.T.dot(cse * y / (1 + cse))

def gradient_descent(X, y, c, iterations):
w = np.zeros(X.shape[1]) # initial weights
alpha = 0.001 # learning rate
for i in range(iterations):

w = w - alpha * gradient(X, c, w, y)
return w

w = gradient_descent(X, y, c=2, iterations=100)

4.1 Database-friendly SQL mappings
Computing the gradient is the most time-demanding operation of
the algorithm in Listing 7. If performance is important, the SQL
code for computing the gradient must be database friendly. Here,
the gradient computation consists for the most part of linear algebra
operations. Linear algebra computations in SQL are usually mapped
to a format that explicitly stores the indices for each value of a vector
or matrix. This representation of vectors and matrices is similar to
the coordinate format (COO) used for sparse linear algebra. Listing 8
shows how to compute the gradient from Listing 7 using the COO
style in SQL.

An advantage of using the COO style for linear algebra in SQL
is its universality, that is, there is no dependence of the SQL code
on the number of columns in a matrix. Sparse linear algebra is also
supported by default when using COO style. Furthermore, active re-
search is being conducted to develop query engines that reduce the

Listing 8: COO style gradient computation.
WITH X(i, j, val) AS ( -- dataset and ones

VALUES (0::int, 0::int, 5.5::float),
(0, 1, 2.4), (0, 2, 1.0),

(1, 0, 5.4), (1, 1, 3.0), (1, 2, 1.0),
(2, 0, 5.5), (2, 1, 4.2), (2, 2, 1.0)

), y (i, val) AS ( -- labels
VALUES (0::int, 1.0::float), (1, 1.0), (2, -1.0)

), w (i, val) AS ( -- weights
VALUES (0::int, 0.1::float), (1, 0.1), (2, 0.1)

), Xw(i, val) AS ( -- X.dot(w)
SELECT X.i, SUM(X.val * w.val) FROM X, w

WHERE X.j = w.i GROUP BY X.i
), cse(i, val) AS ( -- np.exp(-(y * Xw))

SELECT y.i, EXP(-(y.val * Xw.val)) FROM y, Xw
WHERE y.i = Xw.i

), v(i, val) AS ( -- cse * y / (1 + cse)
SELECT y.i, cse.val * y.val / (1 + cse.val)

FROM cse, y WHERE cse.i = y.i
), u(i, val) AS ( -- c * X.T.dot(v), c = 2

SELECT X.j, 2 * SUM(X.val * v.val) FROM X, v
WHERE X.i = v.i GROUP BY X.j

), g(i, val) AS ( -- w - u
SELECT w.i, w.val - u.val FROM w, u

WHERE w.i = u.i
) SELECT * FROM g -- gradient

execution times of COO-like linear algebra queries [16]. However,
performance of COO-style SQL code may be insufficient because
of increased memory consumption due to the explicit indices, poor
locality, and costly transformations that get data into the right for-
mat. Moreover, COO-style linear algebra in SQL relies heavily on
joins. In Listing 8 joins are specified in the WHERE clauses.

An alternative approach to COO-style linear algebra in SQL is to
treat relations themselves as vectors or matrices. Rows and columns
of the relation correspond to row and column vectors of linear
algebra. This representation of vectors and matrices is similar to
how they are represented in dense linear algebra. Listing 9 shows
the gradient computation from Listing 7 using the dense linear
algebra style in SQL.

Listing 9: Database-friendly gradient computation.
WITH X(f1, f2, y) AS ( -- dataset and labels

VALUES (5.5::float, 2.4::float, 1.0::float),
(5.4, 3.0, 1.0 ),
(5.5, 4.2, -1.0 )

), w(w1, w2, intercept) AS ( -- weights
VALUES (0.1::float, 0.1::float, 0.1::float)

), cse(val, f1, f2) AS ( -- np.exp(-(y * X.dot(w)))
SELECT exp((f1 * w1 + f2 * w2 + intercept) * -y),

f1, f2, y FROM X, w -- propagate f1, f2, y
), v(val, f1, f2) AS ( -- cse * y / (1 + cse)

SELECT val * y / (1.0 + val), f1, f2 FROM cse
), u(t1, t2, t3) AS ( -- c * X.T.dot(v), c = 2

SELECT 2 * SUM(f1 * val), 2 * SUM(f2 * val),
2 * SUM(val) FROM v -- use f1, f2

), g (g1, g2, g3) AS ( -- w - u
SELECT w1 - t1, w2 - t2, intercept - t3 FROM w, u

) SELECT * FROM g -- gradient

The gradient computation in Listing 9 avoids joins and does not
require explicit indices for vectors and matrices. We therefore call
this computation database friendly. The features f1, f2, and the

4



labels y are stored in a single relation X. During the computation
of the gradient, features and labels are propagated to avoid unnec-
essary joins. See, for example, how the features f1, f2 are selected
when the relations cse and v are created. These “unnecessary” se-
lections avoid joins when f1 and f2 are needed again, as is the
case, when creating the relation u.

4.2 Performance results
We compare the performance for the gradient descent-based logistic
regression between NumPy, HyPer, and PostgreSQL. NumPy is a
Python package for high performance scientific computing. We link
NumPy against the Math Kernel Library (MKL) version 2020.0.2.
Intel’s MKL library makes extensive use of vector instructions
and multicore processing. HyPer is a column-oriented in-memory
DBMS that achieves high performance for both OLTP and OLAP
workloads [17]. We use Tableau’s publically available Hyper API
version 0.0.13287. PostgreSQL is a widely used, open source, row-
oriented DBMS. We use PostgreSQL version 12.8.

For our measurements, we use a machine with an Intel i9-
10980XE 18-core processor (36 hyperthreads) running Ubuntu
20.04.1 LTS with 128 GB of RAM. Each core has a base frequency
of 3.0 GHz and a max turbo frequency of 4.6 GHz, and supports
the AVX-512 vector instruction set. For HyPer and PostgreSQL,
we measure the performance of two different implementations of
logistic regression. One is based on COO-style linear algebra, the
other, the database-friendly one, uses the join-free dense-style for
linear algebra (see previous subsection for details). For the database
measurements, we use temporary tables. We do not use database
indexes. We report performance in terms of iterations per second
when running the logistic regression solver. One iteration computes
the gradient and updates the weights of the previous iteration. We
verify that all implementations compute identical weights and thus
achieve identical model accuracy.

Figure 1 shows the performance of gradient descent-based logis-
tic regression for a dataset with 32 features and 1 000 000 examples.
While the database-friendly implementation on HyPer achieves
over 100 iterations per second, the performance on PostgreSQL is
no different from its COO implementation. The performance on
PostgreSQL is very low compared to HyPer because HyPer is a
highly efficient parallel DBMS that uses query compilation. We
therefore ignore PostgreSQL in further measurements. Surprisingly,
however, HyPer is almost three times faster than NumPy. The fol-
lowing measurements explore the conditions under which HyPer
outperforms NumPy.

105.74

37.36

6.07 0.03 0.030

30

60

90

120

HyPer NumPy HyPer
COO

PostgreSQL
COO

PostgreSQL

ite
ra
tio

ns
pe
rs

ec
on

d

Figure 1: Performance for HyPer, PostgreSQL, and NumPy
(32 features, 1 000 000 examples, multi-threaded).

Figure 2 shows the performance depending on the number of
threads used for the computation. When using two threads, HyPer
and NumPy perform about the same. When using more than two
threads, the database-friendly implementation on HyPer is faster
than NumPy. HyPer steadily gains performance as the number of
available cores increases (threads ≤ 18). HyPer gains even more
performance by additional parallelization through hyperthreads.
In contrast to HyPer, the parallelization of a gradient computation
in NumPy is poor. Although the MKL is generally very efficient
at parallelizing linear algebra operations, it fails for the 32-feature
example in Figure 2.

hy
pe
rt
hr
ea
ds

0

30

60

90

120

0 10 20 30
threads

ite
ra
tio

ns
pe
rs

ec
on

d HyPer NumPy HyPer COO

Figure 2: Multi-threaded performance scalability for HyPer
and NumPy (32 features, 1 000 000 examples).

In Figure 3, we vary the number of features between 4 and
128. We leave it up to the implementations to decide how many
threads to use. NumPy utilizes all 18 cores with 4 features in the
dataset, but as Figure 3 indicates, this happens rather inefficiently.
Figure 3 shows that HyPer is the fastest alternative for fewer than
128 features in the dataset. However, the performance gap between
HyPer and NumPy closes as the number of features in the dataset
increases. At 128 features NumPy is even a bit faster than HyPer.

0

100

200

300

0 50 100
features

ite
ra
tio

ns
pe
rs

ec
on

d HyPer NumPy HyPer COO

Figure 3: Performance based on the number of features for
HyPer and NumPy (1 000 000 examples, multi-threaded).

Figure 4 shows the performance as a function of the number
of examples in the dataset. The measurements are shown on a
logarithmic scale. For less than or equal to 105 examples in the
dataset, NumPy is the fastest option. NumPy stores matrices and
vectors contiguously in memory and therefore benefits from good
locality when the dataset fits in the cache. Furthermore, since a
weights update depends on the previously computed weights, ef-
ficient parallelization does not come into play for small data sets.
Also, for benchmarking, we ran the algorithm repeatedly for 100
iterations. In HyPer, these times include the runtimes for the cached
SQL queries. The setup costs for a query do not amortize for small

5



amounts of data, therefore NumPy is significantly faster for small
problem sizes. In HyPer, there is an irregularity in the measure-
ments. HyPer executes more iterations per second for 106 examples
than for 105 examples in the dataset. The reason for this irregularity
is that HyPer executes all queries with less than or equal to 105
examples by only one thread.

1

10

100

1000

10000

1e+04 1e+05 1e+06 1e+07
examples

ite
ra
tio

ns
pe
rs

ec
on

d HyPer NumPy HyPer COO

Figure 4: Performance based on the number of examples for
HyPer and NumPy (32 features, multi-threaded).

4.3 How can HyPer be faster than NumPy?
HyPer’s dynamic tuple-wise parallelization scheme can be very
efficient for compute intensive analytics. Also, when compiling
SQL queries in HyPer, the code is optimized as a whole. Parts that
can be executed together, such as exp(−𝑦 · (𝑋 ·𝑤)) in the gradient
computation, are fused, that is pipelined, and not executed individ-
ually as in NumPy. This saves memory bandwidth and increases
the cache locality of the computation. Our measurements suggest
that HyPer can be faster than NumPy for large data sets with a
limited number of columns. The use case with a large number of ex-
amples (rows) and a small number of features (columns) is common
in databases. In these cases, SQL algorithms on modern DBMSs
may even have similar or better performance than hand-optimized
procedural alternatives.

To achieve maximum performance, SQL algorithms must be
written in a way that exploits the architecture of the underlying
DBMS as efficiently as possible. In the database-friendly logistic
regression variant, the data-intensive computations of the gradient
are performed on the columns (see Listing 9). Therefore, on modern
column-oriented DBMSs like HyPer, this SQL coding style is effi-
cient due to its good data locality, vectorization and parallelization
capabilities. But, a word of caution needs to be said about the dense
linear algebra style in SQL. We avoided joins in the computation. If
joins cannot be avoided, additional row indices must be introduced,
which can render the computation less performant.

5 CONCLUSIONS AND FUTUREWORK
SQL-only algorithms are not a theoretical gimmick, but can be of
high practical value. They offer benefits such as near-data computa-
tions, flexibility for code changes, a high degree of abstraction from
the underlying DBMS architecture, and portability. We showed how
algorithmic primitives can be expressed in SQL. By using these prim-
itives, computationally-intensive algorithms can be implemented
in SQL. In the case study, we presented database-friendly SQL code
that avoids joins for linear algebra operations. It turned out that the

database-friendly SQL implementation on HyPer can outperform
even NumPy on larger data sets.

Loops in algorithms often contain sophisticated computations
with data from previous iterations. We demonstrated how to im-
plement such loops in SQL by using recursive references to the
working table in the FROM clause of WITH RECURSIVE. DBMSs
like PostgreSQL, DuckDB or HyPer that support recursive refer-
ences, enable already all kinds of computations with SQL. Extend-
ing a DBMS to support recursive references in subqueries would
be straightforward, and we hope that this paper triggers DBMS
developers to implement this feature.

In future work, we plan to automate the translation of imperative
constructs to SQL using compilation. A compiler approach is also
conceivable to translate linear algebra operations to SQL. In order
to make the translation of linear algebra operations as efficient as
possible, the limits of join-free linear algebra in SQL need to be
further explored. Deep Learning also seems to be an interesting
use case that we plan to explore. By computing derivatives with
external tools like ourMatrix Calculus [13–15] and translating them
to SQL, the only thing left to do is implementing an optimization
algorithm in SQL, and this is possible, as we have shown in the case
study. Therefore, we believe that SQL machine learning and other
forms of compute intense analytics in SQL are highly promising.

ACKNOWLEDGMENTS
This work was supported by the German Science Foundation (DFG)
grant (GI-711/5-1) within the priority program (SPP1736) Algo-
rithms for Big Data, and by the Carl Zeiss Foundation within the
project A Virtual Werkstatt for Digitization in the Sciences.

REFERENCES
[1] D. Fetter, “Lists and recursion and trees, oh my!.” FOSDEM: Free and Open Source

Software Developers’ European Meeting, 2010.
[2] M. Boehm, A. Kumar, and J. Yang, Data Management in Machine Learning Systems.

2019.
[3] A. Kawaguchi and J. A. Perez, “Linear programming for database environment,”

in ICINCO, 2007.
[4] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton, “MAD skills:

New analysis practices for big data,” Proc. VLDB Endow., 2009.
[5] M. Raasveldt, P. Holanda, H. Mühleisen, and S. Manegold, “Deep integration of

machine learning into column stores,” in EDBT, 2018.
[6] M. E. Schüle, F. Simonis, T. Heyenbrock, A. Kemper, S. Günnemann, and T. Neu-

mann, “In-database machine learning: Gradient descent and tensor algebra for
main memory database systems,” in BTW, 2019.

[7] L. Du, “In-machine-learning database: Reimagining deep learning with old-school
SQL,” arXiv:2004.05366, 2020.

[8] D. Hirn and T. Grust, “One WITH RECURSIVE is worth many GOTOs,” in SIG-
MOD, 2021.

[9] K. Ramachandra, K. Park, K. V. Emani, A. Halverson, C. A. Galindo-Legaria, and
C. Cunningham, “Froid: Optimization of imperative programs in a relational
database,” Proc. VLDB Endow., 2017.

[10] M. E. Schüle, H. Lang, M. Springer, A. Kemper, T. Neumann, and S. Günnemann,
“In-database machine learning with SQL on gpus,” in SSDBM, 2021.

[11] ISO/IEC 9075-2:2016, Information technology – Database languages – SQL – Part
2: Foundation (SQL/Foundation). 2016.

[12] A. Reprintsev, “Turing completeness,” in Oracle SQL Revealed, 2018.
[13] S. Laue, M. Mitterreiter, and J. Giesen, “Computing higher order derivatives of

matrix and tensor expressions,” in NeurIPS, 2018.
[14] S. Laue, M. Mitterreiter, and J. Giesen, “GENO - generic optimization for classical

machine learning,” in NeurIPS, 2019.
[15] S. Laue, M. Mitterreiter, and J. Giesen, “A simple and efficient tensor calculus,” in

AAAI, 2020.
[16] C. R. Aberger, A. Lamb, K. Olukotun, and C. Ré, “LevelHeaded: A unified engine

for business intelligence and linear algebra querying,” in ICDE, 2018.
[17] A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP main memory

database system based on virtual memory snapshots,” in ICDE, 2011.

6


	Abstract
	1 Introduction
	2 Related Work
	3 SQL Algorithm Primitives
	3.1 Variables
	3.2 Functions
	3.3 Conditions
	3.4 Loops
	3.5 Errors

	4 Case Study
	4.1 Database-friendly SQL mappings
	4.2 Performance results
	4.3 How can HyPer be faster than NumPy?

	5 Conclusions and Future Work
	Acknowledgments
	References

