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ABSTRACT
Knowledge graphs (KGs) represent facts in the form of nodes and
relationships and are widely used to represent and share knowledge
in many different domains. However, their widespread adoption to
integrate different data sources and their generation processes have
made KGs very complicated and difficult to understand, leading
to the advent of new knowledge graph exploration approaches to
better understand their contents and extract relevant insights. Nev-
ertheless, the needs of current KG exploration use cases are not met
(even neglected) by existing KG data management systems. Hence,
the question: are we lost? We hope not. Therefore, with the aim of
fostering research on these open issues, in this position paper, we
first present an overview of state-of-the-art approaches for KG ex-
ploration. Then, we identify the (currently unmet) requirements for
effective KG exploration systems, and finally, we highlight promis-
ing research directions for the realization of a system able to fully
support knowledge graph exploration.

1 INTRODUCTION
Amultitude of diverse companies including Amazon, Bosch, Google,
Microsoft, and Zalando is using the graph data model to repre-
sent and store their enterprise knowledge bases [51, 61, 65]. More-
over, an increasing amount of data is published as RDF datasets
and made available as Linked Open Data in different scientific
domains [22, 31]. We also see widespread adoption of resources
like YAGO, DBpedia, and WikiData describing entities and facts
of general encyclopedic interest, e.g., artists, books, movies, and
songs. These networks of rich connections among entities are called
knowledge graphs (KGs – see Figure 1 for an example). KGs store
highly heterogeneous information and are increasingly adopted to
advance more intelligent machine learning systems [6, 24, 71].

The heterogeneity of KGs constitutes both a defining characteris-
tic and a challenge in their effective utilization [48]. As a byproduct
of their widespread adoption, KGs include data from many different
domains and easily become large and complex, and thus their con-
tents become hard to grasp [25, 51, 65]. Usually, they are generated
(semi-)automatically through the integration of many different data
sources [31, 54], each with its own original data model, and they are
updated with unprecedented volumes of data, and at unprecedented
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Figure 1: Simplified fragment of a knowledge graph around
the entity “Forrest Gump” and three exploratory tasks.

speed [61]. Thus, the contents of these KGs have become less and
less familiar even to domain experts and almost impenetrable to
first-time users, calling for exploratory methods for knowledge
graphs [39, 50].

In this context, knowledge graph exploration [42] is the machine-
assisted and progressive process of analysis of a KG with the goal of
(1) understanding the structure and nature of the graph, (2) identi-
fying which portion of the given KG and its data (modelled through
relationships and attributes) can satisfy the current (often vague
and hard-to-express) information need or research question, and
(3) extracting from it insights that can assist in the formulation of
novel research questions and hypotheses. These goals are achieved
through three main tasks (exemplified in the boxes in Figure 1 and
detailed in Figure 2): (i) summarization and profiling, (ii) exploratory
data analytics, and (iii) exploratory search.

The connections between the aforementioned goals and the sup-
ported tasks are not simply one-to-one (see also Figure 3 below)
since some goals can be achieved by the combination of different
tasks, e.g., to extract relevant data and insights, one can first in-
spect some specific entities of interest for relevant attributes and
connections and then analyze how frequent or prevalent those are
in the rest of the graph. Therefore, a KG exploration system should
support all these three tasks interchangeably and at the same time.

In recent years, KG exploration in general, and the tasks of profil-
ing, search, and analytics in particular, have received considerable
attention. Thus, building upon our previous analysis [42], in this pa-
per we first survey state-of-the-art approaches in this scientifically
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rich area (summarized in Figure 2). Then, we identify their main
characteristics and the kind of insight they allow to obtain in con-
nectionwith the requirements they impose on KG datamanagement
systems (DBMS). Our first finding is that the task of exploratory KG
analytics has received less attention despite its importance. We ob-
serve that KG exploration in general and exploratory KG analytics
in particular have special computational needs. Therefore, there is
a need for novel and more efficient data management systems that
are tailored for these tasks. Specifically, exploratory queries access
large portions of the graph, they are generally under-specified, and
they require the capabilities to provide approximate answers as
well as to provide some initial answers very quickly, even if such an-
swers are incomplete. Yet, existing systems are either designed for
batch, non-interactive, processes, can support only limited ad-hoc
computations, or conversely are designed for transactional queries
that only return answers for highly selective queries. As a result of
our analysis, in this work, we not only provide a view of exciting
directions for the development of novel KG exploration techniques
that will enable the exploration of highly heterogeneous knowledge
graphs, but we also identify important topics for system-oriented
research that can lead to the realization of efficient KG exploration
systems to effectively support such techniques. Moreover, we advo-
cate for more system-oriented research that should converge in the
design and implementation of fully-fledged KG exploration systems
that will support such methods in real-world day-to-day business
deployments. This is of particular importance since existing exper-
imental studies identify that state-of-the-art graph management
systems fall short in supporting the needs of KG exploration, while
relational DBMS cannot handle the heterogeneity of the KG model
and the type of analytics they require.

In the following, we first identify the limitations of existing DBM-
Ses in supporting the needs of KG data management (Section 2),
and then provide a summarization of the area of KG exploration
(Section 3). Moreover, we analyze in detail the challenges that KG
exploration systems need to meet (Section 4). As a result, we iden-
tify the core operations that should be supported by systems for
KG exploration (Section 5), and we conclude with a look towards
future directions (Section 6).

2 PRELIMINARIES & PITFALLS
A knowledge graph G is a tuple G = (E,R,T) consisting of a set of
entities E, a set of relations R, and a set of triples T ⊆ E × R × E.
A knowledge graph forms a network structure where entities, e.g.,
Forrest Gump and TomHanks, are connected through relationships,
e.g., actor, to form triples or facts, e.g., (Tom Hanks, actor, Forrest
Gump). For simplicity, in the example, we treat literal values and
attributes, such as 65 in (Tom Hanks, age, 65) as entities. Nonethe-
less, there are of course important nuances involved in the precise
data model adopted [35], especially but not only, when dealing with
exploratory analytics and numerical or statistical values. Overall, in
a KG, the information stored within the graph, i.e., the data values,
are as important as the connections among them, i.e., the structure
and its semantics.

At a high level, we can characterize an exploratory task as a tuple
𝐸=(𝑡, 𝑃,𝐶), where 𝑡∈{profile, summary, explore, analyse, ...} is

a task type, 𝑃 is a set of parameters for 𝑡 , and 𝐶 is a set of condi-
tions for 𝑡 . An exploratory query returns an exploratory answer
A, which consists of either triples (directly from the knowledge
graphs or generated based on the data in the KG), metadata, or
statistics. For instance, the profiling task in Figure 1 is the triple
𝐸=(profile, {E,R}, ∅) that, when executed over the graph G, re-
turns as answer A=𝐸 (G), a set of statistics extracted for both sets
E and R. Furthermore, we talk of an exploration workload as a
sequence of exploration tasks𝑊 =[𝐸1, 𝐸2, ..., 𝐸𝑘 ], where the param-
eters and conditions of a given task 𝐸𝑖 are informed by the results
of some subset of previous tasks {𝐸 𝑗∈𝑊 . 𝑗<𝑖}. Thus, a knowledge
exploration system is a data management system for a knowledge
graph G that efficiently returns an answer A𝑖 for each exploratory
task 𝐸𝑖=(𝑡, 𝑃,𝐶) in a given workload𝑊 and that can exploit in-
formation gained while executing the sequence of tasks in𝑊 to
optimize its functions (in terms of both performance and precision).

Despite the growing need for exploratory search and analysis
tools and the availability of numerous KGs, we have identified a
substantial scarcity of both systems providing effective support
for such analyses as well as benchmarks that can help researchers
identify more clearly the limitations of those systems. The main can-
didates to provide support for KG exploration tasks are Relational
Data Management Systems (RDBMSes) and Graph Data Manage-
ment systems (GDBMSes). In the following, we revisit the pitfalls
of the available data management systems when dealing with KGs.

RDBMSes. One straightforward solution for storing and query-
ing graphs in general is to adopt traditional RDBMSes. An RDBMS
offers competitive advantages on graphs with regular and small
schemas and on simple queries [10, 15, 45, 52]. Data exploration
in RDBMSes has as long history [28, 39] with tasks ranging from
profiling [2] to progressive analytics [5, 17]. The data exploration
techniques for RDBMSes are tailored to the relational model and
in particular assume that the data has a predefined schema. For
instance, it is not obvious how functional dependencies used in data
cleaning for relational data generalize to knowledge graphs [16].
Similarly, navigating unbounded and complex paths requires re-
cursive queries, which, while supported by RDBMSes, are harder
to express and not as effective when dealing with a multitude of
relation types [37]. On the other hand, specialized Graph DBMSes
have recently become more common. As a result, several studies
investigate the performance of Graph DBMSes in the transactional
case [37, 45, 63] and some studies suggest that there is no need for
specialized GDBMSes [15, 52]. Yet, such a conclusion originates
from analyses of KGs with only a few relationships and for a very
limited number of workloads. In particular, these analyses do not
consider highly heterogeneous KGs or KG exploration use cases.
As the heterogeneity of the KG increases and the queries become
more complex, RDMBSes quickly face scalability issues [37].

GDBMSes. Compared to RDBMSes, existing GDBMSes provide
higher flexibility with heterogeneous graphs. However, GDBMSes
are optimized for point-wise queries, e.g., retrieving the immediate
neighbors of a node having a specific edge label [37]. Additionally,
the lack of benchmarks for KG exploration hinders the capacity
of researchers and system developers to correctly identify current
limitations. Nonetheless, recent experimental studies have already
highlighted that also existing GDBMSes face scalability challenges
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Figure 2: Taxonomy of KG Exploration techniques and their positioning on the spectrum of features.

on complex pattern or path queries [37, 45, 61]. Therefore, GDBM-
Ses are not optimized for dealing with a mix of pointwise and
analytical queries, which is instead the usual composition of ex-
ploratory workloads. As such, current systems (both relational
and graph-based) fall short in supporting KG exploration and the
challenges identified in Section 4.

3 KG EXPLORATION METHODS
As mentioned earlier, data exploration approaches cover three do-
mains (summarized in Figure 2): (1) KG profiling and summarization
to distil the most important characteristics both of the structure and
the contents of a KG; (2) exploratory search for a gradual discovery
and retrieval of the items that are pertinent to a vague or under-
specified information need; and (3) exploratory analytics to distil
salient features from different subsets of the graph. We organize
these methods over a spectrum describing the required expertise in
domain knowledge, the level of interactivity they expect, and the
type of output they are able to produce. Methods that do not require
any domain knowledge usually provide high-level information with
coarse granularity and a low level of detail. Also, they are typically
one-off approaches that do not account for user preferences. On
the other hand, methods that require some domain knowledge, e.g.,
some representative elements of interest or some initial definition
of the query intent, are able to produce more fine-grained answers
with a high level of detail. Moreover, they exploit interaction and
user feedback to adapt to diverse user needs. Below, we first present
summarization and exploratory search as the extremes of the spec-
trum. We then describe the special role of exploratory analytics as
a middle ground in this spectrum. Furthermore, the left-hand side
of Figure 3 presents the connections between these three categories
of approaches and the type of user goals they support.

Profiling & Summarization. Data profiling is the simplest
form of exploration, as it computes basic statistics to determine
descriptive metadata about a given dataset. For KGs, existing meth-
ods [3] perform tasks like counting the number classes (e.g., Movie,
Song, or Person) and their instances or summarizing value distribu-
tions for specific attributes (e.g., averaging the release year). They
also identify important descriptors of the structure of the graph, e.g.,
node degree distribution. Their focus is therefore on frequencies
and statistical measures.

Structural summarization [8, 43] and pattern mining [55, 72]
approaches have been applied to KGs to facilitate understanding the
structure of the data as well as to obtain concise representations of
themost salient features of their contents. In general, KG summaries
either (i) present a compact representation of the main features
of the original graph; or (ii) define a new graph derived from the
original graph [8]. In the former case, the summary is directly useful
for and interpretable by the end user. In the latter, the summary
is used instead of the original graph to provide easier access to
answers that are expensive or impractical to compute on the original
graph [59]. The main graph summarization techniques extract the
schema of the graph [8, 36], a meta-graph composed of high-level
patterns and their most representative instances [66]; for example,
T. Hanks acted in Forrest Gump, Figure 1 is a notable instantiation
of the frequent high-level pattern Person acted-in Movie. Primarily,
this is achieved by analyzing frequent substructures, i.e., via pattern
mining [55], or based on node and edge types and their topology [34,
72], e.g., a Person can be actor or director in a Movie, but is never
playing the role of a Song. For instance, we could summarize part
of Figure 1 with Person acted-in and/or directed Movie.

Overall, these approaches require no specific domain knowledge
and they return a high-level overview of the graph. Thus, they help
in the initial exploratory stages since they can assist in evaluating
whether a KG (or portion of it) matches the domain of interest,
whether any data cleaning is required, and they can help in formu-
lating new research questions. At the same time, their computations
are very expensive and require multiple passes over the entire graph.
Yet, they are usually conducted offline since their results are com-
puted only once and possibly updated when the graph is updated.

Exploratory Search. Exploratory search has the goal of helping
a user with a vague information need to retrieve specific portions
of the graph that are, usually only in hindsight, recognized as rel-
evant. Therefore, while KG summarization provides a high-level
representation of the graph (e.g., a zoomed-out view), exploratory
search instead delves into the data itself (e.g., zooming in to a subset
of items of interest). Yet, in contrast to traditional search, where
the desired result is well defined, exploratory search usually starts
from a tentative query that hopefully leads to answers that are at
least partially relevant and provide cues for the next queries, e.g.,
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inspecting nodes connected to the node Forrest Gump to finally
identify as relevant the path that leads to Back to the Future.

Hence, exploratory queries change the traditional semantics of
the search input: instead of strictly prescribing the conditions that the
desired result set must satisfy, they provide a hint of what is relevant,
delegating to the system the task of identifying more precisely what
could be of use. This shift in semantics has led to (i) a number of
methods following the search-by-example paradigm [39] and (ii)
methods and interfaces that help the users formalize their intent
into a domain-specific query construct that is usually an expansion
of the input [18, 41]. Both have the common goal to overcome one
of the main challenges in enabling exploratory search: to avoid
complicated declarative languages (e.g., SPARQL) and at the same
time retain the flexibility and expressiveness of such languages.

Search-by-example methods [38, 39] receive as input a set of
example members of the answer set (e.g., Tom Hanks and Forrest
Gump). The search system then infers the entire answer set based
on the given examples and any additional information provided by
the underlying database [49] (e.g., other movies by Tom Hanks, or a
list of Drama movies and their actors). This allows retrieving a set
of entities similar to some given entities of interest [44], or complex
structures matching some relevant structure known by the user [40,
49]. Node and Entity search allows for automatic completion of
a set of seed entities (persons, organizations, places). Example-
based graph search works similarly to node search but requires a
full example (a subgraph or a tuple) to be provided as input. For
instance, it is possible to support by-example reverse engineering
of (SPARQL) queries from example tuples [11].

To further facilitate the user when formulating a query written
in an unfamiliar language and over an unfamiliar data set, differ-
ent studies have proposed query suggestion and refinement tech-
niques [41, 47] and graphical user interfaces [14, 18, 64]. Yet, while
by-example methods allow for rather vague information needs,
query formulation interfaces are designed to help users with a
clear information need in writing (relatively simple) queries about
specific entities.

Exploratory search is useful in different stages of the exploration
since it supports the user in identifying or further exploring entities,
relationships, and structures of interest. They help in answering
more fine-grained and specialized information needs but still take
into account that the user is not familiar with the graph. For this
reason, particular focus is given to approximate methods [40] and
to query suggestion and query refinement techniques [41]. These
methods involve high interactivity and require fast response times,
while they usually access only small portions of the KG.

Exploratory Analytics. Exploratory analytics is an iterative,
integrated process of data discovery and analytical querying on data
that is not well known to the user, e.g., external data. The ability
to support analytical workflows for rich KGs has recently received
increased attention [4, 9, 26]. The idea is to provide functionali-
ties typical of relational data warehouses, i.e., multi-dimensional
analysis over knowledge graphs by describing multi-dimensional
and statistical information within the KG model [20, 68]. This is
also motivated by increasing interest from public and private or-
ganizations to represent business data in specialized knowledge
graphs [65]. All these methods enable a similar approach: to obtain

analytical insights on RDF graphs by means of “views” and aggrega-
tion operations. For instance, considering the example in Figure 1,
we could materialize an aggregated view to count the number of
Movies for every Country and Genre. Such views are themselves
accessible as RDF graphs. Similarly, skyline queries identify entities
that optimize a multi-criteria decision problem leading to a set of
objects that are of interest to a user because of their dominance
across multiple attributes [32], e.g., what are the most recentMovies
with the highest number of Actors performing in it.

Finally, outlier detection approaches identify elements that are
interesting because they are very different from the rest of the
elements [13], e.g., Actors who have participated in an unusually
high number of Movies. Some of the most advanced approaches,
Dagger and Spade [10], inspect a triplestore and select different
aggregation queries that can describe different entity types based
on high-variance values, e.g., whether there is more variability in
the number of movies per Year or Genre across Countries.

In conclusion, exploratory analytics is effective to enable users to
identify high-level details w.r.t. facets of the data tailored to specific
information needs. In contrast, data summarization approaches
are agnostic of the user’s information need and only provide a
global overview of the data. On the other hand, exploratory search
digs into specific data items (entities and relationships) but these
searches return very large result sets instead of a more useful ag-
gregate analysis identifying trends and common patterns. Hence,
exploratory analytics techniques are a middle ground, where spe-
cific summarization methods are applied over the large results of an
exploratory search. Yet, current approaches usually mimic the same
operators proposed for relational data, providing no graph-centric
analyses. Moreover, in these approaches, the user is either required
to be familiar with the (complex) query language, or the system is not
able to accept any user input to customize the output. Thus, analytical
approaches for KGs are currently an area in need of more research.

4 THE CHALLENGES OF KG EXPLORATION
Knowledge graphs pose complex and novel challenges when it
comes to satisfying typical data exploration needs. In particular,
we identify 4 main challenges that graph management systems
face when dealing with KG exploration, namely: heterogeneity,
evolution, vagueness, and scale (listed on the right-hand side of
Figure 3). Among these, heterogeneity, both in terms of data and
schema, is the most particular and prominent challenge posed by
KGs. Heterogeneity is usually linked with an unstructured evolution
of schema and data, which is also derived from the need for inte-
grating different sources with content- and vocabulary-mismatch.
Moreover, exploratory use cases naturally have an inherent vague-
ness of user information needs, a problem that is also exacerbated
by the mismatch between the user’s mental model of the domain
and the complex structure of the graph. Finally, KGs naturally aim
at representing and linking data at the largest scale, e.g., all of the
human knowledge. In the following, we elaborate on each of these
challenges individually. These challenges exist in relation to any
exploratory use case, i.e., in Figure 3, we can imagine an arrow
departing from each goal and pointing to each one of the chal-
lenges. Yet, here we highlight those connections that have a more
prominent impact across both tasks and operations. Moreover, we
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and Operations characterizing KG exploration systems.

will see later specific operations that should be supported by KG
exploration systems to overcome them.

Heterogeneity. We distinguish between data and structural
heterogeneity, where the latter refers to the fact that KGs have
an inherent lack of a global schema. This is the price for their
flexibility in handling new data and data being integrated from
different sources. As such, a large number of KGs has no or very
loose schemas [51]. While schema languages [56], such as RDF
Schema (RDFS), ShEx, and SHACL, provide formalisms for schemas
and ontologies, allowing easier data validation and cleaning, their
rigidity hinders both the addition of new types and the integration
of multiple sources that may represent the same type of information
in different ways. Recent schema discovery methods try to automat-
ically infer the schema of the graph either from patterns [36] or by
asking expert users [23]. Nonetheless, these attempts do not assure
full coverage or perfect compliance, always leaving the possibility
that not all instances of the data are perfectly mapped by a given
schema, or that information of the same type exists, represented by
similar, but not identical structures. Therefore, a system support-
ing KG exploration should be flexible and forgiving enough when
faced with these situations so that it can recognize and retrieve
information that is modelled in a non-uniform way.

Evolution. Knowledge naturally evolves, and so should systems
supporting KGs and KG exploration [53]. Schema evolution [58]
was one of the most pressing challenges in the DB community. In
KGs, the potential lack of schema makes this challenge even more

prominent, with entities changing their meaning over time. This
problem is known as concept drift [69] and has a strong relationship
with the evolution of meaning in natural languages. This challenge
has recently been identified as one of the most pressing challenges,
as current systems and reasoning tools do not support the rapid
evolution of knowledge [1]. A system for KG exploration cannot
eschew from treating freshness of information as a first-class citizen
and hence face the challenges of evolving knowledge head-on.

Vagueness. The lack of a schema and a continuous evolution
of KGs make it almost impossible for the user to precisely and ex-
haustively formulate their information need. This is natural since
the user does not know the exact schema, nor how the data is rep-
resented, resulting in queries that become vague and imprecise.
Kersten et al. [33] argued in 2011 that “next-generation database sys-
tems should interpret queries by their intent, rather than as a contract
carved in stone for complete and correct answers.”. This is even more
true when it comes to KG exploration systems. Existing methods
for approximate graph queries [72] allow for imprecision in the
queries and inconsistent data representations. Also, example-based
search [39] allows for querying using results of an unknown query.
However, these methods only partially address the issue that the
user and the graph vocabulary are potentially different. Hence, ap-
proaches like active learning [46] and question answering [30] could
form the basis of more flexible methods for exploratory queries for
vague user needs. Yet, these approaches are far from being effec-
tively integrated into systems that can also swiftly overcome the
aforementioned challenges posed by heterogeneity and evolution.

Scale. The growing sizes of KGs alone already challenge the
capabilities of existing approaches and systems in general [61, 62]
and therefore complicate supporting heterogeneity, evolution, and
vagueness even further. The need to integrate entities from several
domains and representations renders also the scale of integrating
data into KGs an even harder task. Finally, the size and richness
of their structure pose also new challenges when it comes to data
summarization, understanding, and visualization [7]. Visualizing
the large heterogeneous graph data of KGs is particularly difficult
when it comes to deciding what information to show to the user
and in which form.

5 KG EXPLORATION REQUIREMENTS
Our analysis (summarized in Figure 3) started from the goals and
the tasks characterizing KG exploration on the one hand and con-
siders the existing challenges, on the other hand. These aspects
are linked together and lead to the new requirements for KG ex-
ploration systems discussed here. We discuss a set of requirements
and desiderata for KG exploration systems as a logical conclusion
of our analysis. In particular, we identify five operations that KG
systems should implement to properly support KG exploration.

Approximate similarity search. KG exploration often starts
by means of a keyword search query asking for values containing
at least partial matches to node and edge attributes. Yet, existing
GDBMSes offer only limited support to these queries and no support
for approximate query answering besides partial string matching.
Often, users ask for nodes or edges similar to the ones they know.
Yet, the notion of similarity varies substantially across domains
and applications, e.g., short distance in a taxonomy vs. similarity
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of attribute values. These operations are very costly and require
specialized algorithms. Nonetheless, to date, no system provides
native support for such operations.

Pattern mining and connectivity search. GDBMSes excel in
queries such as finding reachable nodes given some conditions on
path length and node/edge labels. An exploratory search asks for
arbitrarily long paths with limited or no knowledge of edge or node
labels. Oftentimes, the user would like to find the 𝑘 most relevant
structures given an unspecified proximity measure [21]. On an-
other vein, graphs expose repeated structures that form patterns
revealing important connections among entities. As such, pattern
queries [72] constitute another important, yet loosely supported,
mechanism. These exploratory pattern queries involve large search
spaces due to underspecified query conditions or malformed in-
put calling for approximations. Finally, analytical queries ask for
aggregates, e.g., counting nodes matching some structures and at-
tributes, that require advanced techniques, such as sampling, or
pre-computed statistics and view materialization [19, 27, 29, 57, 67].

Progressive and incremental results. Oftentimes during ex-
ploration, users need a sample of the answers to a query to deter-
mine whether the results are relevant without requiring all results.
Therefore, a system should optimize for minimizing the time re-
quired to provide the representative results first and return more
results progressively as time passes. Additionally, when the data
changes, continuous queries [70], e.g., those that are used to pro-
duce dashboards and visualizations, need to show updated results
efficiently by only considering the latest data changes.

Iterative query modification. Exploratory search is naturally
an iterative process in which the user issues sequences of queries in
which each query slightly perturbs the previous one. In this query
modification scenario, the system should be able to re-use even
partial computations from a previous query instead of recomputing
everything from scratch. Moreover, by examining both the graph
and past interactions, the system could also predict the next query
reformulation and either proactively compute some results or use
this prediction to further guide the user in their next queries.

Adaptive storage and indexing. As the KG changes so should
any index and data structure in the database. While, on the one
hand, these structures are necessary to deliver fast responses, on
the other hand, current indexes do not adaptively change with
the data. Yet, KGs’ heterogeneity and evolution, linked to the high
variety of exploratory use-cases, imposes a need for adaptivity to
these indexes and data representation [60]. In particular, data struc-
tures like reachability indexes or graph partitions becomes quickly
obsolete if the data constantly updates. As such, KG exploration
demands new types of data structures that lazily adapt to the user
queries and the data updates.

The aforementioned requirements have long been identified and
investigated [39, 50, 61]. Notwithstanding, system designers have
only partially prioritized such requirements to support KG explo-
ration. Designing the system from the bottom up, we first need
new query operators, such as example-based queries [39] and more
flexible approximate search operators, directly integrated within
the system, instead of treating them as separate applications. Subse-
quently, we need query processing and optimization that are aware
of the complexity of the exploratory workload and not merely

targeting point-wise operators. Finally, we need elastic query pro-
cessing, query caching, and partial query answering techniques
supported by adaptive and on-demand data structures.

6 CONCLUSIONS AND FUTURE DIRECTIONS
This paper provides a taxonomy of KG exploration methods di-
vided into profiling, search, and analytics. As shown, challenges
of KG exploration go beyond scale and concentrate around hetero-
geneity, the evolution of the data, and the vagueness of the user
needs. We discuss how novel KG exploration systems are required
to support operations like approximate similarity search, pattern
mining, and progressive, incremental, and iterative query answer-
ing using adaptive storage and indexes. In Figure 4, we show how
the various components integrate and respond to a given example
workload. In particular, we see the connections between the vari-
ous techniques presented above and the core components of the
system: query operators, query processing, and the storage layer.
An analysis of the state of the art (Figure 2) and the connections
between the goals and the challenges posed by KG exploration use
cases (Figure 3) identify two important research avenues for KG
exploration systems: (1) more extensive support within the system
for example-based and similarity-based approximate exploratory
methods and (2) enhanced interactivity, personalization, and per-
formance through adaptive systems (which would likely require
new applications of machine learning techniques).

Support for Example-based and Similarity-basedmethods.
Example-based approaches [39] provide the unique opportunity
to lift the requirement to be familiar with the structure of the
data and the query language. At their core, they rely on a flex-
ible notion of similarity. Despite their importance and potential
in helping users explore a KG, no system natively and effectively
supports them. Currently, example-based approaches exist only for
exploratory search tasks and not for exploratory analytics. Con-
sequently, example-driven exploratory analytics for KGs is largely
unexplored. These analytics should combine data summarization
and exploratory search and return statistics based on examples.
Data summarization and profiling techniques should also extract
context-specific insights. The context and information needs have
to be inferred from the user-provided examples. Additionally, we
can envision system-level support for example-driven visualization
suggestions. These suggestions can help the user identify further
analytical explorations and should be guided by the information
derived by the user provided examples.

Machine learning for KG exploration systems. Data and
KG exploration should account for the specific user need through
interactive and personalized methods. During interaction with the
user, the system improves and learns more about the user needs
to enable personalization. Machine learning and active search are
a promising ground [46] to learn user preferences from past in-
teractions, e.g., analyzing the query log, and adapt to the user’s
needs. Yet, existing exploratory methods are mainly data-driven:
they assume fixed user preferences or refinement criteria based on
hardwired rules. While few exploratory methods learn a dynamic
notion of interestingness from the user input and interaction with
the system, e.g., query reverse engineering [11] or query sugges-
tion [41], most approaches lack this feature. Personalization also
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provides useful insights tailored to each individual user [7]. Other
desiderata include the capability to learn exploration criteria (e.g.,
similarity measures) and computation strategies (e.g., query op-
timizers). Finally, we have recently seen how machine learning
can be adopted for learned data representation and indexes [12],
applying these techniques on-the-fly to expedite and support KG
exploration workloads is a promising research direction.

Conclusions. Are we lost? No, but the time is ripe for invest-
ing in systems supporting KG exploration. We identified a set of
challenges, opportunities, and requirements to empower current
systems with exploration capabilities and support users from dis-
parate domains and with different information needs. These, in turn,
require the implementation of novel operators, data structures, and
query optimizers that can explicitly handle the heterogeneity of
KGs and the computational requirements of data exploration.
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