
Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers

Pat Helland
phelland@salesforce.com

Salesforce
San Francisco, CA, USA

ABSTRACT
Modern cloud data centers are busy places that share lots of re-
sources. It is common for services to fluctuate in their respon-
siveness, sometimes becoming slow or very slow. Many distributed
systems experience cascading slowness as one or a few slow servers
(or their network) bring the entire system to its knees.

Non-transactional work copes by using idempotent retries by-
passing the laggards. For transactional databases, it’s not so simple.
This paper sketches a design for a distributed database providing
responsive snapshot isolation transactions even when some of its
servers and connections stop or, more perniciously, just slow down.

We present a thought experiment for a decoupled transactions
database system that avoids cascading slowdown when a subset of
its servers are sick but not necessarily dead. The goal is to provide
low tail latency online transactions atop servers and networks that
may sometimes go slow. Assume at most F recalcitrant servers
in the database. Can we design a robust system that makes pre-
dictable progress while not waiting for F slow servers? Can we use
these ideas for practical deployments in modern data centers with
availability zones and today’s expected operational challenges?

This hypothetical design explores techniques to dampen applica-
tion visible jitter in a database system running in a cloud datacenter
when most of the servers are responsive. This inevitably causes us
to examine the nature of a database’s knowledge of correctness and
how that can exist without a centralized authority.
ACM Reference Format:
Pat Helland. 2022. Decoupled Transactions: Low Tail Latency Online Trans-
actions Atop Jittery Servers. In Proceedings of 12th Annual Conf on Innova-
tive Data Systems Research (CIDR ’22) (CIDR’22). ACM, New York, NY, USA,
30 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Typically, online transactional databases are deployed with expen-
sive dedicated hardware1 in data centers owned by their enterprise.

It is desirable to run these solutions in cloud data center environ-
ments to avail ourselves of their tremendous advantages in flexible
deployments and elasticity of resources. However, there are new
challenges as these shared environments do not offer predictable

1High quality servers, data storage in SANs (Storage Area Networks) [10, 43] and
bespoke networks are common deployments for mission-critical databases.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well as allowing derivative works, provided that you at-
tribute the original work to the author(s) and CIDR 2022. 12th Annual Conference on
Innovative Data Systems Research (CIDR ’22). January 9-12, 2022, Chaminade, USA.
CIDR’22, January 10-13, 2022, Chaminade, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/1122445.1122456

response time to requests flowing across servers. In the cloud, re-
sponses exhibit probabilistic latency. Worse, the expected response
time varies as the environment experiences pressure. Some servers
will take noticeably longer while others provide their normal ex-
pected response time distributions.

Human facing non-transactional work provides a vibrant and
responsive experience using retries of idempotent operations2.

Can we provide high-availability low-latency responses from a
high-throughput externally consistent3 distributed database that
tolerates jittery or sick servers? Can we knowwhat happened in the
past quickly with low tail-latency sowe can brisklymake changes in
the future based on what happened? Can we rapidly protect against
conflicting concurrent updates as we commit transactions? How
the heck can we build a system without a centralized authority to
remember what’s happened and decide what should happen next?

It is not our goal to define a super-scalable SQL system.

We hope to scale to tens of servers with predictable response
time while running in a largely unpredictable environment.
This thought exercise aspires to pry apart the cross-server depen-

dencies in our imaginary system and push our minds to understand
the nature of how state is represented in a system and how that
state may be decentralized. Can we bound the internal dependen-
cies within the implementation of a database so transactions can
commit rapidly even when some components aren’t responsive?
It is hoped that this can empower future systems to blithely ig-
nore performance irregularities in large data centers and just give
prompt answers when enough servers participate.

1.1 Inspiration for This Work
In the cloud, we frequently measure the latency between a request
and its response as one service invokes another. These response la-
tencies are probabilistic and can be expressed as a CDF (Cumulative
Distribution Function) showing the expected likelihood a response
will be received by a specified time4.

For example, an SLO (Service Level Objective) for a service may
specify a 99.9% probability of responding within 2 milliseconds.

A system will typically have multiple dimensions to its SLO such
as windows of time in which the target response latency is actually
met. For example, 99.9% of the responses will be received within
2 milliseconds at least 98% of the time.

When a larger system is built using smaller services, the SLO of
the smaller services can have significant impact on the resulting
2See The Tail at Scale [20] for an excellent discussion about bounding tail-latency
probabilities by retrying to an alternate server.
3I.e. snapshot isolation [13, 41] as seen external to a distributed database.
4See §12 (Appendix A: Building on a Jittery Foundation) for an in-depth discussion of
the challenges we face within modern data centers.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

system. When all goes well, the system itself offers its expected
latency as each of its components meets their SLO for prompt
service. When services within the system are less punctual, we can
see impact on the larger system’s responsiveness5.

Retrying slow requests to an alternate server is a common tech-
nique tomitigate this [20]. Proactively sending two ormore requests
to different servers and accepting the first response dramatically
lowers the expected latency for the first response.

In the DB world, we see latency bounding for log subsystems.
One example is Apache Bookkeeper [7]. Log entries are appended by
writing to N log-storage-replicas (called Bookies). When Q of N log-
storage-replicas have acknowledged the receipt of the log entry, it is
durable. Since N - Q log-storage-replicas may be slow, the expected
and observed SLO for writing to the log is dramatically reduced.
The database system is predictably faster with less variability.

AWS Aurora[46, 48] carries this further with replicated AWS-
storage-servers for log replay and block creation. TheseAWS-storage-
servers are effectively the lower half of the database. They are placed
with 2 servers in each of 3 AZs (Availability Zones). When 4 of
these servers have acknowledged the log entry, Aurora considers
the log entry to be durable. Transactions having commit records
in the entry may be confirmed to the waiting human. Even when
AZ+16 failures have happened, the commit record can be read later.
Logging is fast even if 2 of the 6 AWS-storage-servers are slow.
Still, major portions of the database run in a single server.
If that server is jittery, humans will experience unpredictable delays.

Can ALL of the database be responsive
atop unpredictable servers?

Can every aspect of a database be decentralized
and responsive even when some of its pieces are not?

1.2 Applicability to a Broad Range of Systems.
This paper is about jitter-avoidance through the use of quorum. It
investigates techniques to manage complex systems based on an al-
ternate form of order (called seniority) that is largely decoupled from
classic happened before partial-order messaging guarantees[35].

By sketching a design for a transactional database, we
demonstrates the broad applicability of these principles

to many complex distributed systems.
Paxos[36] provides linear order but it jitters

We provide partial order and avoid jitter

1.3 Availability in a Complex System
The phone system over land lines offers amazing availability. Occa-
sionally, a call is dropped but you can redial and connect.

Availability is defined as the opportunity to dial another call.
In transactional database systems, transactions may fail. Lock

conflicts or other problems can cause work to be discarded. You
don’t want this to be common but once in a while is OK. When a
transaction aborts, the application can restart the work and hope-
fully succeed. In a distributed database, restarted transactions may
5See the paper Thinking about Availability in Large Service Infrastructures [39] for great
discussions of SLAs (Service Level Agreements), SLOs (Service Level Objectives), and
SLIs (Service Level Indicators). The discussion also includes multi-dimensional SLOs.
6Tolerating AZ+1 failures means an entire AZ can be lost at the same time as one more
server is down for other reasons [46].

route to a different database server. If a single transaction gets stuck,
the application can abandon it, retry, and probably succeed.

Our decoupled transactions database may occasionally timeout
while doing a transaction. Even so, it remains open for new business.

1.4 Snapshot Isolation Guarantees
The goal for this design is to imagine a database that runs many
existing applications with excellent availability and responsiveness.

Special attention is required to when, how, and with what guar-
antees the application sees and changes its data. Snapshot Isolation
[13, 41] defines the database behavior that an application sees when
running with concurrent work. It is arguably the most common
isolation guarantee provided by modern commercial databases. In
its basic form, snapshot isolation provides guarantees when reading
and committing updates in a transaction:

• Snapshot reads: Each transaction gets a snapshot time as it
begins and, as it reads data, sees updates from transactions
committed before the snapshot time and its own updates.

• Conflict detection prior to commit: As a transaction is
about to commit, the database will ensure that none of the
updated records has been changed by other transactions
since this transaction’s snapshot time.

Snapshot isolation is extremely popular. Many existing applications
depend on these guarantees for their successful execution.

1.5 What’s Jitter?
Jittermean behavior different than the expected norm. In particular,
for response time varying from what’s expected. In electronics, it
means deviation from the circuit’s expected clock timing.

In networking, jitter describes larger than expected variance in
the delay moving through the network [17]. Servers may jitter for
many reasons from gray failure to Operating Systems to Java VMs.
See §12: (Appendix A: Building on a Jittery Foundation).

Within a distributed system, jitter comprises both variability
from the network and variability from the server processing a request.
From the standpoint of the client issuing a request, it can’t tell the
cause of the delay, just that the response is not as zippy as hoped.

If part of the cluster is not responding, those servers may or
may not be doing work. For servers spread widely within or across
data centers, an observer may see some servers responding quickly
but not all of them. The ones WE see responding quickly may not be
providing prompt responses to other servers in the datacenter.

What can we assume so we can make progress?
1.6 Quorum: Avoiding Snapshot Isolation Jitter
Snapshot isolation transactions can do independent changes to the
database as long as there are no conflicting updates and each trans-
action sees only snapshot reads. What if these two things can be
accomplished without stalling behind jittery servers?

We can avoid stalling7 when we do work with quorums. The
idea is to ask a collection of servers to do each operation and wait
for only some of them to answer. Suppose we have a quorum of N
servers and we only need answers from Q of them (where Q > N/2).
When we get Q answers, we know that at least one server of the Q
has already seen any single previous operation. By combining all
Q answers, we can know about previous work. F is our maximum

7The probability of stalling drops dramatically when we don’t wait for every server.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

number of jittery servers8. If F < N-Q, we can learn what we need
to learn while not getting stuck behind jittery servers.

We will propose that both checking for conflicting updates and
snapshot reads can be accomplished with quorum operations.

Decoupled transactions:Can enough servers do enough work?
Healthy servers finish the job and ignore slow or dead ones.
Decoupled transactions: Tolerate up to F jittery servers.

1.7 Framing the Proposed Design
To avoid jitters, we minimize coordination and do it with special
care. We only coordinate to verify no transactional conflicts, keep
track of very recent updates, and remember coarse grained informa-
tion about persistent shared data.

The big idea behind this design is tomaximize the read-only data
and ensure we can read it while sidestepping jittery servers. If all but
the recent data is kept in shared storage in the cloud and we can
read it without jittering, that solves a big part of the problem, the
older portion of the snapshot reads aspect of snapshot isolation.

To avoid jitters while reading from shared storage, we must allow
independent read-only access (once its no longer recently changed).
Separately, we must find recent changes while bypassing jitter.

Finally, we allowmultiple independent workers to make changes.
Independent changes to the database can be correct if we focus
carefully on the two requirements for snapshot isolation:

• Snapshot reads of committed data as-of the snapshot.
• Prevent update conflicts since the transaction’s snapshot.

Decoupled transactions database uses a few basic concepts:
• Record-versions: Change to a SQL database can be repre-
sented by generating new record-versions.

• Worker servers:Worker servers can perform transactions
independently by generating new record-versions. They
have their own transaction logs.

• Shared storage of older record-versions: Older record-
versions are organized in a shared storage for easy access by
key within an LSM: Log Structured Merge [37, 40] system.

• Newer record-versions are found in other workers:
After a worker commits a transaction creating new record-
versions, the worker allows them to be read directly9.

• Snapshot reads combine older record-versions with newer
record-versions as needed.

• Optimistic transaction updates: Workers perform trans-
actions optimistically, committing if there are no conflicts.

• Conflict detection before commit: Conflict detection of
updates happens at centralized coordinator(s).

External application servers create database connections to one of
a pool of worker servers. If an individual worker server becomes
unresponsive, the app can time-out and try another worker server.

Snapshot reads and conflict detection use quorums.
They don’t stall even when up to F nodes haven’t responded.

8See §7.2 for a discussion of how the notion of F jittery servers can be practically
applied to 3AZ data centers for various use cases within the database. Each of these
use cases has its own definition of "F" derived from its particular requirements.
9Of course, the worker making recent changes can get jittery. For those rare cases, we
can rapidly kill the worker and read its log. This is discussed below in §14.
In depth discussions of this are found in §15.3, §15.4, §15.7, §15.9 and §15.12.

1.8 Building a DB without a Central Authority
Databases thrive on ordered transactional updates seen by applica-
tion developers. Serializability [14] and related forms of weaker
isolation [13] provide applications a façade of loneliness. Lineariz-
ability [33] is a property of a single centralized object and its
relationship to clients as they perform operations. What happens
when that centralized object goes slow? Can we avoid using a
central server to build our database?

If we truly believe that up to F servers can be abstaining from
work at any time, any centralized adjudicator of truth may be in
suspended animation.Anything from any single server may be frozen
and not able to make progress. This leads to an existential quandary:
How did this database start and what is its source of truth?.

What is the Uncaused Cause10 that launches our database?
Our decoupled transactions database starts with a quorum of

catalog servers describing the contents of the database, logs and
their state of repair, as well as some stale notion of the ongoing
state of servers comprising the database. We assume their existence.

When a sufficiently large subset of our catalog servers comes to
life with their own partial knowledge of the system, we can reason
about the database, its contents, and allowable changes to its future.
No single centralized server has the truth or controls the future.

Decoupling transactions is not enough in a jittery world

We must also decouple the way we control the system.

1.9 A Sketch of What’s Coming
The main part of the paper has 17 pages in these sections:

• Decoupled Transactions Databases – Sketches the pieces
of our imaginary system and points out possible jitter-risk.

• Seniority: A Disorderly Order – Provides a framework
to manage order and yet remain independent of jitter.

• Logical Time & Transaction Commit – Describes how
transactions get partial order while avoiding jitter.

• Quorum: Jitter-Free Fuzzy Visibility – Looks at the
essence of quorum: jitter avoidance with quirky behavior.

• Confluence: Adding Clarity to Fuzzy Quorum – We
explain confluence and its use with quorum to control the
state of a complex system.

• Jitter-Free Snapshot Isolation & 3AZ – How can our
database avoid jitter when running over 3AZs? We review
the major aspects of the database and how they avoid jitter.

• Discussion – We consider the impact of using quorum,
confluence, and seniority on complex systems.

• Related Work – Some readers may want to start here to
compare and contrast with earlier published work.

Finally, we have 12 pages of appendices covering:
• Appendix A: Building on a Jittery Foundation –
Reviews assumptions about modern data centers.

• Appendix B: Quorum’s Subtle Challenges – Surprises!
• Appendix C: Jitter-Free Database – How it works!
• Appendix D: Jitter-Free Log-Repair – Log repair details.

10Aristotle proposed that if everything has a cause, back in time we must eventually
arrive at a First Cause [42]. Saint Thomas Aquinas introduced this into Medieval
Christian theology in the 13th century as a proof of the existence of God. We introduce
this notion to reason about the foundation and correctness of our system.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

2 DECOUPLED TRANSACTIONS DATABASES
Decoupled transactions databases store data in shared storage. Five
different types of servers do different jobs. Work happens by gener-
ating new record-versions and reading the correct record-versions
for snapshot reads.

As data ages, it migrates to a key-value store in shared storage
implemented as an LSM (Log Structured Merge System) [37, 40].
Our catalog maps key-ranges to stored data and its location in
shared-storage. We check for conflicts before transactions commit.

Let’s first look at this design without considering jitter. Then,
we’ll examine the risks for jitter in this design and their mitigations.
We discuss the problems with sharing status without a centralized
authority. Digging deeper into our jitter risks, we taxonomize the
kinds of status data we need to share.

Figure 1: A Decoupled Transactions Database uses five types
of servers to provide snapshot isolation transactions.
Apps use DB connections to 1 or more worker servers.

2.1 Server Roles in Decoupled Transactions DBs
A decoupled transactions database has 5 server roles: worker,
coordinator, data-storage, log-storage, and catalog. See Figure 1.

Worker servers are database servers. Incoming DB-connections
feed in SQL requests. Execution, reads, and updates happen in
worker servers. Workers log to their own log in shared storage.

Coordinator servers help avoid conflicting updates as transac-
tions commit and help locate recent changes for snapshot reads.

Data storage servers hold replicas of data files with DB data.
Log storage servers hold replicas of the log extents used for

logging. These include special mechanisms to optimize appending
to the log and to accurately recover the end of the log after a failure.

Catalog servers track metadata for workers, log-storage and
data-storage. They manage worker’s log extents and replicas. They
organize the data files used by the key-value store, describing the
location of data extent replicas in shared storage.

2.2 DoingWork in a Decoupled Transactions DB
Each incoming transactions arrives to a worker server over a data-
base connection. Transactions begin as-of a snapshot time. The
worker reads record-versions (i.e., database records committed
as-of the snapshot). It may also update records and commit its trans-
action. Record-versions created by transaction T1 include their
commit time. T1’s record-versions are visible to all subsequent
transactions with a snapshot time greater than T1.

In a decoupled transactions database, each record update creates
a new record-version that layers atop earlier record-versions and is
visible to transactions with later snapshot times. Record-versions
older than a few minutes or so are in shared storage and are visible
to all database servers in the database. Recent record-versions are
found within the worker performing the transaction that created
them. Snapshot read semantics are provided by reading the latest
record-version that committed prior to the reader’s snapshot time.
Snapshot isolation depends on conflict detection and snapshot reads:

Conflict detection is provided by the coordinator. Before a
transaction commits, a permission-to-commit request is sent to the
coordinator to verifies that none of the proposed changes conflict
with any other committed (or committing) transactions. If no con-
flicts are found, permission is granted.

Whereabouts of recent updates are obtained from coordinators
at the beginning of each transaction. Each whereabouts entry de-
scribes a possible recent update made by a worker-server. These are
guaranteed to cover all updates that commit11 going back at least
to the snapshot time for the transaction. Whereabouts cover both
individual records as well as key-ranges12.

Snapshot reads must return the most recent record-version
committed before the snapshot time. Older record-versions can be
found in shared storage with an LSM-based key-value store (using
both the catalog servers and the data storage servers). Recent record-
versions can be found in the worker server(s) that updated the
desired records. Coordinators provide guidance to locate recent
record-versions within worker server(s).
2.3 Record-Versions and Their Unique Identity
SQL semantics need both tables and indexes on these tables.

Tables are implemented by creating record-versions with unique
primary keys for each row by concatenating:

• Table-ID for the table, and
• The SQL defined unique primary-key comprising an ordered
set of the table’s columns.

The record-version for each row contains the contents of that row
being stored in the table.

Indexes (also called secondary keys) are a set of record-versions
whose keys concatenate:

• Table-ID for the table,
• The Index-ID within the table, and
• The SQL defined non-unique secondary-key comprising an
ordered set of the table’s columns.

The record-version for each unique or non-unique secondary key
contains both the secondary key and the unique primary key it
references. The combination of the secondary key and its unique
primary key is, as a pair, unique.

Tombstone record-versions are identified by either a primary
key or a secondary key. They denoting the deletion of the record
as-of the transaction that generated the tombstone.

11Whereabouts will occasionally capture updates that do not actually commit. This is
rare and does not impact correctness.
12Key-range whereabouts are beyond the scope of this paper.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Each record has a unique key, primary or secondary.

Primary records contain the contents of a row from a table.
Secondary records hold the primary key of the row they index.

Record-version: an image of the new contents of a record,
perhaps a tombstone. Each record-version is identified by both
by its unique record-key and the timestamp of the transaction
creating the new value. It may be a primary record-version
or a secondary record-version.

2.4 Finding Record-Versions for a Snapshot
Implementing SQL queries uses both exact-key probes as well as
key-range scans. This is true for both indexes using secondary-
keys and tables using primary keys. To generate the correct value
for a snapshot read, we need to combine older results from the
LSM persistent storage with recently committed changes from the
workers committing those changes.

Exact-key probes by workers: Worker-servers locate a record
using its exact-key along with a snapshot time. It locates the latest
record-version (if any) present within its recent changes.

Exact-key probes into the shared LSM: A search of the LSM
locates a record using its exact-key as-of a snapshot time.

Key-range scans byworker servers:Workers can also support
key-range scans over a key-range to locate the latest record-version
(per key) within the key-range being scanned. Only records older
than the snapshot time are returned. For each unique record-key,
only the latest record-version before the snapshot time is returned.

Key-range scans of the shared LSM: These scan all files in
all levels in the shared LSM that might have a record-version within
the key-range. For each level, a scanlet produces a per-level key-
range result. These scanlets are merged to produce an ordered set
of record-versions within the key-range. Only records older than
the snapshot time are returned. For each unique record-key, only
the latest record-version before the snapshot time is returned.

2.5 Storage of Log and Data
Shared storage is accessible to all database servers. Different servers
provide the needs for data storage for the LSM and log storage for
the workers’ transaction logs.

Data-files are written to data storage servers by workers. Data
files are uniquely identified by a data-file-id, a 128-bit UUID. They
are immutable and, oncewrittenmay never be changed. Anyworker
server in the database may read a stored data file.

Workerswrite data files toflush recently committed record-versions
to the LSM and merge older parts of the LSM13. The storage catalog
manages metadata for the LSM to track these data-file-ids providing
efficient ways to read a record-version by key.

Low-latency jitter-free reads of data files are possible by replicat-
ing the data files over a set of data-storage-servers using consistent
hashing[51]. Other techniques exist, too.

Log-extents are written by appending fragments to an extent
replicated over a set of log storage servers. Worker servers append
transaction log records, contained in fragments, as they process
transactions. Each worker has a private log-window comprising an
13Merging of LSM data files reorganizes them for easy key-based record-version reads.
This is sometimes called compaction.

ordered sequence of log-extents, each of which is replicated over a
set of log-storage-servers.

Log storage servers, log-windows, and log-extents are specially
designed with two goals:

• Efficient appending of fragments containing log records
by a single worker server to its private log window.

• Repair of a log-window after a failure. This guarantees
the durability of committed transactions and ensures the
repaired log-window contents never change. See §15.9

2.6 Caring for Data in Shared Storage
Worker servers log updates (i.e., record-versions) and transaction
commits to their per-worker log in shared storage. Recently commit-
ted record-versions are kept in the worker’s memory and accessed
as needed. Let’s see how these older record-versions are managed.

Adding New Record Versions atop Shared Storage. Shared
data storage receives new data files when new record-versions are
flushed to the LSM. TimeFlush delineates record-versions old enough
to be found in shared storage. Record-versions newer than TimeFlush
remain in the worker server that created them14.

Reorganizing Record-Versions in Shared Storage. Key-value
stores may reorganize their data for easier access by key, incremen-
tally rewriting key-ranges into new data extents to make reading
by key easier (e.g., LSM merges). While the newer organization is
better for reading records, the older one works fine, too.

Cataloging changes to shared storage. Changes to key ranges
from flush or reorganization (e.g., merge) are tracked by the storage
catalog along with the location of the data extents in shared storage.

Figure 2: There are six major risks of jitter to address.

2.7 Where Are the Risks from Jittery Servers?
Transactional work comprises two things: snapshot reads of existing
record-versions and non-conflicting updates to records (i.e., creating
new record-versions). Without care, we risk that jittery servers can
stall the database. See Figure 2.

14Flushing records from workers to shared storage is allowed to take a while. When
complete, we can reclaim worker memory. Workers retain their record-versions until
after they are known to be in shared storage and TimeFlush is advanced. Because workers
flush independently, at first they will have different TimeFlush values.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

Our definition of availability allows transaction abort.
Jittery workers may block ongoing uncommitted transactions
causing timeout, abort, and hopefully application retries.

The database must promptly accept new work including snap-
shot reads of committed record updates. Stalled workers may
not block access to committed updates and their record-versions.

Uncommitted work may stall.
→ Reading committed work must not stall.

Consider six interactions in the database with risk for jitter:
• Risk #1: Worker to coordinator: Coordinators help with:
– Partial order of transactions
– Avoiding conflicting updates
– Learning about recent record-versions
They must not stall for jittery servers.

• Risk #2: Workers appending to their log: Must not be
slow when writing log records or updating the catalog.

• Risk #3: Workers reading data-files: We must rapidly
read data files even when storage servers go slow.

• Risk #4: Worker to catalog: Reading from catalog must
not wait for the jittery servers.

• Risk #5: Asking otherworkers for recent record-versions:
The target worker (or network) may be slow.

• Risk #6: Reading a slow worker’s log to side-step it. If
a worker can’t respond about its recent updates, we look in
its log. This, too, has risks of jitter we must avoid.

The crux of our jitter-risks involve ordering work across services.

2.8 Order without Dependency
Much of the work we do involves some form of order. A piece of
work may interact with another and we must control that. We need
order across these pieces of work and their interactions with other
ongoing work in the system.

Let’s decouple partial order of transactions
frommessages across servers

Seniority: a form of partial order applied to transactions
Two types of order:
• Happened before: Messaging in a distributed system
• Seniority: Another type of partial order

Happened before is always jittery!
Messages between servers flow through single servers

Each server may possibly jitter...

Seniority of transactions can be jitter-free!

We can also use seniority for other things in the database.

Let’s first consider jitter-risk #1: (worker to coordinator).
Coordinators support snapshot isolation transactions by:

• Avoiding conflicting updates: A transaction T1 may not
commit if it updates records changed by another transaction
T2 since T1’s snapshot time.

• Locating recent updates: Any subsequent transactions
after T1 commits with an earlier snapshot time must see all
updates made by T1.

Partial order of transactions is needed for snapshot isolation.
For any two transactions T1 and T2, we must see one of:

• T1 is before T2
• T1 is concurrent with T2
• T2 is before T1

Can we provide partial order of transactions without risking jitter?
3 SENIORITY: A DISORDERLY ORDER
Our decoupled transactions database can be decoupled in execution
because it uses seniority as a form of order. Seniority is largely
decoupled from the messages that flow across servers.

Seniority is an attribute of items. The following items have se-
niority assigned to them:

• Transactions: Each is a separate item with its own seniority
• Transaction logs, extents, & fragments have seniority ranges
• Flush’s data files have a range of seniority
• Merged data files have a range of seniority
Seniority uses quorum to know a fuzzy beginning

and a fuzzy retirement of items in the system.
Since we have a decentralized system,

we cannot crisply know when things begin or end.

This section covers:
• §3.1 (Seniority of Transactions): This introduces seniority
of transactions, briefly explaining their provenance15.

• §3.2 (Transactions: Items with an Exact Seniority):
Transaction have an exact seniority at a single logical time.

• §3.3 (Seniority Ranges of Other Items): Other items with
seniority (e.g., log stuff and data files) use a range.

• §3.4 (Seniority and the Lifecycle of Items): Items have a
lifecycle of birth, mid-life, retirement, and removal. Transi-
tions in this lifecycle are not atomic but have fuzzy visibility
(due to quorum) when changes happen. Seniority allows us
to reason about the fuzziness and bound its duration.

• §3.5 (Retirement of Items): Here, we briefly summarize
when various types of items retire from the system.

3.1 Seniority of Transactions
Transactions are assigned their seniority as they attempt to commit.
Before committing its transaction, a worker must get permission-
to-commit from a quorum of coordinator servers. See §4.

To commit: workers guess a transaction’s seniority and
coordinators confirm that seniority

Seniority is a logical time within the database

Seniority of transactions is partially ordered in the database:
• Seniority is assigned per worker:
– Committing workers guess a seniority
– Seniority is requested in permission-to-commit

• Seniority is partially ordered per coordinator server:
– Each server locally processes permission-to-commit
– Local processing by seniority order as guessed by workers

• Seniority is partially ordered across coordinator servers:
– Quorum across coordinator servers
– Partial order of transactions by seniority

15A more in-depth explanation follows in §4:(Logical Time & Transaction Commit).

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Transactions are partially ordered by seniority
A partial order of all transactions in the database

Assigning transaction seniority does not jitter

3.2 Transactions: Items with an Exact Seniority
A single seniority for is assigned to each transaction. The transac-
tion commits at a single logical time. Other transactions have their
own seniority at their own single logical time.

When two transactions have different seniorities, one is before
the other. Occasionally, two transactions have the same seniority
and they are concurrent. Transactions have a partial seniority order.

3.3 Seniority Ranges of Other Items
In addition to transactions, there are other items with seniority
assigned as they are created. The seniority of these other items
is derived from the transactions included within them. They are
defined by the range’s lower-bound and upper-bound of seniorities
of the transactions captured within these items:

• Log (fragments, extents, and log-windows):
Each has a range for its seniority. See §15.1.

• Flush: Each data files has a range for its seniority. See §14.2
• Merge: Each data file has a range for its seniority. See §14.3

Catalog manages log, flush, & merge item seniority
The catalog retires these items when no longer needed

Each of these stored items is assigned its seniority as it is created.
Extents and log-windows may not yet have a crisp upper bound

for their seniority while receiving fragments for new transactions.

3.4 Seniority and the Lifecycle of Items
The lifecyle of items (including transactions) goes through stages.
They are created, live within the system, retire, and have their
resources reclaimed.

Items many be used across many parts of the database. Log-
storage servers, data-storage servers, catalog servers, and coordina-
tors all interact with items. Items are used across these boundaries
of internal implementation. Their lifecycle needs to be coordinated.

Fuzzy visibility of changes. As with all changes within a
distributed system, transitions are not atomic. For each of these
changes, we see a fuzzy window of visibility:

• Before the change begins: No server sees the change.
• During the change: Some servers see the change and others
do not. Some may see it appear, disappear, and reappear.

• After the change: All servers see the change.
Seniority controls the visibility of items’ lifecycles

Quorum is used to share changes in an item’s lifecycle

Controlling changes with quorum is both good and bad:
• Good: Quorum can be used to tolerate jitter
• Bad: Quorum shows fuzzy visibility of changes

Seniority is used to bound the fuzziness of visibility

3.5 Retirement of Items
Each type of item has different rules for its retirement:

• Transaction T1 retires when the latest of both:
– Oldest system snapshot time advances past T1
– Flush time for T1’s worker advances and T1’s in the LSM

• Log related items retire when:
They aren’t needed for system restart or archive.

• Flush data file items retire when:
The changes in the flush are visible in the LSM.

• Merge data file items retire when:
Newer merged LSM data files cover all its key-ranges.

4 LOGICAL TIME & TRANSACTION COMMIT
Seniority in our system comes from transactions and their commit
time. Commit time is a logical time that advances without jitter and
without any special hardware in servers or the network.

The coordinator subsystem comprisesNCoord coordinator-servers
working in conjunction with coordinator-clients within each worker-
server. See §2.1 and §5. Worker servers wait for QCoord servers to
complete and advance work through the database. See §14.1.

Transaction commit happens with the help of a quorum
of the coordinator servers checking for conflicting updates

Worker servers and coordinator servers have their own clocks that
may be out of sync. Logical time is calculated at each server based
on the time from their own clocks along with an adjustment to
align the server’s local clock to the system-wide logical time.

Each clock may drift independently and tight alignment is hard.
Misalignment may be due to clock drift or network delays in com-
municating. We synchronize logical time for transaction seniority16:

• Seniority of transactions as they commit, and
• Seniority of snapshots and the transactions they see.

Logical time is independent at each server, both workers and coor-
dinators. It never moves backwards but, as we shall see, sometimes
its rate of advancement may be adjusted to better align with other
logical times in the cluster. Each coordinator tracks its own logical
time and independently processes requests at its local logical time.

4.1 Processing Permissions at a Logical Time
Before committing a transaction, the worker-server must ask for
permission-to-commit. This will check that the pending transaction
does not have conflicting updates with earlier transactions.

Each coordinator quorum-server waits to process an incoming
operation until its local logical time aligns with the operation’s
requested future time. Each separate server processes operations at
the logical time requested. If two requests are for the same logical
time, they may be processed in either order. Consider two requests:

• Permission-Request Pj requesting time Tj and
• Permission-Request Pk requesting time Tk.

There are three possible execution orders for these two requests
(based on the local coordinator quorum-server’s logical times):

• Tj < Tk: (Pj is executed before Pk)
• Tj = Tk: (Pj is executed before or after Pk)
• Tj > Tk: (Pj is executed after Pk)

16We avoid using the word order. Instead, we differentiate seniority and messages
between servers (i.e., a happened before).

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

Requests arriving too late are rejected

Too late as seen by the local coordinator quorum-server

4.2 Workers See a Quorum as-of a Logical Time
Recall that the quorum for coordinators is calculated so that:

QCoord > (NCoord / 2)
Two quorums of size QCoord must share permission from at least
one coordinator quorum-server. Before committing a transaction,
workers receive permission-to-commit from a quorumof coordinator
servers. This includes:

• Logical time in the future: A potential commit time.
• List of updated record-version being changed: Used
to check for snapshot update conflicts back to snapshot.

• Snapshot time: The logical time for the snapshot check.
When a permission-to-commit-request is sent to NCoord coordinator
servers, the worker has selected a logical time and labeled all the
permission requests for the transaction with that time. The trans-
action commits only when QCoord of NCoord coordinator servers
respond to the request. At that time, the commit record may be
written to the worker’s transaction log.

The transaction commit time is the same as the
permission-to-commit logical time.

It is written in the transaction’s commit record.
This becomes the transaction’s seniority.

As a permission-to-commit happens at a coordinator server quorum,
the logical time of the transaction lines up with all other transactions
in the database. For any two transactions T1 and T2, they will share
at least one coordinator server and align their logical times.

Seniority: A partial order of items in the database
Seniority is not the same as happened before messages

across servers as defined by Lamport [35]
Seniority aligns with physical wall-clock time when
a transaction receives permission to commit:

• Each transaction commits at a single worker
• A transaction’s worker may jitter in wall-clock time but
aligns with other servers’ clocks by receiving a quorum

Partial order of transactions in the database: For any two
transactions T1 and T2, they are partially ordered within the entire
database. Exactly one of three possibilities exist:

• T1 is before T2
• T1 and T2 are concurrent
• T1 is after T2

4.3 Transactions & Conflict Check
Each permission-to-commit request includes both the list of updated
records and the snapshot time used by the transaction.

As a new permission-to-commit request for transaction T1 arrives
at each coordinator server, it waits until the desired logical time
to process it. The server then compares its updates against all
previously processed transactions, T2 where:

• T1 = T2 or
• T2 > Snapshot-Time(T1)

For each record updated by transaction T1, the coordinator server
ensure that record was not previously updated by T2. If there are
conflicting updates, T1 is denied permission-to-commit.

If both T1 and T2 attempt to get permission-to-commit with:
• Same logical time
They both select the same logical time for permission, and

• Overlapping records being updated
They fiddled with the same records

Then one or both transactions will be aborted17.

4.4 Tracking Logical Time and Clock Skew
For each incoming permission-to-commit request into a coordinator,
the coordinator remembers its logical time when the operation’s
request was received. The matching response to the worker includes
the logical time (as seen by this coordinator quorum-server) when
it received the request. Based on the information in the response,
each worker can track the logical time interval for a one-way re-
quest to each of N coordinators. This interval is the difference
between the worker’s logical time (when it sent the request) and
the coordinator’s logical time (when it received the request).

Each interval fluctuates based on network transmission time and
the respective logical times of the two servers. It is even possible to
have a negative interval if the receiving coordinator’s logical time
lags behind the sending worker’s logical time!

Each worker sees a different logical time interval for each co-
ordinator. Workers keep statistics about the expected logical time
interval based on recent experience for each coordinator. It doesn’t
matter if the logical time interval is due to clock skew or network
transmission delays. Different coordinators have different delay
intervals (as seen by each specific worker).

Using these expected intervals, a worker selects a future time
to use for each new request for an operation. This future time is a
gamble. It’s best to have it arrive at Q or more coordinators before
the desired time for the request. Unless it’s on time at Q or more
coordinators, the request must be retried with an even later time.
This causes request latency to be increased, possibly slowing work.

4.5 Gradually Aligning Logical Clocks
Consider a system with W workers and N coordinators. Work-
ers accumulate expected logical time intervals as they collaborate
with N coordinators to perform operations. Each worker tells all
N coordinators its opinion of the intervals it’s experienced for all
N coordinators. Each coordinator sees not only the interval for a
single worker-to-coordinator but also how that worker perceives
the logical time interval to the other coordinators. Each worker
supplies each coordinator with all its observations.

Using this knowledge, a coordinator estimates how far out of
alignment its logical time is with respect to the other N-1 coordina-
tors. It can gradually increase or decrease the rate of advancement
of its logical time to align with the others.

Existing systems such as Huygens [24] can align clocks in a data-
center within a few 10s of nanoseconds, albeit by instrumenting the
NIC (Network Interface Card) for precision. Decoupled transactions
needs less precision, perhaps 10s to 100s of microseconds.

17Each separate coordinator server processes its pending work at logical time in the
request. Requests with the same time may be processed in any order. Some coordinator
servers might process (T1 before T2) while others process (T2 before T1). At each
server, the later conflicting transaction will not receive permission. Across the QCoord
servers, if any denies permission, the worker client will abort the transaction.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Figure 3: Coordinator, Catalog, and Log Subsystems use quorum to avoid jitter. Clients in workers send operations on different
items to a quorumof subsystem services. Subsystem clients (inworker servers) combine quorum results to respond to operations.

Clock skew does not cause incorrect behavior. Partial order
is guaranteed by messages that happened before [35] each other.
When coordinators’ logical times have large skew, some coordina-
tors may receive requests for operations too late. The operation still
may become complete-quorum if Q of N coordinator process it on
time. Either the N coordinators’ jitter resistance tolerates this or the
worker is forced to select a time farther in the future, impacting the
latency of operations. For this reason, our decoupled transactions
database behaves best when the coordinators have a small skew
between their logical times.
5 QUORUM: JITTER-FREE FUZZY VISIBILITY
Let’s finally look deeper at quorum and the behavior it provides.
Quorum has some subtle and confusing behaviors. We design with
it only because it masks the jitter we are working so hard to avoid.

See §13: (Appendix B: Quorum’s Subtle Challenges)
for more details about quorum.

It describes some of the race conditions seen by messages across
quorum-servers. These can show some surprising results
if they are not considered when designing a system.

We look first at the subsystems and items we change with quo-
rum operations. The difference between normal messaging and
quorum over sets of operations is discussed. Combining quorum
results at the client has special semantics we describe as included
operations. Finally, we summarize the fuzzy visibility guarantees
we get when using quorum.

5.1 Quorum: The Lay of the Land
We have three subsystems needing jitter-free support for items.
Each item represent ongoing parts of the database and has its own
special lifecycle. See Figure 3 and Table 1.

Subsystem Item Type Comment
Transaction SupportCoordinator Transactions Conflict Check & Whereabouts

Durable Data and Worker State
Workers Status of workers & their flushes
Flush Files Per-worker flushed data file
Merge File Merged data in LSM. .

(key-range & seniority-range)Log-window Per-worker log (many extents)
Extents Extent within a log-window

Catalog

Fragments Fragments within Extents .
(only used during log-repair)

Durable Transaction Logs
Extents Physical extents in log-storageLog Storage

Fragments Fragment replicas in storage

Table 1: Subsystems Using Quorum to Store Items

Worker clients have special code for each subsystem and item type
within the subsystem. Subsystem client combiners have the se-
mantics to manage quorum by combining the results from individual
quorum-servers.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

When a subsystem-client (within the worker-server) works on
an item in a subsystem, it issues N requests to the subsystem and
awaits Q responses. These Q responses (fromQ quorum-servers) are
then combined to get the answer needed within the worker-server.

5.2 Operations on Items Using Quorum
Quorums provide challenging behavior to both clients and servers.
Operations are special: They’re not simple read and write opera-
tions to data values. They must cope with weird quorum behavior:

• Subsytem quorum-servers see weird things: Quorum-
servers each see only some of the successful operations.

• Subsystem clients (inside workers) see weird things:
Servers may give very different answers to an operation
(because they’ve seen different things).

The remaining topics of this section will deal with some of the
surprising facts of life when using quorums. Section §6 talks about
building clients and servers to cope with this weird behavior.

5.3 Happened Before vs. Quorum Set Included
Partial Order is a happened before relationship across operations18.
Each quorum-server sees requests from workers and issues re-
sponses based upon operations that have happened before at the in-
dividual subsystem’s quorum-server. Operations flow across servers
inside our distributed database using messaging.

Quorum is used in this paper to describe a set of N quorum-
servers19, each of which performs a defined set of operations. A
client issues N requests for an operation and awaits responses from
Q servers where Q > N/2, tolerating jitter for up to N-Q responses.

Operations across a quorum don’t happen atomically. In-
dividual quorum-servers may be very far behind20. They become
visible to other clients in surprising and perhaps inconsistent ways.
See §13. Since quorum visibility is not crisply ordered, we speak
of included operations for a quorum, not happened before. When an
operation happens before at a server it is included in later operations
at that server and in quorums derived from those operations.

Quorum operations include other operations. We say in-
clude because two operations are not necessarily ordered when
performed at a quorum of servers. Different quorum-servers may
execute two operations in different order. The combined quorum
result may show they both include each other.

Included operations at a single quorum-server. Each quorum-
server processes operations one at a time21. This is a single quorum
server’s local perspective. At a single quorum-server, operations
are ordered by happened before.

If operation Oj happened before Ok at a quorum-server,
then Ok includes Oj

(from that quorum-server’s perspective).

18See Lamport’s Time, Clocks, and the Ordering of Events in a Distributed System[35].
The interested reader should examine the paper’s Partial Order discussion and espe-
cially Figure 1. He says events where we say operations.
19Specifically, a set of coordinator-servers, catalog-servers, or log-replica-servers.
20Some quorum-servers may be extremely out-of-date, just like Rip Van Winkle. [52].
21This is a simplification. Concurrent operations at a single quorum-server may behave
as if neither operation precedes the other and neither operation includes the other.

The Coordinator Subsystem comprises NCoord quorum-servers

Example: Included operation at one quorum-server Coordj
Assume the following:

• Coordj includes T1: Permission-to-Commit
operation for T1 was processed earlier.

• Coordj receives operation for T2: A permission-to-
commit operation for transaction T2 arrives at Coordj.

• T2 conflicts with T1:
– Updating common records
– T1 is newer than T2’s snapshot

Coordj included T1’s permission-to-commit operation
Coordj rejected T2’s permission-to-commit operation

because Coordj included T1!

Included operations at a quorum-server
impact its processing of later operations

NOTE: A different server Coordk might not include T1
Coordk will not detect the conflict between T1 and T2
Coordk may approve T2’s permission-to-commit operation

5.4 Quorum: Combining Operations into Sets
There are a few steps to performing an operation within a quorum:

(1) Clients send operations to quorum-servers via messages.
(2) Quorum-servers:

• Process the operations locally:
– Based on local state (i.e., already included operations).
May do different things based on local state.

– Each has seen a subset of the previous operations.
• Send back results:
– Results provide visibility to earlier arriving operations.
– Results "include the earlier operations".

(3) Clients combine the results from Q of N quorum-servers.
• Normally includes all operations from each of them.
– Sometimes, results look for unanimous agreement.

Quorum combines sets of operations:
a new operation - is combined with - a set of earlier operations.

Earlier operations are included in the result.

5.5 Complete-Quorum and Included Operations
Complete-Quorums occur when Q or more servers respond and
the client has combined these responses into a unified result. These
combined results may include the effect of earlier operations sent
to the quorum-servers. We say that earlier operations are included
in the complete-quorum.

Client visible quorum responses and included operations:
Suppose a client issues an operation Ok to N quorum-servers. When
it receives Q responses to its request, they are combined into a single
complete-quorum response called CQk. If any of the individual
quorum-server responses includes operation Oj, then:

Complete-Quorum CQk includes Operation Oj.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Incomplete-quorum operations happen when less than Q
quorum-servers have processed the operation. If a client hasn’t
received Q responses, it is not complete (at least yet). The client
isn’t sure that the operation has been seen by a quorum!

Incomplete-quorum-operations may be intermittently included in
later operations, sometimes included and sometimes not included22.

All quorum operations are temporarily incomplete-quorum oper-
ations. Complete-quorum is not achieved atomically. For a window
of time, the operation is not yet complete-quorum.

Permanently incomplete-quorum operations may happen when a
client attempts to obtain responses from quorum of the quorum-
servers but the client crashes before sending all its requests, some
of the servers reject the operation, or something got lost. Since the
effect of this operation has not arrived at (or been kept by) at least
Q of the quorum, not all subsequent operations will include the
incomplete operation in their history.

We must cope with intermittently included operations.

5.6 Fuzzy Visibility: Quorum’s Guarantees
Quorum provides some limited guarantees about sets of operations.
It does so without any risk of jitter. What do we know about these
guarantees and their limitations? What can we do with them?

Complete-Quorum Sets include earlier
Complete-Quorum Sets.

Let’s use: Ox and Oy → Operations "x" and "y"
CQx and CQy → Complete Quorums "x" and "y"

What we do know is:
IF (Oy starts getting quorum after CQx completes)
THEN QCy includes Ox.

At least one quorum-server processed both Ox and Oy
since each were processed by Q quorum-servers.

Quorum CQx was complete-quorum before Oy started→ Any
overlapping quorum-server must have processed Ox before Oy

This is all you can know from multiple interleaving quorums.

What can we do with that?
A change to an item is communicated with a quorum operation to
the subsystem. Consider operation Ox. As a worker client performs
operation Ox, it goes through three stages:

• Ox is not included (visible): Before the operation starts.
• Ox is intermittently included (visible): It’s incomplete.
• Ox is included (visible): Seen by all complete-quorum ops.

This is true both when the item is created and when it retires. It
flutters into existence and out of existence.

22For example, an operation called Max accepts a new value each time it is called.
Any complete-quorum operation will be included in the Max seen by subsequent
quorum-complete operations. An incomplete-quorum will be intermittently included.

Example: Suppose the Max seen so far is 1,000. If a client performs Max operation
Om for a value of 1,000,000 and crashes when only K<Q quorum-servers have pro-
cessed it, then operation Om is an incomplete-quorum-operation. An average of K of N
subsequent complete-quorums will include Om in their combined response, resulting
in a value of 1,000,000. The remaining (N-K) of N complete-quorums will not include
Om in the combined response, resulting in a value of 1,000.

6 CONFLUENCE: ADDING CLARITY TO
FUZZY QUORUM

We use quorum to manage the state of items within our coordinator,
catalog, and log-storage subsystems. Each of these has many items
it manages and they each have well defined lifecycles.

As discussed above, quorum is both awesome and awful:
• Quorum is awesome: It’s fast even when servers jitter.
• Quorum is awful: It’s messy, fuzzy, and jumbled.

This section examines how we can make sense of our messy, fuzzy,
and jumbled operations provided by quorum. We introduce con-
fluence, a property of some computations where their outputs are
independent of the order of their inputs. They offer deterministic
outputs even with non-deterministic execution. With confluence, it’s
always OK to combine the outputs.

Next, we look at the limitations of confluence. Confluent pro-
grams can answer questions about what does exist but not about
what does not exist. We examine the notion of sealing a set of con-
fluent operations to provide does not exist computations.

Following this, we combine both quorum and confluence.
We believe this is a novel contribution that allows us to

remain lively and still reason about does not exist.
We see how changes to items in our subsystems gradually be-

come visible to the rest of the system with fuzzy edges to these
changes. We complete this section with an example of how we can
cope with fuzzy transitions due to quorum.

6.1 Confluence of Operations on Items
Confluence is a property of some computations[32]. Components
are confluent if they produce the same outputs for all orderings of
their inputs. Confluent components compose and many replicas of
the same component behave like one replica.

It has been proven that to be confluent (i.e., reorderable inputs),
there must be some logical abstraction of monotonic order[3, 4]. In
other words, we see a predictable (and reorderable) outcome of
outputs to requests if and only if there’s some way of looking at all
the inputs as having some form of logical order.
Confluence (using seniority) is the lynchpin of this design.
Quorum avoids jitter but creates a jumbled execution. Confluence
(via seniority) resolves the confusion of the jumbled execution.

We use three tricks to build confluent operations:
• Disjoint: If two operations have nothing to do with each
other, they are reorderable.

• Sent by a single client: Operations sent from a single client
can have an order defined by that client23 that the existing
seniority within the log established before the failure of the
logging worker provides a monotonic seniority that allows
confluent log repair by many competing servers.

• Some intrinsic partial order: Input operations have some
semantic logical ordering24. That same logical partial order
is present in the outputs of the confluent server.

23For example, when a single worker server writes to its private log-window, it is the
single client. Its seniority is assigned by the logger. Even if the appended fragments are
seen in different execution orders at each log-storage-server, log entries retain their
seniority. Each log-storage-server may see its own order of the writes. Combining
results from the quorum gives the correct answer. Furthermore, we will see in §15.1
24This is the Logical Monotonicity referred to by the CALM Theorem[32] (Consistency
As Logical Monotonicity). For our system, this is seniority.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

Seniority provides our database with a logical order

We have three subsystems using quorum (See §5):
• Coordinators: Control transactions using quorum and
allow reorderable operations on them.

• Log-Storage Servers: Allow reorderable appending of
fragments to tolerate jitter and improve performance.

• Catalogs: Register changes to persistent data files and
extents while tolerating reordering of the operations.

Seniority provides monotonic order to their items:
• Transaction seniority→ transaction partial order
– Conflict detection (based on partial order)
– Whereabouts (based on partial order)
– Transactions retire (based on seniority)

• Fragment seniority → order of fragments in log
– Parallelism:performance (reorder by seniority)
– Replica holes from jitter (clean up by seniority)
– Log repair of fragments (repair by seniority)

• Flush file seniority → order for each worker
– Flushes are visible (based on seniority)
– Flushes retire (based on seniority)

• Mergefile seniority→merge order (per key-range)
– Merges are visible (based on seniority)
– Merges retire (based on seniority)

6.2 Confluence: Deterministic Outputs with
Non-Deterministic Execution

Executing operations happen at many different quorum-servers in
a non-deterministic order of execution. Who knows when, where,
and how often they will be run? We need to get correct behavior
from our coordinator, catalog, and log-servers when at least Q of N
quorum-servers execute each operation at least once.

Confluent operations produce deterministic outputs evenwhen
executed non-deterministically [1, 2, 32, 38]. Their outputs can be
combined by clients to produce a unified set of responses, indepen-
dent of their order of execution or how many times they executed.

6.3 Confluence: OK to Combine Outputs
Confluence is exactly the right property to use within quorums. You
can mix-and-match the outputs from the quorum servers and, as
long as one of the quorum-servers has an output, it will be passed
on by the quorum-client.

Recall that a program is confluent if and only if it is monotonic,
for some logical abstraction of monotonic order.

DEFINITION[32]: A program P ismonotonic if:

for any input sets S, T where S ⊆ T,
P(S) ⊆ P(T)

In other words, if T’s inputs include S’s inputs,
then T’s outputs will include S’s outputs.

A perfect match for quorum-clients combining results!
Quorum-clients include outputs from quorum-servers!

Seniority is our logical abstraction of monotonic order

6.4 Confluence and “Does Exist”
Confluent operations can answer questions about the existence of
something but not the absence of something.

• Does exist: Describes a problemwhose answer depends
on the existence of an operation.

• Does not exist: Describes a problem whose answer depends
on the asserting that an operation does not exist.

When a set of servers are performing confluent operations, they
combine their results to get the complete answer. No server knows
what has transpired at any other servers.
Clients don’t know what’s happened at all quorum-servers.
After receiving Q of N response, it knows what happened at Q but
not at the other N-Q quorum-servers.

A client does know that an operation does exist if was successfully
processed by Q quorum-servers. Since a set of executing confluent
operations continuously grows by adding to the set, we can see if
an operation has already occurred (i.e., it does exist).
6.5 Confluence, Sealing, and “Does Not Exist”
It’s hard to tell when something hasn’t happened. The knowledge
is spread widely and you don’t know the state of the other replicas.
Alvaro [1] discusses two broad approaches: sealing and windowing.

Sealing input streams into confluent servers.When no more
inputs are arriving, we can answer questions about what’s not
present in the inputs. Sealing requires coordination to close down
the inputs. Shutting down the world can be disruptive. The seal
operation is ordered. Seal is not confluent!

Windowing input streams into confluent servers. Input
streams can be broken up into batches. Batches may be in some
grouping other than a temporal order, allowing more flexibility and,
perhaps, less disruption. Can we create windows of operations to
know what’s not happening in addition to what’s happening?
Is there a gradual way to answer "does not exist" questions?

6.6 Combining Confluence and Quorum
Quorum confluence is the combination of both quorum and con-
fluence. It can answer does not exist questions albeit with some
fuzziness in it behavior during transitions in its state.

Quorum confluent solutions do not jitter: Quorum ensures
they ignore up to F jittery servers.

Quorum confluent solutions understand does not exist.
Items can be retired using their seniority:

• Seniority is monotonic: We use the logical time of commit.
• Seniority can be retired: As quorum-clients and quorum-
servers track retirement age, retired items can be reclaimed.

It reliably advances retirement in a distributed subsystem.

Quorum confluence is both:
• Live and fast in the face of bounded failures, and
• Can manage a complex distributed system
with does not exist.

To our knowledge, this is novel.

We argue that Paxos is a special usage of quorum confluence.
Paxos uses quorum & confluence, removing the fuzziness
to provide linearizable behavior at the expense of liveness.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

6.7 Seniority: Gradual Visibility and Retirement
As discussed in §5.6, operations are visible in a fuzzy fashion when
using quorums. They change over stages:

• Ox is not included (visible): Before the operation starts.
• Ox is intermittently included (visible): It’s incomplete.
• Ox is included (visible): All later complete-quorum ops see it.

When an operation Ox is quorum-complete, all subsequent quorum-
complete operations Oy will include Ox.
We can control the visibility of changes albeit with fuzzy edges.

6.8 Example: Coping with Fuzzy Visibility
Let’s consider an example showing the fuzzy creation of items
within the coordinator server as it deals with transactions.

EXAMPLE: Fuzzy creation of transactions:
Consider two transactions:

T1 & T2 both trying to commit with seniority Sa
Two permission-to-commit operations are launched:

• Worker W1 → T1 at Sa
• Worker W2 → T2 at Sa
• T1 and T2 have conflicting updates.

It is fuzzy which of three outcomes will occur:
(1) Outcome: T1 commits and T2 aborts

• T1 arrives at >= Q coordinator servers first.
• T2 arrives at < Q coordinator servers first.

(2) Outcome: T1 aborts and T2 commits
• T1 arrives at < Q coordinator servers first.
• T2 arrives at >= Q coordinator servers first.

(3) Outcome: Both T1 and T2 abort
• T1 arrives at Coordx before T2, and
• T2 arrives at Coordy before T1

Any of these three outcomes is correct.

7 JITTER-FREE SNAPSHOT ISOLATION & 3AZ
This section sketches how we avoid jitter within the functionality
of the database. We sketch enough here to understand the basic
message of this paper.

We demonstrate that it is possible build a complex
system like a distributed database that does not jitter
Quorum, confluence, seniority, and retirement make it happen!

We will first sketch how we can avoid jitter in our hypothetical
database. After that, we will explain the required quorum set (i.e.,
the require size of NCoord, NCat, andNLog). Each of these subsystems
has different availability requirements. We described the count and
deployment of servers to tolerate an AZ+1 failure within a 3AZ
environment.

7.1 Jitter-Free Pieces of the Puzzle
This section sketches the operations performed by our decoupled
transactions database. At a high-level we discuss how they can
avoid jitter and remain a robust system providing snapshot isolated
transactions to applications. More details for each of these sections
can be found in the appendices.

See §14: (Appendix C: Jitter-Free Database) and
§15: (Appendix D: Jitter-Free Log-Repair)

Jitter-Free TX Commit, Begin, & Retire: Transaction commit
and begin avoid jitter by using quorum to the coordinator subsys-
tem. They align their seniority of their work by proposing a seniority
that is confirmed quorum of coordinator servers. Transactions retire
when they are older than the oldest snapshot seniority and their
committed changes are successfully in the LSM.

→ Transaction commit, begin, and retire do not jitter. See §14.1.
Jitter-Free Flushing to the LSM: Flush is performed by each
worker after it accumulates a lot of changes in its memory. By
flushing these to the LSM, the new records can be read from shared
storage. If the worker does get slow, there is risk that the flush itself
can stall. In that event, other workers would notice the catalog
says the integrated LSM merging of recent changes is stuck. The
workers can kill the slow server and rapidly read its log and do the
flush for the slacking worker.

→ Flush can be rapidly performed by other workers
→ Catalog accesses uses quorum to avoid jitter. See §14.2.

Jitter-Free Merging of LSM Data Files: Any (and all) workers
contribute to the constant need to merge the LSM. Assignments for
new merge data files are acquired by consulting the catalog.

→Merge does not jitter (idempotent & retried data file operations)
→ Catalog work uses quorum See §14.3.

Jitter-Free Reading of LSM Record-Versions: Reading the LSM
comprises finding needed data files, reading them from shared stor-
age, finding records in the files, merging records from LSM levels,
and returning the record-versions matching snapshot read rules.

→ Reading from the LSM is jitter-free See §14.4.
Jitter-Free Reading Recent Records: Done in one of 3 ways:

(1) Direct message to other worker
(2) Direct message to log-following worker
(3) Fencing, repairing, & reading worker’s log
→ The first two may jitter.
→We fall back to jitter-free log repair and read.

See §14.5, §15.13, §15.3, §15.4, §15.9, & §15.12.
Jitter-Free Log Quorum: The use of log quorum is both to have
enough replicas to ensure durably logged data and to know when
you don’t have enough replicas.

→ Logging to a quorum is jitter-free
→ Finding missing fragments with quorum is jitter-free See §15.2.

Jitter-Free Liveness Check via Log: If worker Wa thinks worker
Wb may be sick, it can verify its health or sickness. The catalog
says where Wb is logging. Wa can ask the log-server replicas if Wb
has been logging OK.

→ Asking the catalog where Wb is logging is jitter-free
→ Asking the log-servers for Wb’s log is jitter-free See §15.3.

Jitter-Free Log Seniority (from Logger): Seniority is assigned to
pieces of the log by the logging worker-server. This is important to
ensure log-repair can be concurrent and jitter-free.

→ Assigning seniority to log pieces is jitter-free. See §15.1.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

Jitter-Free Concurrent Log Fencing: Fencing worker Wa may be
done by Wb using the catalog and log-storage replicas. We ensure
many workers (𝑊 b · · ·𝑊 n) may concurrently fence Wa’s log.

→ Concurrent fencing in the catalog is jitter-free
→ Concurrent fencing in the log replicas is jitter-free See §15.4.

Concurrent Repair of the Log:We ensure that the log of a sick
and fenced worker Wa may be concurrently repaired by multiple
workers (𝑊 b · · ·𝑊 n).

→ Concurrent repair in the catalog is jitter-free See §15.9.
Jitter-Free Retry to Log-Followers: Log-followers are an option
to have another worker Wb follow the log replaying updates by
work Wa. Wb is usually almost up to date and can supply recent
record-versions from Wa’s updates.

→ Log followers may be jittery! See §15.13.
→We fall back to jitter-free log repair and read. See §15.12.

Bounding the Pain When a Worker Is Sick: All steps involved
in detecting a worker Wa is sick, fencing their log, repairing their
log, and reading their log to see any committed work they have
done must be correct and fast when performed concurrently by
multiple other workers (𝑊 b · · ·𝑊 n).

→ Removing a worker & reading their log is jitter-free. See §15.12.

7.2 Server Types & 3AZ Quorum Requirements
In designing a system to tolerate jitter, we must examine the needs
of different server types as they continue operating in a jittery envi-
ronment. Immutable storage, appending to logs, tracking system
state, and checking for transaction conflicts each have their own
unique needs. We first look at the work performed by each type of
server and its required availability. Then, we examine the quorum
requirements of each different server type.

Worker servers largely operate independently of each other.
There are no considerations of quorum for workers.

Coordinator servers 25 provide light-weight knowledge about
ongoing transactions, their possible conflicts, and their recently
committed record-versions. This must be up and functioning even
if we see AZ+1 jittery servers.

9 Coordinator Servers→ 3 in each AZ.

Send to 9 Coordinator Servers→Wait for 5 Responses

AZ+1 Jittery Coordinator Servers (i.e., 4 total)
→ a Zippy Quorum (with 5 responses)

Data-storage-servers26 store large immutable data files, each
with a unique data-file-id (a UUID[53]). These data files are used
to implement the LSM. We don’t need to update existing data files
and don’t need a quorum27.

25See §4 for info about Coordinators, their role in the system, and how they avoid jitter.
26See §2.5 for a discussion of data storage servers and how they can keep immutable
data-files while avoiding jitter.
27The data storage servers are designed to provide suitably large durability guarantees
for data-files (minimizing data loss). They do not, however, need tomanage crisp update
semantics (since immutable data is not updated)[28]. For durability, data-storage-
servers triple-replicate data-files, placing one replica per AZ. Reading a data-file from
a single replica provides the correct contents. Writing new data-files must ensure three
replicas are created, hopefully in separate AZs.

Each Data-File is placed in 3 Data Storage Servers
→ 1 in each AZ

Write to 3 Data Storage Servers→ 1 in each AZ (if possible)

Read from 3 Data Storage Servers→ take the first response

Log-storage-servers support high-performance appending of
a worker’s transaction log records. Worker server logging is a
challenging thing. Not only do we need to ensure correct repair of
the log-window after a worker server crashes, we must do so even
with AZ+1 jittery servers28.

In contrast to the coordinator and the catalog, each log-window
does not need to perform new changes after losing AZ+1 of its log-
storage-servers. Rather, we view the log-window as read-only29.

We ensure that log-repair can reliably repair the log-window’s
history without jitter30. If we do not insist a log-window can con-
tinue appending new log records, we can reduce the cost of each
log. Some AZ+1 failures may cause the loss of unlucky worker
servers whose log-window is now read-only. Other worker servers
will continue to take traffic even if a few workers get stuck and die.

High-volume transaction logging→ expensive replicas

Each Log-Extent→ 6 Log Storage Servers→ 2 per AZ

Append fragment: write to 6→ wait for 4 responses

Log Repair: (read >= 3 replicas) If 3 are missing→
Fragment not committed→ OK to end recovered log here

Only replicate log 6 times→ Less expensive logging→
Log extents may be read-only after AZ+1 failure

→ More complex log repair

See §15.2: (Jitter-Free Log Quorum)

Catalog servers describe where the database data is stored.
They are responsible for tracking active worker servers, the set of
data-storage-servers keeping our data files, the set of log-storage-
servers keeping our data files, information about workers’ logs,
knowledge of the data extents used for various keys and levels
within the LSM. See 5.1.

The state retained by the storage catalog must be preserved even
if the database itself crashes. Hence, each replica of the catalog uses
cloud-native storage to retain its state31. The catalog is essential to
the operation of a decoupled transactions database. It must continue
operation with AZ+1 jittery weirdness.

28See §14.5, §15.13, §15.3, §15.4, §15.9, & §15.12.
29This is the same as in AWS Aurora[46]. Aurora is designed to support reading a log
after losing AZ+1 servers. Aurora cannot continue to write to the same set of its storage
servers under these assumptions. This was not a design goal for Aurora.
30In Aurora, there is a single log-repair server, a common practice in database systems.
Because Decoupled Transactions assumes we cannot rapidly select a single centralized
log repair server, our design assumes idempotent repair by one or more worker servers.
When any one completes repair, the log is permanently recovered.
31Each replica of the catalog must use cloud-native storage that has jitter correlated to
the individual replica. For example, using storage in the replica’s local AZ would not
be correlated to failures and/or jitter within a different AZ.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Catalogs and coordinators are separately implemented:
• Catalogs must ensure that changes to the database state are
recorded durably. These change are relatively rare and need
not be as fast as the coordinator operations.

• Coordinators have ephemeral state that does not need to
survive crashes of the database. They are faster and lighter-
weight that catalog changes.

One catalog could reasonably support multiple databases.

9 Catalog Servers→ 3 in each AZ.

Send to 9 Catalog Servers→ Wait for 5 Responses

AZ+1 Jittery Catalog Servers (i.e., 4 total)
→ Quorum of 5 non-jittery responses

8 DISCUSSION
Distributed systems are complex and important for many uses32.
To manage their resources, distributed system track when inter-
nal resources do exist and also when they do not exist. Knowing
when something is not in existence is an essential part of a stable
system. Until now, this required some centralized authority. This
frequently uses a consensus based system such as Zookeeper[9]
to accurately know its centralized source of truth. Centralizing is a
risky proposition when servers and networks are jittery (or inter-
mittently available) because this centralized authority can, itself,
become intermittently available.

We introduce the notion of quorum confluence to allow us to
know when resources no longer exist without the need of a central-
ized server. This knowledge is resilient and jitter-free.

Another pervasive challenge in distributed computing has been
the rapid detection of server failure. We describe how to rapidly
detect and remove servers from the system, assuming these servers
log their work to a distributed log.

Quorum consensus is an important tool in this proposed jitter-
free database. It can also be used to eliminate jitter from a broad
class of distributed systems, including the root authority behind a
datacenter and its components.

Not only are database systems complex to implement, they mask
complexity from applications. This provides huge leverage to our
systems as applications provide end user functionality with greater
ease. Tolerating jitter is hard. Using a jitter-tolerant database can
be transparent and easy.

8.1 Jitter-Free Knowledge of "Does Not Exist"
Quorum confluence allows systems to manage resources without
jitter. This is, to the best of our knowledge, novel. It can dramatically
improve the robustness and availability of distributed solutions.

Other systems have used quorum over distributed logs to find the
tail-of-the-log after a crash. Many systems need "does not exist" to
manage resources with more complex needs. Managing resources
with lifetimes controlled by multiple owners poses different chal-
lenges. Combining both seniority and confluence allows systems
to rein in some aspects of their work via seniority while allowing
other aspects to continue ahead unabated by leveraging confluence.

32As these systems become ever more important, we must ensure they are rock solid
and don’t flutter and flounder with three sheets to the wind[44] in stormy weather.

Seniority can work cooperatively with quorum to control the
retirement of parts of the system. It does so while ensuring other
parts of the system remain lively and jitter-free.

While much research remains to be done, this appears to offer
the hope of significantly better distributed systems in the future.

We get jitter-free retirement of distributed resources

8.2 A Jitter-Free Uncaused Cause
Managing data centers can be especially challenging, both when
booting them to life and when running under congested circumstances.
An existential problem is that of the uncaused cause or root authority
of all truth in the datacenter. See §1.8.

Until now, the root authority of these systems built on lineariz-
able[33] behavior. This inherently means it has intermittent avail-
ability as it jitters or locks up. While it is easier to reason about
linearlizable behavior, data centers and databases are special things.
Perhaps we should work harder to design this root authority to be
highly available and not centralized.

Further research may yield
jitter-free & highly available management
of complex systems, including data centers

8.3 Flipping on FLP: Determining Dead vs. Sick
While FLP, the Fischer-Lynch-Patterson Impossibility Result remains
undeniably true, we can build systems that sidestep the problem.

FLP[23] assumes that all visibility into the server is via direct
messaging. For cases, like database worker-servers, where the server
must log its progress to a replicated log before responding, we can see
the health of the server by looking at its log.

The log uses quorum and we can check its progress without jitter.
When (NLog - QLog + 1) log-servers respond to messages saying no
progress, we know it’s not healthy33.

We can deterministically know if a server is sick or dead
in an asynchronous network

8.4 Jitter-Free Snapshot Isolation
Snapshot isolation combines snapshot reads and conflict detection.

Snapshot reads can be jitter-free. Both snapshot time and
its whereabouts can be found by a quorum of coordinator servers.
Workers respond to RPCs with recent changes unless they are sick.
If so, we read their changes from their logs. Quorum (both catalog
servers and log extents) allows us to detect slow servers, fence and
repair their log, and read committed record-versions if needed.

Conflict detection before commit is jitter-free. Prior to com-
mitting a transaction, the worker requests permission-to-commit
from a quorum of coordinators. If a proposed update conflicts with
any other transaction since its snapshot time, it will not commit.

Consensus means agreeing on the next new value across a set
of servers. Each time a transaction updates record Rx, that is a form
of consensus across the database cluster. Unfortunately, consensus
has liveness problems and can’t always complete in bounded time.

Snapshot isolation semantics ensure updates are not committed
if modified since snapshot time. Attempting rapid updates to the

33Extent log-server replicas are placed to avoid correlated jitter. The probability of
(NLog - QLog + 1) log-servers jittering is profoundly less likely than 1-of-1.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

same record(s) may thrash and see little progress. Over years, most
applications atop these databases evolve to avoid this.

Decoupled Transactions ensures liveness problems only impact
the rapid updates to the same record(s). In practice, mature snapshot
isolation applications rarely fight over common records.

Rapid updates to a common record may see contention
The database remains jitter-free and open for business

8.5 What’s New in Decoupled Transactions?
This hypothetic distributed database combines new ideas:

(1) Jitter-free management of resources: Complex systems
can manage resources without centralized authority.

(2) Partial transaction order via future time & quorums:
Pick a future transaction time and align with quorum.

(3) Jitter-free conflict detection: Possibly conflicting transac-
tions are detected by at least one coordinator.

(4) Jitter-free checking of server health: For servers that log
before responding, its quorum log shows its health.

(5) Jitter-free concurrent log repair: If we need to avoid jitter,
we can’f select a single server to do anything, including log
repair. Quorum based monotonic and idempotent repair of
a distributed log empowers rapid visibility into committed
work even within a sick worker.

(6) Quorum-based catalog for log & key-value metadata:
A quorum catalog ensures jitter-free metadata. Jitter-free
metadata and jitter-free storage means low tail latency log-
ging, log-repair, and record reads from key-value storage.

(7) Avoiding jitter using transactions, logs, & quorums:
We combine many aspects of transactions, log-repair, and
quorums to build a transaction systems that avoids jitter.

9 RELATEDWORK
This paper brings together thoughts from many different areas
of research. We first look at responsiveness and why we don’t
trust timeliness in the datacenter. Next, we look at quorum and
the ways it has been used in the past and how these contribute
to our proposal. Finally, we contrast earlier work on confluence,
its strengths and limitations, and how adding both quorum and
retirement to confluence is so important.

9.1 Responsiveness and Lack of Responsiveness
A great deal of recent work has shown that modern cloud data
centers are increasingly unpredictable. Responses to work are only
probable in their timing. This thought process led us to simply
believing that a slow answer can not be decisive. We must ignore
missing responses and act when enough responses have been received.

Fault models for distributed computation lead us to conclude
we can’t know the state of other servers unless we actively get a
message back from them. The absence of a response doesn’t help!

Batch computation uses redundancy to bound latency.
MapReduce (and other systems) leverage both timeouts and proac-
tive redundancy to cope with stragglers[5, 6, 18, 21, 54].

Online work also uses redundancy to bound latency. Dean
and Barosso [20] showed how to time-out and retry requests to
ensure much better SLOs. Mogul, Isaacs, and Welch [39] describe
many aspects of SLOs (Service Level Objectives) as well as the many
challenges seen in responsiveness of deployed systems.

Gray failures are compounding our challenges. The recent
work on gray failures [22, 27, 34] underscore that even when all
is going well in your datacenter, that may not last. Increasingly,
servers and networks may simply go slow rather than failing fast.

Servers and networks may be arbitrarily slow. These works,
along with many others, made two things things very clear:

• Messaging is not synchronous: Unlike most classic first party
data-centers, late responses from servers (and the networks
connecting them) are probable and increasingly variable34.

• We can’t use time-out to define failure: Centralized leaders
need rapid failure detect to somehow get a new leader. This
is problematic when we cannot predict latency[30].

Omitting omissions35: We ignore missing responses!
The absence of a response can be a hint but it cannot be used to
remove a server. We combine:

• Proactive redundancy: Launch a lot of requests
• Enough is enough: Continue when enough responses come
... don’t wait for special ones.

By combining quorum, confluence, seniority, and retirement we can
make decisions with enough responses, not a special set of responses.

9.2 Related Work: Quorum
Quorum is the technique to know when enough stuff has happened.
It allows us to move onto a new phase of some computation without
stalling for jittery servers.

Quorum for distributed computing. Thomas[45] introduced
voting algorithms for replicated databases. Gifford[25] extended
this with weighted voting adding more flexibility. Each of these
proposals provided consistent database updates and tolerated fail-
ures of a subset of the quorum of storage servers. These early (and
seminal) uses of quorum ensured correctness of atomic and serial-
izable consistent updates to replicated data, tolerating failures of
up to (N-Q) of N replicas.

This usage of quorum depends on monotonically increasing
version numbers assigned by the clients. Clients can compete for
the largest version number and thrash retrying ever higher versions.
These usages of quorum are resilient to the failures in the storage
but do not address liveness in the allocation of versions.

Quorum for consensus. Lamport defined Paxos[36], a tech-
nique for safely gaining consensus across many servers. He also
provided a proof for its correctness. Paxos ensures a single new
value is agreed across a quorum of servers. This is a linear order
of new values. Paxos is safe because any new agreed value will be
seen by all participants. It is not live since agreeing on a new value
cannot be guaranteed in bounded time.

Paxos leverages quorum and confluence but does so in a jittery
fashion. Confluence comes from the order of proposals within the
Paxos algorithm. Paxos uses both quorum and confluence but makes
a different tradeoff than we do here. We choose to have fuzzy state
transitions as items come into existence and retire. Paxos chooses
to have crisp and clear transitions to new values at the expense of
introducing liveness challenges36.

34"Toto, I have a feeling we’re not in Kansas, anymore!"[49]
35See §12: (Appendix A: Building on a Jittery Foundation).
36Jitter is one form of these liveness challenges.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Quorum logging and the tail of the log. Quorum has been
used before to determine when things do not exist in a log. Apache
Bookkeeper[7] and AWS Aurora[46, 48] each use quorum to know
when a log append does not exist. Both of these solutions resolve does
not exist for monotonic sequences originating at a single source
of change37. They do not address the management of arbitrary
resources shared within a system.

Seniority extends the notion of versioning. Rather than a
single centrally assigned version number, seniority can be assigned
in many ways. Each item (see §3) is gets its seniority 38 based on
the rules for that type of item.

Seniority can be assigned using different techniques:
• Seniority assigned by quorum: For example, the assignment
of seniority to transactions (see §4)

• Seniority from a single source: For example per-worker log-
windows and per-worker flush data files (see §14.2, and §15.1)

• Seniority assigned in complex derived ways: For example, the
seniority used by merged data files as they coalesce record-
versions from other data files in the LSM (see §14.3)

Seniority and retirement: Items can come and go. With
retirement, asynchronous (and distributed) algorithms can deter-
mine the retirement age of items in many independent domains.
These combine together to ensure a robust and jitter-free39 state
transition for managed items.

9.3 Related Work: Confluence
Confluence defines reorderable and jitter-free computation.

Confluence provides freedom from coordination. Coor-
dination is not required for some classes of programs. This em-
powers predictable composition of parallel and out-of-order work.
Confluence[1, 2, 29, 38] and the reorderability it provides are an
important backbone of scalable computing. MapReduce, sort-merge,
and much more are predicated on confluence.

Confluence requires logical monotonicity. Hellerstein and
Alvaro clarify the type of computation we see when programs are
confluent in CALM: Consistency as Logical Monotonicity[32]. They
show that confluent programs avoid coordination and that conflu-
ence happens if and only if the program leverages some form of
abstract logical monotonicity. Ameloot et al (2013)[4] and Ameloot
et al(2016)[3] prove theoretically that coordination-free computa-
tion and confluence are the same. They also prove that confluence
depends on logical monotonicity based on some abstraction.

Confluence allows answers to when something does exist.
Confluence, by itself, only empowers some classes of computation.
It can determine results based on existing facts without the need
for coordination. Hellerstein and Alvaro state confluence programs
can calculate what does exist but not what doesn’t exist.

We extend confluence to include does not exist. By combin-
ing confluence with quorum, seniority40, and retirement41, we can
show when items in the system do not exist. This does require coor-
dination but that coordination is asynchronous and jitter-tolerant.
37Log writes originate at one server and are written to a quorum of replicas.
38Seniority is comparable to the versions used by Thomas and Gifford, LSNs in Aurora’s
log and the entry-id in Bookkeeper’s log (called a ledger).
39Assuming our assumptions for non-correlated jitter hold.
40Seniority is our form of logical monotonicity of things entering the system.
41Retirement provides logical monotonicity of things leaving the system.

Consider the separate contributions of these mechanisms:
• Quorum: Tells you when something will be remembered.
• Confluence: Tells you what may be reordered.
• Seniority: Tells you a partial order across items.
• Retirement: Uses seniority to say the item does not exist.

The combination of all of these can be used to build a scalable
and jitter-free distributed system. This includes managed items both
coming into the system and leaving the system. Both does exist and
does not exist are supported. While there is coordination across the
members of the quorum, it is jitter-free (up to a certain limit of
jittery servers in the system).
10 CONCLUSION
This thought exercise started to understand the nature of jitter and
its implication on database implementation. What makes databases
so susceptible to jitter? Each step of the way, there were more
subtle challenges to conquer in the mental exercise of dissecting
dependencies. Soon, it became clear that the challenges posed here
are not specific to distributed databases.

Coordination[31] remains our biggest challenge in complex sys-
tems. When that coordination can be fuzzy over time, our systems
become more robust.
11 ACKNOWLEDGEMENTS
Many people have helped tremendously in both developing these
ideas and creating this paper. I am especially grateful to many
of my friends and colleagues for openly sharing their befuddled
expressions of confusion. Their lack of understanding forced me
to dig into the essence of proposed solution. That dramatically
clarified my thinking and, in turn, this paper.

I am grateful to: Shyam Antony, Vaibhav Arora, Phil Bernstein,
Subho Chatterjee, Terry Chong, Allen Clement, Natacha Crooks,
Dave DeHaan, Haiyan Du, Tim Eads, Thomas Fanghaenel, Shel
Finkelstein, Joe Hellerstein, JV Jujjuri, Jim Mace, Jamie Martin,
Mark Mears, Kaushal Mittal, Jacob Park, Bryan Pendleton, Akshay
Manchale Sridhar, Brian Toal, Justin Wang, and Nat Wyatt for their
thoughtful comments, engaging arguments, and feedback.

Special thanks to David Lucey for lending his networking ex-
pertise to help me articulate why messaging within data centers is
largely a game of chance. Finally, Peter Alvaro has taught me a huge
amount about many things. We’ve spent many hours discussing
confluence while behaving as42 two kids in a candy store.

42Being aware of the difference between a simile and a metaphor, this seems apropos.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

REFERENCES
[1] P. Alvaro. Data-centric Programming for Distributed Systems. PhD

thesis, University of California, Berkeley, Berkeley, CA, USA, 2015.
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-242.pdf.

[2] P. Alvaro, P. Bailis, N. Conway, and J. M. Hellerstein. Consistency without borders.
In Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13, New
York, NY, USA, 2013. Association for Computing Machinery.

[3] T. J. Ameloot, B. Ketsman, F. Neven, and D. Zinn. Weaker forms of monotonicity
for declarative networking: A more fine-grained answer to the calm-conjecture.
ACM Trans. Database Syst., 40(4), dec 2015.

[4] T. J. Ameloot, F. Neven, and J. Van Den Bussche. Relational transducers for
declarative networking. J. ACM, 60(2), may 2013.

[5] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective straggler
mitigation: Attack of the clones. In 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 185–198, Lombard, IL, Apr. 2013.
USENIX Association.

[6] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha, and
E. Harris. Reining in the outliers in map-reduce clusters using mantri. In 9th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 10),
Vancouver, BC, Oct. 2010. USENIX Association.

[7] Apache bookkeeper. https://bookkeeper.apache.org.
[8] Apache bookkeeper: Lac. https://bookkeeper.apache.org/distributedlog/docs/

latest/user_guide/design/main.html.
[9] Apache zookeeper org. https://zookeeper.apache.org.
[10] R. Barker and P. Massiglia. Storage Area Network Essentials: A Complete Guide to

Understanding and Implementing SANs. Wiley, paperback edition, 11 2001.
[11] J. Bartlett, J. Gray, and B. Horst. Fault tolerance in tandem computer systems.

https://www.hpl.hp.com/techreports/tandem/TR-86.2.pdf, 1986.
[12] J. F. Bartlett. A nonstop kernel. SIGOPS Oper. Syst. Rev., 15(5):22–29, Dec. 1981.
[13] H. Berenson, P. A. Bernstein, J. Gray, J. Melton, E. J. O’Neil, and P. E. O’Neil. A

critique of ANSI SQL isolation levels. In M. J. Carey and D. A. Schneider, editors,
Proceedings of the 1995 ACM SIGMOD International Conference on Management of
Data, San Jose, California, USA, May 22-25, 1995, pages 1–10. ACM Press, 1995.

[14] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Database Systems. Addison-Wesley, 1987.

[15] M. Brooker, T. Chen, and F. Ping. Millions of tiny databases. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20), pages
463–478, Santa Clara, CA, Feb. 2020. USENIX Association.

[16] G. Chapman, J. Cleese, and E. Idle. Monte python and the holy grail: Not dead
yet. https://www.youtube.com/watch?v=uBxMPqxJGqI, 1975.

[17] D. E. Comer. Computer Networks and Internet (6th Edition), page 508. Pearson,
2015.

[18] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.
Mapreduce online. In Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, NSDI’10, page 21, USA, 2010. USENIX Asso-
ciation.

[19] F. Cristian. Understanding fault-tolerant distributed systems. COMMUNICA-
TIONS OF THE ACM, 34:56–78, 1993. https://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.30.591&rep=rep1&type=pdf.

[20] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM, 56(2):74–80, Feb.
2013.

[21] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.
In OSDI’04: Sixth Symposium on Operating System Design and Implementation,
pages 137–150, San Francisco, CA, 2004.

[22] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S. Gunawi.
Limplock: Understanding the impact of limpware on scale-out cloud systems. In
Proceedings of the 4th Annual Symposium on Cloud Computing, SOCC ’13, New
York, NY, USA, 2013. Association for Computing Machinery.

[23] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, Apr. 1985.

[24] Y. Geng, S. Liu, Z. Yin, A. Naik, B. Prabhakar, M. Rosenblum, and A. Vahdat. Ex-
ploiting a natural network effect for scalable, fine-grained clock synchronization.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 18), pages 81–94, Renton, WA, Apr. 2018. USENIX Association.

[25] D. K. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh
ACM Symposium on Operating Systems Principles, SOSP ’79, pages 150–162, New
York, NY, USA, 1979. ACM.

[26] J. Gray. Tandem tr 85.7 why do computers stop and what can be done about it?
https://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf, 1985.

[27] H. S. Gunawi, R. O. Suminto, R. Sears, C. Golliher, S. Sundararaman, X. Lin,
T. Emami,W. Sheng, N. Bidokhti, C. McCaffrey, D. Srinivasan, B. Panda, A. Baptist,
G. Grider, P. M. Fields, K. Harms, R. B. Ross, A. Jacobson, R. Ricci, K. Webb,
P. Alvaro, H. B. Runesha, M. Hao, and H. Li. Fail-slow at scale: Evidence of
hardware performance faults in large production systems. ACM Trans. Storage,
14(3), Oct. 2018.

[28] P. Helland. Immutability changes everything. Commun. ACM, 59(1):64–70, 2016.

[29] P. Helland. Don’t get stuck in the "con" game: Consistency, convergence,
and confluence are not the same! eventual consistency and eventual conver-
gence aren’t the same as confluence, either. Queue, 19(3):16–35, jun 2021.
https://queue.acm.org/detail.cfm?id=3480470.

[30] P. Helland. Fail-fast is failing... fast! changes in compute environments are placing
pressure on tried-and-true distributed-systems solutions. Queue, 19(1):5–15, Feb.
2021.

[31] P. Helland. I’m so glad i’m uncoordinated, February 2021.
https://pathelland.substack.com/p/i-am-so-glad-im-uncoordinated.

[32] J. M. Hellerstein and P. Alvaro. Keeping calm: When distributed consistency is
easy. Commun. ACM, 63(9):72–81, aug 2020.

[33] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for con-
current objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[34] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chintalapati, and R. Yao.
Gray failure: The achilles’ heel of cloud-scale systems. In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems, HotOS ’17, page 150–155, New
York, NY, USA, 2017. Association for Computing Machinery.

[35] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[36] L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,
may 1998.

[37] C. Luo and M. J. Carey. Lsm-based storage techniques: a survey. The VLDB
Journal, Jul 2019.

[38] W. R. Marczak, P. Alvaro, N. Conway, J. M. Hellerstein, and D. Maier. Confluence
analysis for distributed programs: A model-theoretic approach. In Proceedings of
the Second International Conference on Datalog in Academia and Industry, Datalog
2.0’12, page 135–147, Berlin, Heidelberg, 2012. Springer-Verlag.

[39] J. C. Mogul, R. Isaacs, and B. Welch. Thinking about availability in large service
infrastructures. In Proceedings of the 16th Workshop on Hot Topics in Operating
Systems, HotOS ’17, page 12–17, New York, NY, USA, 2017. Association for
Computing Machinery.

[40] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree
(lsm-tree). Acta Inf., 33(4):351–385, June 1996.

[41] Oracle. Oracle database concepts 10g release 1 (10.1) chapter 13 : Data concur-
rency and consistency — oracle isolation levels, 2003.

[42] B. Reichenbach. Cosmological argument. In The Stanford Encyclopedia of Philos-
ophy (Spring 2021 Edition), Edward N. Zalta (ed.). The Metaphysics Research Lab,
Stanford University, 2021.

[43] J. Tate, P. Beck, H. H. Ibarra, S. Kumaravel, and L. Miklas. Introduction to Storage
Area Networks. IBM Redbooks. IBM, December 2017.

[44] TheFreeDictionary. Three sheets to the wind. https://idioms.thefreedictionary.
com/three+sheets+to+the+wind, 2021.

[45] R. H. Thomas. Amajority consensus approach to concurrency control for multiple
copy databases. ACM Trans. Database Syst., 4(2):180–209, jun 1979.

[46] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Kr-
ishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao. Amazon aurora: Design
considerations for high throughput cloud-native relational databases. In Proceed-
ings of the 2017 ACM International Conference on Management of Data, SIGMOD
’17, page 1041–1052, New York, NY, USA, 2017. Association for Computing Ma-
chinery.

[47] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta, R. Mittal, S. Kr-
ishnamurthy, S. Maurice, T. Kharatishvili, and X. Bao. Amazon aurora: Design
considerations for high throughput cloud-native relational databases. In Proceed-
ings of the 2017 ACM International Conference on Management of Data, SIGMOD
’17, pages 1041–1052, New York, NY, USA, 2017. ACM.

[48] A. Verbitski, A. Gupta, D. Saha, J. Corey, K. Gupta, M. Brahmadesam, R. Mittal,
S. Krishnamurthy, S. Maurice, T. Kharatishvilli, and X. Bao. Amazon aurora: On
avoiding distributed consensus for i/os, commits, and membership changes. In
Proceedings of the 2018 International Conference on Management of Data, SIG-
MOD ’18, page 789–796, New York, NY, USA, 2018. Association for Computing
Machinery.

[49] K. Vidor, V. Fleming, G. Cukor, R. Thorpe, N. Taurog, and M. LeRoy. The wizard
of oz, 1939. https://www.youtube.com/watch?v=cMhrpapLTZM.

[50] P. Vosshall. Aws re:invent 2018: How aws minimizes the blast radius of failures.
https://www. youtube.com/watch?v=swQbA4zub20, 2018.

[51] Wikipedia. Consistent hashing, 2021. https://en.wikipedia.org/wiki/
Consistent_hashing.

[52] Wikipedia. Rip van winkle, 2021. https://www.wikipedia.org/Rip_Van_Winkle.
[53] Wikipedia. Uuid: Universally unique identifier, 2021. https://en.wikipedia.org/

wiki/Universally_unique_identifier.
[54] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica. Improving mapre-

duce performance in heterogeneous environments. In Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, OSDI’08,
page 29–42, USA, 2008. USENIX Association.

 https://bookkeeper.apache.org/distributedlog/docs/latest/user_guide/design/main.html
 https://bookkeeper.apache.org/distributedlog/docs/latest/user_guide/design/main.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.591&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.30.591&rep=rep1&type=pdf
https://idioms.thefreedictionary.com/three+sheets+to+the+wind
https://idioms.thefreedictionary.com/three+sheets+to+the+wind
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Universally_unique_identifier
https://en.wikipedia.org/wiki/Universally_unique_identifier

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

12 APPENDIX A: BUILDING ON A JITTERY
FOUNDATION

As our cloud data centers get increasingly large, complex, and fast,
we see many reports of systems and networks that just go slow
in unpredictable ways. It’s not surprising that this impacts the
latency seen by servers trying to work with them. This section
sketches some pervasive challenges that impact the latency seen
within the datacenter and across AZs. We conclude by describing
our simplified approach to the problem where we design assuming
expect missing responses within a decoupled transactions database.

First, we consider the impact of a growing phenomenon called
gray failure where networks and servers get sick and do not fail
crisply. We look at how TCP’s behavior can amplify jitter making
response latency variable. Cascading timeouts and retries amplify
the delays seen by requesting services. Networking across AZs is
another source for variations in our response latencies. Then, we
see even more onerous challenges with partial observability where
different opinions can exist about which servers are alive!

Building on these challenges, we frame a possible path to a
solution by considering how the notion of a blast radius[15, 50] can
be applied to the set of jittery servers along with failed servers.

Examining different classes of failures in distributed systems
leads us to realize the old leader-based solutions are inadequate
given our assumptions. We the frame what we can know. Specifi-
cally, we know when we have received a message and we take action
when we’ve received enough messages.

12.1 Gray Failures in Cloud Data Centers
Historically, most distributed systems assumed a fail-fast model
[11, 12, 26]. Pieces of the system were either healthy or dead. Sick
pieces were rapidly converted to dead pieces. Dead pieces were
removed from the system and it moved forward without them.

In years past, fail-stop was a largely successful strategy when
built using high-end hardware within constrained clusters and
networks. While certainly not perfect, fail-stop worked well and
reported problems were relatively rare. Lately, this has become
problematic [30].

Gray failure [22, 27, 34] is a broad term used to describe how
pieces of a system may not offer crisp and clear failure semantics.
Instead, they may be healthy enough to squeak out an I’m not
dead yet! [16] message even though they are not contributing their
normal share of work. Even a single server going slow rather than
failing can lead to devastating outages of the larger system [22, 27].

12.2 Networking and Retries Can Amplify Jitter
In 1974, TCP/IP was designed to maximize throughput over lim-
ited bandwidth, an excellent design tradeoff for that time. TCP/IP
can cause dramatic increases in latency variability as seen by the
communicating parties due to error correction based on timeout and
retry, datacenter routing that sends packets through the same path
through switches, and congestion control by slowing down TCP to
avoid swamping the network. In addition, cascading timeouts and
retries can wreak havoc on many distributed systems solutions [22].

12.3 Networking across Availability Zones
Cloud data centers are built on sharing. In addition to the challenges
seen at a single site of modern cloud computing environments, there
are additional challenges posed as we spread our tightly coupled
solutions across different sites.

Availability Zones [15, 50] are an emerging approach to of-
fering improved availability of tightly coupled work. By placing
portions of a system in different buildings within a metropolitan
area, availability zones provide sub-millisecond round-trip network
communication while isolating parts of the system from many cor-
related failures. This can, however, introduce additional challenges.

Networking across availability zones can cause correlated
delays in latency as well as availability. Availability zones are de-
signed to be as independent as possible to maximize the chance
that failures within an availability zone do not, in turn, become
failures across availability zones. Cross-AZ network connectivity
use different networking mechanisms with both a higher latency
and reduced bandwidth. Not only is latency higher across AZs43,
the bandwidth dedicated to these links is lower than the bisectional
bandwidth seen within an AZ.

Normally, cross-AZ traffic has sufficient capacity. Sometimes,
congestion leads to packet drops on the cross-AZ links. Stress due
to unusually high load can cause cross-AZ traffic to see high packet
loss. As we’ve seen, packet loss leads to increased latency seen
communicating over TCP44.

12.4 Differential Observability in the Network
Differential observability in the network happens when there
are inconsistent opinions about which servers can communicate
within the network. Let the symbol "↔" denote two servers that
see each other and can successfully have a TCP connection.

Consider three servers, S1 in AZ1, S2 in AZ2, and S3 in AZ3.
Sometimes, we see the following pattern: (especially when traffic
between AZ3 and AZ1 is high):

• S1↔ S2: Both S1 and S2 see each other.
• S2↔ S3: Both S2 and S3 see each other.
• S3 NOT↔ S1: (S3 cannot see S1) and (S1 cannot see S3).

This can last for minutes or longer and leading to noticeable in-
creases in response latency[34]. Difference of opinion about who’s
alive can be very problematic for performance45.

12.5 Correlated Blast Radius: Failure AND Jitter
Most of us have seen wonderful discussions of blast radius and
how it can be used to reason about correlated failures and im-
proved availability. Similar to outages, correlated jitter has a blast
radius[15, 50]. Jitter is frequently correlated to AZs, network topol-
ogy, software upgrade and configuration topology, and sometimes
power distribution topology[15, 50].

43It is common to see RPCs within an AZ in under 100𝜇s while RPCs across AZs
frequently take more than 400𝜇s.
44I think of networking in a 3AZ environment as being similar to 3 cities separated by
mountains and connected by a 2 lane highways. Cross town traffic works pretty well
with many streets. Cross mountain traffic jams up easily under heavy load.

Travel from AZ1 to AZ3 may see dramatic slowdown when busy. AZ1 to AZ3
traffic may be clogged while AZ2 to AZ3 traffic and AZ1 to AZ2 traffic may be fast.
45Also, differential observability can cause correctness problems [22, 34].

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

Are we considering networks or servers? As a server waits
for a response, it can’t tell if the other server or the network in be-
tween caused the slowness. They both offer unpredictable latencies
as they process the message. Servers may, indeed, be the underlying
culprit. Or, it may be the network. It really doesn’t matter!

When responses from healthy servers across healthy networks
can take varying time to arrive [39], it is challenging to count on
the meaning of a missing message.

Jitter and failure appear the same: The response isn’t here!
Complete the job even if F nodes haven’t answered.

It doesn’t matter WHY they haven’t answered: dead or sick.

Hence, we place our nodes in a quorums46 based on blast radius
concerns. We need to tolerate F nodes in total even when some are
being restarted due to software upgrades at the same time as others
are simply experiencing slowness.

12.6 Taking a Time-Out on "Time-Out"
We typically speak of time-out as a means to decide to do something
different when a message response is delayed. Timing faults[19]
happen when responses are later than expected. Omission faults
happen when a late message never comes. Cloud environments
offer probabilistic SLOs47.

We don’t really know the difference between:
• Message is late (a timing fault) and may arrive soon, and
• Message isn’t coming (omission fault): better do something.

Determining the difference between these inherently involves
trading-off a prompt decision against the chance of an incorrect
decision. When messages were almost always timely, it wasn’t so
bad, just wait a few times the expected message delay and then
give up. Now that messages behave like the US Postal Service, it’s
a bigger quandary. You either wait a looong time or risk frequent
time-outs and their associated disruption.

As described above in §12.1, the fail-fast design pattern has a
single centralized leader server. As long as the leader is responsive,
this works great! When the leader is not responsive enough, there
are two big challenges:

• Deciding the leader is dead: Just knowing when to give
up takes much longer in an asynchronous system where
messages delay unpredictable amounts.

• Deciding who should be the next leader: Selecting the
next leader is a form of consensus. Consensus is the process of
picking a single value across a set of distributed servers[36].
Paxos is certainly the most famous example of a consensus
algorithm. We know that consensus cannot be guaranteed
to complete in bounded time [23].

46See §7.2 for a discussion of quorums and failures as applied to each of our DB’s
server types. This focuses on the requirements of each server type and how to tolerate
an AZ+1 failure without disrupting the decoupled transactions database.
47See §1.1.

Centralized control is becoming less and less responsive.
As our networking becomes less and less predictable, counting on
fail-fast to have a single lively centralized decision maker becomes
more and more challenging [30]!

Decoupled transactions→ No central control!

All aspects of managing the database and its snapshot isolation
are decentralized and quorum based.

Assume no more than F servers appear to be sick or dead to
this server. It doesn’t matter if they actually are sick or dead, just
that the requesting servers perceives them as non-responsive. The
remaining non-jittery servers are acting as if they are synchronous
and meet their response time expectations.

All but F servers are responding promptly from the requesting
server’s perspective. This is a commonly observed pattern.

In §7.2, we map "no more than F sick servers" to the various types
of servers used within our decoupled transactions database.

By considering the behavior we need from these server types,
their placement in a 3AZ deployment of cloud data centers, and
their implementation, we sketch how these servers and the services
they provide can be robust even in the face of an AZ+1 outage.
12.7 “Omitting Omissions” as We Make

Decisions
One interesting aspect of fail-fast is that is exists to convert timing
faults (due to late message arrival) into omission faults (where we
decide the message is never coming).

These omission faults are then used to decide we must be seeing
a crash fault where no more messages will ever be coming.

Every decision our decoupled transactions database
makes is based on an actual set of messages received.

We may wonder if a server is sick if messages are late.
We don’t decide to replace a server because messages are late.

Messages must have Happened Before [35] our
decisions. Fortunately, we can decide with

a quorum of messages each of which happened before.

Applying happened before to a quorum of responses does, however,
have a number of challenges and subtleties!

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Figure 4: Lots of races can happen when multiple clients each try to do their operation using quorums.

13 APPENDIX B: QUORUM’S SUBTLE
CHALLENGES

Quorum operations necessarily involve races and surprising or-
ders of completion across the multiple quorum-servers in the sub-
system. That is, after all, the point behind using quorum. Operations
may execute in various orders and their quorum avoids stalling.

This section is placed in an appendix
for interested readers.

It takes some work to study the cause of these races
Understanding this in detail is not essential to understanding

the paper and its conclusions.

13.1 Quorum and Its Subtle Challenges
Quorum operations necessarily involve races and surprising orders
of completion across the multiple quorum-servers in the subsystem.
That is, after all, the point behind using quorum. Operations may
execute in various orders and their quorum avoids stalling.

Consider Figure 4 for this discussion.

Define the following:

• Ox to mean Operation Ox
• CQy to mean Complete Quorum CQy
• CQy ≥ Ox to mean CQy includes Ox
• CQy ≱ Ox to mean CQy may possibly not include Ox

We see the following weird behavior with quorum:

• Operations may be included even if launched later.
By the time a combined result from a complete-quorum CQk
is returned from the quorum-client, it may include operations
that started later than when Ok started.
– CQ1a ≥ O3b. See Note 1.
– CQ2c ≥ O3b and CQ2c ≥ O4d. See Note 2.

• Operations may be NOT included, even if they launched
before the complete-quorum that does not include them.

Sometimes, a complete-quorum CQk visits other nodes as it
gathers up its work and misses some ongoing operation Oj
that started first.
– CQ3b ≱ O1a and CQ3b ≱ O2c. See Note 2.

• Incomplete-quorum operations may be included.
This includes temporarily incomplete-quorum operations that
are simply ongoing work. It may also include permanently
incomplete-quorum operations from crashed clients.
– CQ1a ≥ O3b (temporarily incomplete - Note 1)
– CQ3b ≥ O4d (permanently incomplete - Note 2)
– CQ1a ≥ O3b (temporarily incomplete - Note 3)

• Operations may be included intermittently.
This is a common occurrence as two different quorum oper-
ations visit different servers. The same client may initially
see operation Oj and later it is gone. See Note 5.
– CQ3e ≱ O4d even though (CQ3b ≥ O4d) completed earlier.

• Two quorums may include each other’s operations!
– CQ3e ≥ O2f See Note 5.
– CQ2f ≥ O3e See Note 6.
How surprising is that!

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

14 APPENDIX C: JITTER-FREE DATABASE
Here, we dive deeply into the details of the pieces needed for a
decoupled transactions database. The goal is to motivate how each
piece can be implemented without jitter.

For many readers, this may be too much detail, so it is in an
appendix. Hopefully, this can sate the curiosity and/or

skepticism of those wondering about how to use seniority,
quorum, and confluence to make a robust jitter-free database.

We cover the following:
• §14.1: (Jitter-Free TX Commit, Begin, & Retire)
How can a high-performance jitter-free transaction system
run without centralized transaction management? We look
at commit, begin (getting a snapshot and whereabouts), and
retire transactions. This extends the discussion in §4.

• §14.2: (Jitter-Free Flushing to the LSM)
How does flush work? Why is it OK to have a worker-server
stall with its recent updates not yet flushed? How does the
overall database avoid getting stuck for very long?

• §14.3: (Jitter-Free Merging of LSM Data Files)
Our database sees all older changes using the LSM in shared
storage. We need to curate this LSM, performing merges as
needed, register these changes with our catalog all without
jittering and effecting ongoing transactions?

• §14.4: (Jitter-Free Reading of LSM Record-Versions)
The whole goal of keeping most of our data in read-only
shared storage is to allow shared and jitter-free access. How
does this work without jitter? How can we look into the
LSM by key (or key-range) and find the data we need?

• §14.5: (Jitter-Free Reading Recent Records)
Accessing very recently committed updates is a challenge in
this system. Mostly, the worker committing these changes
can respond with the new value for the record. This is, of
course, a risk of jitter and not always a successful approach.

14.1 Jitter-Free TX Commit, Begin, & Retire
Transaction commit is performed by a quorum of coordinator
quorum-servers. Prior to transaction commit, worker servers send a
permission-to-commit operation to NCoord quorum-servers48.

When QCoord of NCoord have responded, the coordinator-quorum-
client in the worker-server combines the responses. This may (or
may not) grant permission to the transaction. If so, it then writes a
transaction commit record to the worker’s log49.
The coordinators’ commit50 of a transaction T1 does 3 things:

• Assignment of seniority to T1: Seniority is guessed
by the worker and confirmed by a coordinator quorum.

• Conflict checking prior to commit of T1:51 Updates by
T1 are checked for conflicts against any transaction T2 com-
mitted since T1’s snapshot time.

• Whereabouts creation: Each quorum-server remembers
the updates done by the transactions it has permitted.

Transaction commit does not jitter

Transaction begin also uses coordinator quorum-servers. Worker
servers send a Get-snapshot-and-whereabouts operation to NCoord
of the coordinator’s quorum-servers.
Each Get-snapshot-and-whereabouts operation specifies:

• Proposed snapshot-time: A future snapshot-time is
proposed by the worker and confirmed by QCoord

• Last snapshot: seen by this worker server
• Last whereabouts: seen by this worker server. Only newly
committed whereabouts need to be returned to the worker.

When of QCoord of of NCoord have responded, the coordinator-
quorum-client in the worker-server combines the responses to get a
snapshot time 52 and a set of whereabouts 53.

Transaction begin does not jitter

Transactions retire when their seniority shows they are:
• Older than the oldest snapshot and
• Flushed to the LSM

Seniority of the oldest snapshot and seniority flushed to LSM are
sent to the coordinator using complete-quorum operations. At least
QCoord quorum-servers see the change.

As coordinator-clients send messages to coordinator-servers,
they send these seniority values and the servers send them back.
Seniority retirement values only move forward. Both clients and
servers see them advance monotonically. Retired transactions are:

• Scrubbed from each server as retirement seniority advances
• Scrubbed from combined results at the client

Transaction retirement does not jitter

48See §4: (Logical Time & Transaction Commit) for more details.
49The presence of the commit record in the worker’s log defines the moment of commit.
50The coordinator subsystem’s quorum-servers perform commit without jitter.
51For any transaction T2 with an identical seniority to T1 , if T1 and T2 have conflicting
updates, either one or both of them must abort.
52Assuming the proposed snapshot-time arrives early enough at QCoord servers.
53Each quorum-server sends the whereabouts for the transactions it has permitted.
Any committing transaction was permitted by QCoord servers. Grabbing whereabouts
from QCoord servers means the combined set of whereabouts will include every update
made by any transaction that might have committed.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

14.2 Jitter-Free Flushing to the LSM
Seniority of flushed files: Periodically, each worker will flush
committed transactions to the LSM. This is a long-running activity
involving multiple This is accomplished in a number of phases:

• Select seniority range of transactions to flush:
Each flush contains all committed transactions in a range.
– Lower bound: Start at the previous flush’s upper bound.
– Upper bound: Pick a committed transaction.

• Flush all transactions in the range: Only ones committed
at this worker. Write them to a data file in shared storage.
Flushed data files are not yet visible to readers of the LSM.

• Register the flush with the catalog: Describes its worker
and seniority range using a quorum operation.

Workers are allowed to jitter

It’s OK if a worker slows down while flushing:
• Recent changes are not yet visible in the LSM:
– Recent changes from all workers not seen in LSM
– System slows a slight bit

• Other workers get impatient:
– They remove slow worker
– Rebuild its recent changes from its log
– Flush them to LSM

Worker servers may stall→ They’re rapidly removed
Other workers extract the sick worker’s changes

from the log and flush them to the LSM
Ongoing transactions (on other workers) see little impact

14.3 Jitter-Free Merging of LSM Data Files
Merge of LSM data files is periodically performed by any worker
in the database. Workers consult the catalog54 to see the part of
the LSM that most needs reorganization. Workers wishing to help
reorganize the LSM are given assignments to merge by:

• Read a set of data files from the shared storage
• Extract records from these data files for input:
– Records must lie within a specified key-range
– Records must lie within a specified seniority-range

• Write a new data file (up to a maximum size)
• Register the new LSM data file with the catalog
– Registered files have sorted records
– Registered files specify their key-range and seniority-range

The catalog subsystem comprises code running within catalog
quorum-servers as well as code running within catalog clients within
each worker-server. The state of the catalog subsystem is kept within
a quorum of the catalog quorum-servers.

Merge is idempotent: It may be retried until it succeeds
Catalog handling of merge is jitter-free

Seniority of new data files supports retirement
New data files may have seniority within each key-range
Older data files aren’t needed→ Catalog may retire them

54By sending performing operations at QCat of NCat catalog quorum-servers.

14.4 Jitter-Free Reading of LSM Record-Versions
Access to older record-version is done by exact-key or key-range.
Locating them in shared storage comprises five steps:

(1) Find the set of data files to read: Consult the catalog using
QCat of NCat responses

(2) Access the data files in shared storage: Data files are
stored using consistent hashing → can be located and read
across replicas without centralized control

(3) Locate the record-versions in the data files:
Structured for key based lookup

(4) Merge across LSM levels
(5) Return the latest record-versions at snapshot time:

The reading worker filters for snapshot semantics

LSM data may be read without jitter
Each step avoids getting stuck waiting for any slow server(s)

The reading worker may get sick but
its dependencies (e.g., catalog and data files) avoid jitter

14.5 Jitter-Free Reading Recent Records
Whereabouts describe which worker-servers may have recently
updated records. These are acquired by each transaction’s worker
at the beginning of the transaction. See §14.1.

Normally, recent record-versions are read from the updating
worker-server by sending a direct message to the worker and wait-
ing for it to return the requested update.

A direct message to read from another worker will request:
• Read of exact-key or key-range: The whereabouts de-
scribes the update that was granted permission to commit.

• Read at an exact seniority: The whereabouts specify the
precise seniority of the possible update

• The updated record-version may have not committed:
There is a chance the update did not commit. If so, the worker
will respond no update for that key exists with that seniority.

Reading recently committed record-versions is
the single biggest jitter-risk in this design

Fortunately, we only try to read record-versions from another
worker when a whereabouts shows it is very likely to be there

Normally, recent changes will flush to the LSM
in shared storage within tens of seconds
Once there, they can be read without jitter

Also of use is the Log-following server (See §15.13)
Other than the very last few seconds since an update,

reading from it can be a rapid alternative.
Reading recent changes without jitter depends on

rapid removal of a sick worker
This includes repairing and reading the sick worker’s log

Sick workers can be removed in less than a second!
The hope is that the problem is rare and the repair is rapid

See §15.12: (Bounding the Pain When a Worker Is Sick)

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

15 APPENDIX D: JITTER-FREE LOG-REPAIR
In appendixD, we offer a deep dive ofmany aspects of log-repair and
jitter free repair of data from a worker’s log. We offer a guesstimate
for the wall clock time to remove a worker and access its data. Also,
we present a discussion of the value of having log-following servers
keeping a close follow of each worker.

• §15.1: (Jitter-Free Log Seniority (from Logger))
Later, in §15.9, we address concurrent log repair by multiple
worker-servers. We must support concurrent log repair and
avoid picking exactly one! By assigning order (or seniority)
of the log pieces before failure, concurrent repairing workers
can function independently.55

• §15.2: (Jitter-Free Log Quorum)
How do we know the status of appended fragments in the
log? How many replicas are needed for fencing, log-repair,
and detecting a server is sick?

• §15.3: (Jitter-Free Liveness Check via Log)
Here, we present an important observation. Quorum logs
don’t jitter! If a log can be read without jitter, we can detect
a sick worker by examining their progress in the log. This is
an essential aspect to ensuring we have a jitter-free database!

• §15.4: (Jitter-Free Concurrent Log Fencing)
This section covers the details of fencing the log of a sick
worker. This involves both steps in the catalog as well as
steps in each of the log server replicas holding extent data
that needs to be fenced. Fencing the log always precedes
repairing the log so the fencing server gathers information
needed for repair as it fences.

• §15.5: (Log-Repair: Goals and Challenges)
Here, we describe the essential goals and challenges to pro-
viding jitter-free log repair.

• §15.6: (Jitter-free Log Repair & Shared Storage)
This is an overview of many of the challenges to come in
log-repair.

• §15.7: (What Do We Know Before Log Repair?)
Before we can repair a log, we need to define our assumptions
about what’s available to us before launching the repair.

• §15.8: (What Does It Mean to Be Ambiguous?)
After a crash, some of the most recently written log frag-
ments may or may not survive repair. How does this happen?
What does it mean for repair? Why will this result in a valid
log state after repair?

• §15.9: (Concurrent Repair of the Log)
How does log repair itself work? What steps are involved?
How can it reliably complete even when there may be multi-
ple competing worker-servers actively repairing the log?
Multiple log repairers do have some challenges! Each may
see a different set of log-server replicas. Some may see the
presence of a fragment in the replicas they can reach. Others
believe it doesn’t exist in the log. When this happens, either
outcome is OK but we must pick and remember the decision
about the presence or absence of a fragment. Picking exactly
one decision warrants an entire appendix!

55Picking a single log repairing worker-server would require a central authority. This
cannot be guaranteed to complete in bounded time. So, we don’t pick just one!

• §15.10: (Picking a Single Outcome Per-Fragment)
For ambiguous fragments, we must select an outcome to sur-
vive after log-repair. How can this be done without conflict,
without jitter, and in bounded time?

• §15.11: (Bulk Fragment Repair)
It turns out that 100s of ambiguous fragments can be repaired
in just a few quorum operations. This can mean sub-second
repair of the log!

• §15.12: (Bounding the Pain When a Worker Is Sick)
Finally, we consider just how slow it would be to decide a
worker is sick, fence its log, and repair its log to allow reading
the state of committed record-versions.We see that our use
of quorum throughout the design can result in a surprisingly
fast access to committed data through a worker’s repaired log!

• §15.13: (Jitter-Free Retry to Log-Followers)
Log-following servers optimize reading of recent changes.
While not seminal to avoiding jitter for recent reads, it is a
practical and useful feature.

15.1 Jitter-Free Log Seniority (from Logger)
Seniority of itemswithin eachworker-server’s log: Log records
are created per worker containing records for new record-versions56

and transaction commit records. Commit records have their transac-
tion’s seniority and appear in the log in commit (or seniority) order.
Items composing the log have ranges of seniority:

• Fragments: These have a range of seniority based on com-
mit records contained in each fragment.
– Monotonically increasing: Each fragment’s range is
larger than the previous one. Seniority of fragments has a
low-order sequence field to increment if needed.

– Lower bound: Greater than the last fragment’s range.
– Upper bound: Largest seniority in the fragment.

• Extents: Seniority range bounds based on its fragments.
• Log-Windows: Seniority range bounds based on its non-
retired extents.

For both open extents and open log-windows (i.e., still receiving
fragments), the upper bound of their seniority is not defined.
Seniority of log items is assigned by the logging worker. Log
repair can be performed by multiple other worker servers as they
follow the seniority established by the crashed logging worker.

56Like most transaction systems, we these are labeled with a temporary identifier and
later bound to a committing seniority (i.e., transaction-id) by a commit record.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

15.2 Jitter-Free Log Quorum
Let’s examining the replication requirements for logs. Log servers
are expensive, each receiving many 100s of megabytes per second
and ensuring low-latency durable appending to the log.
Log replication requirements:

• Must read the log with F jittery servers: Reading the
contents of a log tells us the state of the database.

• Don’t need to write the log with F jittery servers: We
can send new log writes to a new extent on different servers.

Let’s use the following terms:
• NLog: Count of log-server replicas per extent
• QLog: Count of log-servers acknowledging quorum.
• NQLog: (NQ → Not Quorum)
How many missing means we don’t have quorum?

NQLog = (NLog + 1 - QLog)

NQLog tells us the following:
• When is a fragment is guaranteed to be durable?
If NQLog replicas don’t have it, it’s not durable

• Is a worker is sick?
If NQLog replicas haven’t seen recent work, the logger’s sick

• How many replicas to fence?
If NQLog replicas are fenced, the extent is fenced

• How many replicas to read a durable fragments?
Read NQLog replicas→ see durable fragments

• How many replicas to read for accurate log-repair?
Read NQLog replicas→ we can repair the log

We place log-servers to tolerate jitter
NQLog must be non-jittery

This allows non-jittery reads of durable log-writes
It does not ensure non-jittery writes to that log-extent.

See §7.2 for a discussion of this in a 3AZ environment.

15.3 Jitter-Free Liveness Check via Log
FLP (Fischer-Lynch-Paterson)[23] is rightly considered to be one of
the most significant papers in distributed systems literature. It has
dramatically shaped our solutions. FLP states that it is impossible
to deterministically reach consensus in bounded time across a set
of servers with only a single faulty server.

FLP assumes communication with a server is only via asynchro-
nous messages. Today, asynchronous messages underly our cloud
data center solutions57. Our assumptions about the probability of
correlated jitter offer a way to side-step the challenges posed by FLP.

We are not challenging the correctness of FLP
We plan to side-step its assumptions

57Indeed, message delivery time is getting less predictable as we improve other
characteristics of the data center including higher bandwidth and lower latency. See
§12.

Consider database servers that log before responding. Our
worker-servers are such servers. Before answering a message, they
first log. If they can’t log, they don’t answer.

Assume log writes are sent to a quorum of servers. Similar
to AWS Aurora[46], each server must commit a log write to 4-of-6
log replicas before responding to the message.

Assume that at most F of the servers jitter at once. These F
servers are deployed so that all correlated problems impact fewer
than F servers at a time58.

You can check sickness without getting direct responses

The log knows the truth!

If (NLog + 1 - QLog) log replicas respond to a message:
"that worker-server hasn’t logged here for a while"

then you know the worker hasn’t logged to QLog of NLog

If it hasn’t logged, it hasn’t done any work and must be sick.

You know the server is sick
based on happened-before answers to messages

Not only can you know it is sick, you can:
• Fence its log: Kill it by stopping future work
• Recover the log: Ensuring accurate contents in the future
• Read what is in the log: Allowing reads of recent changes

Multiple workers may fence and repair a log. We can’t pick
exactly one log repair server. That would take a central authority.
Instead, we must ensure that when one or more log-repairing workers
finish, the log will always have the same repaired contents.

15.4 Jitter-Free Concurrent Log Fencing
A single log can be fenced by multiple workers concurrently:

• Fence log-window in catalog: Disallow new extents
• Fence each extent (latest to earliest): For each extent:
– Get catalog extent info: Which were sealed? Where are
each extent’s replicas?

– Fence extent replicas: For each replica:
∗ Disable adding new fragments
∗ Learn the largest fragment number in replica

– Fence enough replicas:
Fence at least: ((NLog - QLog) + 1) replicas to prevent
logging new fragments to QLog in the future

– Fence extent in catalog: Record progress...
• Record log-window is completely fenced in catalog

Fencing a log-window does not jitter

Fencing may be done by one or more worker-servers
It is complete when any of them finishes fencing

58This is precisely the same arguments used to define blast radius boundaries[15, 50].

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

15.5 Log-Repair: Goals and Challenges
Let’s reviewwhat we need to dowhen repairing the log. Log repair’s
job is to take a recently fenced log-window and ensure it can be
read accruately. It is more challenging for this system than many
databases because we can’t have anything jitter. That means we
can’t have any centralized knowledge! That means we can’t have a
single log-repairing server.

Multiple log-repair servers adds some complications!

Accurate and repeatable log contents: The basic goal of log-
repair is to pick any correct version of the log and before using it
ensure we can make a durable and repeatable contents for that log.
When logging to a replicated store, this does not happen by itself.

• Committed work stays committed: If QLog replicas have
the fragment, it must remain in the log

• No holes in the log: The first fragment we omit from the
log is the tail of the log. No later fragments may exist.

• Ambiguous fragments may go either way: It’s OK to
include them or exclude them. Once log-repair is complete,
they must always be either in or out of the log.

• Uncommitted work stays uncommitted: Once the log is
repaired, if it’s not in the log it will never be in the log.

Possibly many concurrent log-repairers: We must support one
or more log-repairers working on repair. There are subtle issues to
clarify to ensure this is correct.

• It just takes one to finish: Once one or more completes
log repair, it is complete

• Each log-repairer may see different log-replicas: They
may be in different parts of the data-center. As they access
log-storage replicas, log-repairing worker Wa may see dif-
ferent replicas of an extent than Wb. Furthermore:
– Fragments may differ: As they were written, different repli-
cas may see fragment Fx

– Durability guarantees may differ: Some fragments made it
to QLog replicas and others to fewer.

• Log-repairers may see different states of a fragment:
This can happen when they see different replicas:
– Guaranteed durable: Known to be at QLog log-server repli-
cas. Log-repair reads NQLog replicas for each fragment.

– Ambiguous: If fewer than QLog replicas exist, we may see
different opinions. One repairing server may see the frag-
ment present and another may see it missing.

We cannot jitter as we supportmultiple log-repairing servers!
It is essential to recover the log in a small and fixed number of steps.
If two log-repairing servers have different opinions of a fragment’s
disposition, we must resolve this without jitter. We cannot have
liveness problems as we repair the log!

15.6 Jitter-free Log Repair & Shared Storage
Log repair has two big jobs: pick the end of the log and ensure the
durable end of the log doesn’t grow or shrink.

Fence before log-repair. Before we repair the log, we ensure it
is frozen and cannot have new fragments added. See §15.4.

We can’t add to log-servers for fenced log extents.When
recovering a log, we don’t ever add anything to the log-servers
themselves. Before recovering the log, we fenced it. Fencing log
extents in the log-servers means that nothing can be added to

the extents! Hence, we toss more information into the catalog to
implement log-repair.

Log repair adds facts to the catalog. After fencing, we don’t
modify log extents in the log-storage servers. We simply add infor-
mation to the catalog! This includes some of the log fragments (the
log records themselves)!

Picking the end-of-log is ambiguous. Acknowledged frag-
ments are replicated to at least NLog-F replicas andwill be recovered.
Depending on which NLog-F replicas are seen by log repair, the end-
of-log log may vary, including different sets of non-acknowledged
fragments. The final length of the recovered log must be durably
remembered before any recovered fragments are used to ensure
the length doesn’t shrink or grow if log repair is restarted.

Using one log repair server avoids end-of-log ambiguity.
Selecting exactly one server cannot be jitter-free.

Picking one server requires consensus
It can’t be guaranteed to complete in bounded time[23]

Decoupled transactions recovers logs with >= 1 servers.
A quorum of catalog servers resolves end-of-log ambiguity and

durably remembers the state of the recovered log.

15.7 What Do We Know Before Log Repair?
Logging workers write fragments to NLog log-storage-replicas.
They are known to be durable after QLog confirmations.
Before log repair, each fragments is possibly:

(1) Known durable: QLog log replicas have confirmed responses
(2) Ambiguous: Possibly less than QLog fragment replicas exist
(3) Missing: No attempt was made to log the fragment

Last durable fragment (LDF): Fragments refer to the latest known
durable fragment. This provides log-repair a starting point.
Before log-repair, the catalog for the log-window knows:

• Log-window information:
• Per-extent information:
• Per-fragment information: Empty before log-repair.

Log repair: Resolve the ambiguity of ambiguous fragments

We must determine the last fragment in the log
All fragments in the log must be readable in the future

15.8 What Does It Mean to Be Ambiguous?
Each log-repairing server reads NQLog replicas59. See

. (NQ stands for "Not Quorum") As described in
NQLog = (NLog + 1 - QLog)

NQLog is the minimum number of replicas we must read.

Example: AZ+1 jitter tolerance in 3AZ configuration. See §7.2.
We would then see:

• N = 6: 6 total log-storage replicas.
• Q = 4: Only when we know 4 log-storage replicas are
durable, is the write complete.

• NQ = 3: If we read 3 of these replicas,
we will see at least one of the 4 replicas written.

59See §15.2

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

Figure 5: Monotonic state transitions to decide end of log

Note the following (using 3AZ numbers) (See figure 5.):
• Fragments up to 225 are known durable: There are at
least 4 durable replicas.

• LDF is per-fragment: Each fragment includes LDF. This is
the latest fragment that we know is durable on 4 replicas.

• Log-Repairer-A sees replicas 1, 2, & 3: It will certainly
see at least 1 of 4 durable fragments.
– Fragments up to 231 are seen by Repairer-A:
If A is the only repairer, the log will end after 231.

– Fragment 233 is visible but not 232:
Unless another repairer sees 232, 233 will be discarded.

– Repairer-A sees LDF of 225: Fragment 233 has LDF= 225
• Log-Repairer-B sees replicas 4, 5, & 6:
It will certainly see at least 1 of 4 durable fragments.
– Fragments up to 226 are seen by Repairer-B:
If B is the only repairer, the log will end after 226.

– It also sees fragments 228, 229, and 230
– It does not see fragments 227, 231, or 233 onward.
– Repairer-B sees LDF of 224: Fragment 232 has LDF= 224

15.9 Concurrent Repair of the Log
Databases normally assign a single log repair server. It is an idem-
potent operation and may crash and restart. As long as the single
log repair server finishes, the log is repaired for all time.

We can’t pick a single log-repair service!
That requires a strongly consistent central authority!

That might jitter!

We must allow at least one log repair to fix-up the log!
It turns out that is quite challenging to do without jitter!

Fragment-by-fragment repair: Starting at the latest fragment
in the log-window found while fencing the log. In that fragment is
an LDF, a known durable fragment on at least QLog replicas. From
there, move forward through the log making fragments durable60.

The final step is to update the catalog selecting an end-of-log.
This should include all repaired ambiguous fragments up until
there’s a hole (or missing fragment) confirmed in the catalog.

Repairers read (NLog + 1 - QLog) replicas (See §7.2)
Each may see less than a quorum QLog replicas

Big challenge: Log-repairers may see different replicas
Some see the fragment... Some see a hole!

Either keeping the fragment or ending the log is OK
→ Different log-repair views→ an ambiguous fragment.
We must finalize exactly one decision in the catalog

We must ensure the following guarantees:
• Preserve known durable fragments: Once the logger saw
a fragment acknowledged by QLog of NLog replicas, that
logging worker believed the fragment was durable and its
transaction’s committed. The database may have confirmed
it is committed.

• Leave no holes in the log:A fragment is only durable when
all earlier fragments are durable.

• Finalize the contents of the repaired log: Ambiguous
fragments (not confirmed by QLog replicas) may or may not
survive: It’s OK to include it and it’s OK to exclude it.

60Actually, each log-repairer can do parallel repair of fragments. Reading from replicas
of the log-extent can fetch multiple fragments at once and sift through the set of
fragments at each replica. Using this, a log-repairing worker can perform updates to
confirm the presence or absence of each fragment, possibly competing with other
log-repairing workers. See §15.11: (Bulk Fragment Repair) for an in-depth discussion
of monotonic and concurrent log-repair.

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

Figure 6: Monotonic state transitions to decide end of log

.

15.10 Picking a Single Outcome Per-Fragment
As repairers read each fragment, they may see:

• The fragment is in at least one replica:
– Try to include the fragment if there’s no disagreement
– Allow a hole if another repairer saw only holes61

• No replicas of the fragment:
– Try to end the log here (unless another repairer disagrees
– Allow the fragment if there’s disagreement62

Consider figure 6. For each fragment, the log-repairer will:
• Bias for fragment: The log-repairer either sees the frag-
ment from the log or it doesn’t:
– Fragment is seen: Biased to include a fragment
– Fragment is missing: Biased a hole

• Update fragment in catalog, Step 1:
– For a Fragment Bias: Send a "Frag-Seen" message

∗ Request: map from State-0 (Empty) to State 1 (Frag-
Seen)

∗ Returns an error if not in State-0
– For a Fragment Bias: Send a "Hole-Seen" message

∗ Request: map from State-0 (Empty) to State 2 (Hole-
Seen)

∗ Returns an error if not in State-0
• Update fragment in catalog, Steps 2 and beyond:
– Read the fragment’s state from at least QCat replicas.
– If there are different answers, send the largest state
to at least QCat replicas.

– Advance to next state (See figure 6)
Achieving a consensus of the outcome for a single fragment

takes no more than a six quorum interactions63.

15.11 Bulk Fragment Repair
Each log-repairing server fences the log and gets a set of ambigu-
ous fragments. The number is a function of the outstanding and
unconfirmed log writes.

There are typically 100s (or fewer) ambiguous fragments
Assume:

• 100 mb/sec logging
• 32kb per fragment (average)
• 10 milliseconds to achieve QLog

Then: Average of 30 fragments not yet acknowledged to the
logging server

• 100MB / 32KB is about 3,000 fragments per second
• 10milliseconds is 1/100th of a second
• 1/100th of 3,000 is 30

Typically about 100 or fewer ambiguous fragments.

61If this repairer saw a fragment and another saw only holes, it is ambiguous.
62If this repairer saw only holes and another saw a fragment, it is ambiguous.
63I’m sure this is not optimal. My goal is to establish that it is bounded and small.

Decoupled Transactions:
Low Tail Latency Online Transactions Atop Jittery Servers CIDR’22, January 10-13, 2022, Chaminade, CA, USA

A bulk log-repair of the ambiguous fragments:
• Get ambiguous fragments from log: The fence operation
returns a bulk set of fragments.

• Combine fragment: all bulk results from the log replicas
• Send combined request to catalog as a bulk step 1
• Perform bulk calls to catalog quorum for all fragments
• Call the catalog to seal the log-window, ending at the first
fragment in Step-5 (End-of-Log)

Log repair is both jitter-free and bounded

It is a fixed amount of work based on the number of ambiguous
fragments and the number of concurrent repairers

Each step of log-repair is based on quorum operations
Log-repair is jitter-free

15.12 Bounding the Pain When a Worker Is Sick
Removing a sick worker and seeing their work can actually
be quite fast. It involves the following steps:

• Decide if the worker is sick:
– Catalog: Ask NCat, wait for NQCat
→ Where is worker logging?

– Per active-extents: Ask NLog, wait for NQLog
→ Has logging happened lately?

• Fence the worker’s log-window:
– Catalog: Ask NCat, wait for NQCat: Fence in the catalog:

∗ Fence the log-window: Disallow fragments being added
∗ Describe active extents: List of non-sealed extents

– Per active-extents: Ask NLog, wait for NQLog
∗ Fence the extent: Restrict further fragments being added
∗ Largest fragment number: Learn what was added
∗ Read recent fragments: Fetches lates replica fragments64
Fencing grabs most (or all) fragments needed for repair.

• Repair each open extent: We already fetched the recently
written set of fragments from each replica.
– What’s durable?
Find last known durable fragment (field in last fragment)

– What’s ambiguous?
Everything after the last known durable fragment

– Disambiguate fragments in the catalog:
∗ Package up ambiguous fragments into a catalog request
∗ Send bulk fragments to a quorum of catalog servers
∗ Send request to resolve fragments in catalog 65

∗ Define last fragment in extent
∗ Seal active extent: Confirm length in catalog

• Seal log-window in catalog:
Describes repaired extents and end-of-log

• Read the log: Start at the end-of-log

64This can be a hunch of what’s likely to be needed for log-repair. Occasionally, more
may need to be read for correctness.
65Resolving fragments in the catalog is complex and subtle if there is concurrent repair.
See §15.10: (Picking a Single Outcome Per-Fragment) for a detailed discussion of how
to use monotonic quorum operations to reliably resolve ambiguous fragments when
differing views are seen by concurrent log-repairers. The explanation covers both a
fragment-by-fragment sequence and then how to perform this with bulk requests for
rapid log-repair.

Fast health-check, fencing, & repairing of worker’s log!

Consider the following count of quorum operations:
• Health-check:
– Catalog: One quorum request
– Per active extent: One quorum request to at least
NQLog replicas

• Fence:
– Catalog: One quorum request
– Per active extent: One quorum request to at least
NQLog replicas
Returns bulk status of recent fragment, typically all
ambiguous fragments

• Repair:
– Catalog (Per active extent): One quorum request per
active extent to bulk repair ambiguous fragments
(may be done in parallel for each active extent). Pos-
sibly up to 3 or 4 additional requests to resolve dif-
ferent opinions of ambiguous fragmentsa

– Catalog (Finalize log-window repair): One final quo-
rum request to declare end-of-log

Catalog operations for long-window repair:
• Per log-window repair: 3 catalog quorum operationsb
• Per repaired active-extent:
2 catalog quorum operations

Log operations (per active extent) for log-repair:
2 quorum operations to log replicas

Removing a worker and accessing its log is fast!
Each quorum operation should take less than 10 milliseconds

Estimate: 2-3 active extents to repair
Estimate: Less than 15 quorum operations in less than

150 milliseconds.
After that, reading the log will take additional time

aThese are very rough estimates.
bAgain, very rough guesses!

CIDR’22, January 10-13, 2022, Chaminade, CA, USA Pat Helland

15.13 Jitter-Free Retry to Log-Followers
One practical remediation for slow workers comes by adding a
log-following server. Log-following servers process the logs of
another worker. They are slightly behind in their understanding
of changes made by the worker they follow. Because each read,
either exact-key or range-key is as-of a specific seniority, there is
no ambiguity about the correct answer. Either the log-following
server has the correct answer or it knows that it hasn’t processed
enough log to give the correct answer.

Don’t use log records unless they will survive log-repair.
Log fragments are sent to NLog log-servers. Only after QLog have
confirmed the durability of the fragment on their replica do we
know it will persist after log-repair. The worker itself tracks this
durable quorum before responding to SQL work from the appli-
cation. Hence, humans outside the database don’t see committed
work disappear following log-repair.

The worker also record the lowest fragment in the log-window
that is known to be durable across log-repair. This is called LDF (Last
Durable Fragment)66. As a logging worker receives asynchronous
confirmation of fragment replica durability, it adds that information
to each fragment written moving forward.

Keeping up with the worker. It is quite reasonable to assume
a log-follower is probably much less than a second behind the
worker it is following. Log-storage servers67 support reads of the
next fragment confirmed by LDF68 To manage the jitter seen with
a single replica of the log, we assume that the log-follower will
follow multiple replicas of the log extent, hopefully QLog of NLog.

Expected Lag of a Log-Follower. The log-server lag is largely
dependent on the time it takes for the worker to know its frag-
ment appends are durably replicated across QLog replicas. Many
fragments are launched to log-server replicas to achieve logging
throughput. If a logging server sees fragments durably after about
10 milliseconds, the LDF will lag about 15-20 milleseconds. Every-
thing older than that is easy from the log-follower to have available
to use as a backup to the logging worker.

Retries to log-followers reduce expected latency
Reduces expected tail-latency for most reads

It still does not completely solve the jitter-risk by itself
The very last part of a log cannot be used (yet)

Log records must be durable before used
Log records become known durable in two ways:

• Logger says their durable: Later fragments say
earlier fragments are known to be durable.

• We fence & recover the log:Deciding what’s durable

We can’t use log records until they are known durable
The log’s tail is hidden while a sick worker is alive

Fortunately, amount hidden should be
less than the last second or so of normal work.

66See 15.7. This concept is present in Bookkeeper[7] as the LAC (Last Add Confirmed[8].
It is also present in Amazon’s Aurora as the SCL (Segment Complete LSN)[47].
67I.e., one of the NLog servers receiving fragments for the extent on an ongoing basis.
68Apache Bookkeeper supports tailing reads that only return fragments (called entries
in Bookkeeper) known to be durable across QLog replicas][8].

	Abstract
	1 Introduction
	1.1 Inspiration for This Work
	1.2 Applicability to a Broad Range of Systems.
	1.3 Availability in a Complex System
	1.4 Snapshot Isolation Guarantees
	1.5 What’s Jitter?
	1.6 Quorum: Avoiding Snapshot Isolation Jitter
	1.7 Framing the Proposed Design
	1.8 Building a DB without a Central Authority
	1.9 A Sketch of What's Coming

	2 Decoupled Transactions Databases
	2.1 Server Roles in Decoupled Transactions DBs
	2.2 Doing Work in a Decoupled Transactions DB
	2.3 Record-Versions and Their Unique Identity
	2.4 Finding Record-Versions for a Snapshot
	2.5 Storage of Log and Data
	2.6 Caring for Data in Shared Storage
	2.7 Where Are the Risks from Jittery Servers?
	2.8 Order without Dependency

	3 Seniority: A Disorderly Order
	3.1 Seniority of Transactions
	3.2 Transactions: Items with an Exact Seniority
	3.3 Seniority Ranges of Other Items
	3.4 Seniority and the Lifecycle of Items
	3.5 Retirement of Items

	4 Logical Time & Transaction Commit
	4.1 Processing Permissions at a Logical Time
	4.2 Workers See a Quorum as-of a Logical Time
	4.3 Transactions & Conflict Check
	4.4 Tracking Logical Time and Clock Skew
	4.5 Gradually Aligning Logical Clocks

	5 Quorum: Jitter-Free Fuzzy Visibility
	5.1 Quorum: The Lay of the Land
	5.2 Operations on Items Using Quorum
	5.3 Happened Before vs. Quorum Set Included
	5.4 Quorum: Combining Operations into Sets
	5.5 Complete-Quorum and Included Operations
	5.6 Fuzzy Visibility: Quorum’s Guarantees

	6 Confluence: Adding Clarity to Fuzzy Quorum
	6.1 Confluence of Operations on Items
	6.2 Confluence: Deterministic Outputs with Non-Deterministic Execution
	6.3 Confluence: OK to Combine Outputs
	6.4 Confluence and “Does Exist”
	6.5 Confluence, Sealing, and “Does Not Exist”
	6.6 Combining Confluence and Quorum
	6.7 Seniority: Gradual Visibility and Retirement
	6.8 Example: Coping with Fuzzy Visibility

	7 Jitter-Free Snapshot Isolation & 3AZ
	7.1 Jitter-Free Pieces of the Puzzle
	7.2 Server Types & 3AZ Quorum Requirements

	8 Discussion
	8.1 Jitter-Free Knowledge of "Does Not Exist"
	8.2 A Jitter-Free Uncaused Cause
	8.3 Flipping on FLP: Determining Dead vs. Sick
	8.4 Jitter-Free Snapshot Isolation
	8.5 What's New in Decoupled Transactions?

	9 Related Work
	9.1 Responsiveness and Lack of Responsiveness
	9.2 Related Work: Quorum
	9.3 Related Work: Confluence

	10 Conclusion
	11 Acknowledgements
	References
	12 Appendix A: Building on a Jittery Foundation
	12.1 Gray Failures in Cloud Data Centers
	12.2 Networking and Retries Can Amplify Jitter
	12.3 Networking across Availability Zones
	12.4 Differential Observability in the Network
	12.5 Correlated Blast Radius: Failure AND Jitter
	12.6 Taking a Time-Out on "Time-Out"
	12.7 “Omitting Omissions” as We Make Decisions

	13 Appendix B: Quorum's Subtle Challenges
	13.1 Quorum and Its Subtle Challenges

	14 Appendix C: Jitter-Free Database
	14.1 Jitter-Free TX Commit, Begin, & Retire
	14.2 Jitter-Free Flushing to the LSM
	14.3 Jitter-Free Merging of LSM Data Files
	14.4 Jitter-Free Reading of LSM Record-Versions
	14.5 Jitter-Free Reading Recent Records

	15 Appendix D: Jitter-Free Log-Repair
	15.1 Jitter-Free Log Seniority (from Logger)
	15.2 Jitter-Free Log Quorum
	15.3 Jitter-Free Liveness Check via Log
	15.4 Jitter-Free Concurrent Log Fencing
	15.5 Log-Repair: Goals and Challenges
	15.6 Jitter-free Log Repair & Shared Storage
	15.7 What Do We Know Before Log Repair?
	15.8 What Does It Mean to Be Ambiguous?
	15.9 Concurrent Repair of the Log
	15.10 Picking a Single Outcome Per-Fragment
	15.11 Bulk Fragment Repair
	15.12 Bounding the Pain When a Worker Is Sick
	15.13 Jitter-Free Retry to Log-Followers

