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ABSTRACT

Data management in wireless sensor networks has been an area
of significant research in recent years. Many existing sensor data
management systems view sensor data as a continuous stream that
is sensed, filtered, processed, and aggregated as it “flows” from sen-
sors to users. We argue that technology trends in flash memories
and embedded platforms call for re-thinking this architecture. We
articulate a vision of a storage-centric sensor network where sen-
sor nodes will be equipped with high-capacity and energy-efficient
local flash storage. We argue that the data management infrastruc-
ture will need substantial redesign to fully exploit the presence of
local storage and processing capability in order to reduce expen-
sive communication. We then describe how StonesDB enables this
vision through a number of innovative features including energy-
efficient use of flash memory, multi-resolution storage and aging,
query processing, and intelligent caching.

1. INTRODUCTION

Wireless sensor networks has been an area of significant research
in recent years. Sensors generate data that must be processed, fil-
tered, interpreted, and archived in order to provide a useful infras-
tructure to users. Sensor deployments are often untethered, and
their energy resources need to be optimized to ensure long lifetime.
Consequently, an important research theme in sensor networks is
energy-efficient data management.

Current industrial and scientific uses of wireless sensor networks
can be classified broadly along two dimensions: queries on “live”
data and queries on “historical” data. In live data querying, sensor
samples are useful only within a small window of time after they
have been acquired. Examples include event detection queries for
detecting landslides [51] or other events, or ad-hoc queries on cur-
rent data (e.g.: what is the temperature now?). Querying historical
data is required for applications that need to mine sensor logs to
detect unusual patterns, analyze historical trends, and develop bet-
ter models of particular events. A common refrain from users who
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need access to historical data, often for scientific applications, is
that “every bit of data is potentially important” and therefore can-
not be discarded.

A large class of data management systems and techniques have
been proposed for querying live data. TinyDB [32], Cougar [57]
and Directed Diffusion [24] provide the functionality to push-down
filters for continuous queries into the network such that data pro-
cessing can be performed closer to where the data is sensed and
only the end result needs to be communicated. Such push-down
querying saves energy for communication, thereby increasing the
lifetime of wireless sensors. Query-specific filters can be used both
for event detection queries (e.g.: trigger when temperature > 120
F), and for pre-processing data at sensors and transmitting high-
level aggregates rather than raw data (e.g.: temperature averages
over 10 minutes). Another interesting class of data management
techniques for live data querying is Acquisitional Query Process-
ing (AQP). Based on query needs, AQP techniques intelligently
determine which nodes to acquire data from, which attributes to
sample, and when to sample. Both TinyDB as well as BBQ [14]
are acquisitional in nature — in TinyDB, sensors can determine the
order in which to acquire samples to answer queries with least en-
ergy cost, and in BBQ, the base-station uses a model to determine
which nodes and attributes to query to minimize energy consump-
tion as well as answer queries with the required error and confi-
dence bounds.

In contrast to the wealth of research on data management tech-
niques for live data querying, there has been little work on data
management solutions for querying historical sensor data. There
are two models for designing such historical data querying systems.
The first model treats sensor data as a continuous stream that is
losslessly aggregated within the network and then transmitted and
archived outside the sensor network. Once the data is collected,
they can be stored in a traditional database, and queried using stan-
dard techniques. Such networks have commonly been referred to
as “dumb data collection” sensor networks [39] since very limited
intelligence can be embedded within the network. Many practical
deployments of wireless sensor networks for monitoring phenom-
ena employ the data collection model. While such a model is easy
to deploy, these deployments can be short-lived when high data rate
sensors (e.g: camera, acoustic, or vibration sensors) are used, since
the data communication requirements overwhelm the available en-
ergy resources.

A second model for querying historical data is to view the sen-
sor network as a database that supports archival query processing,
where queries are pushed inside the network, possibly all the way
to the remote sensors that archive data locally. This architecture has
the potential to be considerably more energy-efficient for querying
archived data, since query processing is performed at the source
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Figure 1: Energy cost of storage compared to that of commu-
nication for the popular Mica2, MicaZ and Telos sensor plat-
forms; also included is the cost of storage using the UMass
NAND flash adapter for the Mica2 / MicaZ platform. We notice
that using NAND flash increases the difference between com-
munication and storage costs to almost two orders of magni-
tude relative to storage.

and transmissions involve query results as opposed to data. How-
ever, the model has been considered impractical in real deploy-
ments for three reasons. First, it is commonly assumed the sensor
devices have limited computational resources which preclude any
complex query processing from being performed at remote sen-
sors. Second, there exists a perception that storage capacities on
sensors is limited (on the order of megabytes), thereby severely
limiting the amount of data that can be archived locally (in contrast
to archiving data outside the network, where storage is potentially
limitless). Third, flash memories are considered to be less energy-
efficient when compared to microcontrollers and low power radios
used on sensor nodes, thereby reducing the energy benefits of lo-
cal archival. Indeed, all three limitations are true of the popular
Mica Mote platforms [12]. These nodes have a sub-10MHz pro-
cessor, 4KB of RAM, and less than one megabyte of flash mem-
ory. In addition, the flash memories used on these devices are less
energy-efficient than the low-power radios used on them, making
transmitting data outside the network cheaper than local archival.
Technology Trends: Recent technology trends, however, make
a compelling case for revisiting the argument for data collection
as being the only practical solution for archival query processing.
The emergence of new generation NAND flash memories have dra-
matically altered the capacities and energy efficiency of local flash
storage. It is now possible to equip sensor devices with several
gigabytes of low-power flash storage, and flash storage capacities
continue to rise in accordance with Moore’s law. Further, in a de-
tailed measurement study of flash memories [34], we showed that
equipping the MicaZ platform with NAND flash memory allows
storage to be two orders of magnitude cheaper than communica-
tion and comparable in cost to computation. Figure 1 compares
the per-byte energy cost of communication and storage for various
sensor platforms and shows that the cost of storage has fallen loga-
rithmically with the emergence of efficient NAND flash memories.
This observation fundamentally alters the relative costs of commu-
nication versus computation and storage, making local archival far
more attractive. Finally, a slew of new sensor platforms such as
the iMote2 [11] and Yale XYZ [30] have become available that
boast considerably greater processing capabilities than the Mica
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Motes at only slightly worse overall energy-efficiency and com-
parable prices. The iMote2 for instance is equipped with a 13 - 600
MHz PXA processor that is up to two orders of magnitude more
capable than the 6MHz processor on a Mica Mote.

These trends challenge the conventional wisdom about how to
architect a sensor network, and in particular, the role of storage
in sensor networks. They make a compelling case for equipping
sensor nodes with high-capacity energy-efficient local flash storage
and redesigning algorithms to exploit cheap storage for reducing
expensive communication, a tradeoff that has not been fully ex-
ploited in current system designs. In addition, they argue for de-
signing systems that place far more query processing complexity
at the sensors, since they now have the resources to perform more
complex tasks.

In this paper, we present StonesDB, a novel sensor database ar-
chitecture that emphasizes local data archival and query processing
at embedded sensors. StonesDB' makes energy-efficiency its pri-
mary design goal. By exploiting flash-based in-network data stor-
age, StonesDB represents a paradigm shift from many existing ap-
proaches that rely on streaming and long-term archival of data out-
side the sensor network. StonesDB is designed for performing rich
query processing inside the network and supports both traditional
queries as well as newer data mining style queries that are common
in sensor data analysis. In addition, StonesDB is designed to ex-
ploit the hierarchical architecture of sensor networks—it places in-
telligence at sensor nodes, while fully exploiting the resource-rich
nature of sensor proxies and gateways. Unlike existing work on
in-network querying [24] that has focused on algorithms, indexing
[21, 27, 42] and query forwarding [17, 44] approaches, our work
focuses on the core infra-structural building blocks for designing a
true in-network database.

In the remainder of this paper, we first articulate the numerous
research challenges that arise in the design of StonesDB in Sec-
tion 2. Section 3 presents an architectural overview of StonesDB.
In Section 4, we present the local database layer of StonesDB that
performs energy-efficient query processing, multi-resolution stor-
age and data aging. In Section 5, we discuss the design of the
distributed data management layer that unifies local storage and
database capabilities at individual nodes into an online networked
data store. We present systems closely related to StonesDB in Sec-
tion 6 and then conclude with a brief status report of our ongoing
implementation and directions for future work in Section 7.

2. RESEARCH CHALLENGES

This section outlines our high-level design goals and then dis-
cusses several challenges that arise in the design of StonesDB.

2.1 Design Goals

StonesDB assumes, and seeks to exploit, a two-tier architecture
comprising battery-powered resource-constrained sensor nodes at
the lower tier and resource-rich proxies at the higher tier. Although
StonesDB is targeted towards a broad class of sensor applications,
for the purposes of this paper, we choose monitoring using a cam-
era sensor network as a representative example. Unlike simpler ex-
amples such as temperature monitoring, this application produces
rich data in the form of images and features extracted from them,
and requires handling of a broad set of queries on such image data,
thereby stressing the limits of a resource-constrained sensor envi-
ronment. In this application, low-power cameras sensors on tier-1
nodes monitor the environment by capturing high-resolution im-

'STONES is an acronym for STOrage-centric Networked Embed-
ded Systems.



ages of their surroundings. These images are assumed to be stored
locally and a low-resolution summary is sent to the proxy. Queries
arriving at the proxy must be answered using a combination of
data/index at the proxy and those at the sensor nodes. Our work
seeks to address the following design goals:

o Exploit local flash memory: We wish to leverage the pres-
ence of cheap and energy-efficient flash memory as a storage
substrate for StonesDB. Doing so trades storage for more ex-
pensive communication.

o Optimize for energy-efficiency: We seek to design a sensor
database that is not only suitable for resource-constrained en-
vironments but also for highly optimized for energy-efficiency.

e Exploit resource-rich proxies: Despite the availability of more
capable sensor platforms, they are still resource-poor when
compared to proxies. Our design seeks to leverage the re-
sources at the proxy, whenever possible, to reduce the burden
on sensor nodes.

e Support a rich set of queries: Our design seeks to support a
rich set of queries, including traditional SQL-style as well as
data mining-style queries.

e Support heterogeneity: We seek to support multiple sensor
platforms that are available today and our design exploits
the resources available on each to make appropriate design
choices. Thus, a StonesDB instantiation on the low-end Mica2
motes might be different from that on a more-capable iMote?2.

The above design goals lend themselves to an architecture where
(i) local flash-based storage is emphasized, (ii) energy-efficiency is
a crucial design goal for all components such as storage, indexing
and query processing, (iii) query processing is split between the
proxy and the sensors, with some or all of the processing pushed to
the remote sensors, (iv) different target sensor platforms result in
different design choices depending on their capabilities. In the rest
of this section, we discuss these research challenges in more detail.

2.2 Use of a Flash Memory Storage Substrate

As noted earlier, StonesDB exploits flash memories on sensor
nodes for archiving data locally. Flash memories are vastly dif-
ferent from magnetic disks in their architecture, energy constraints,
and read/write/erase characteristics, all of which fundamentally im-
pact how an embedded sensor database is designed. Flash memo-
ries are page organized in comparison to the sector-based organi-
zation of magnetic disk drives. A key constraint of flash devices is
that writes are one-time —once written, a memory location must
be reset or erased before it may be written again. In addition, the
unit of erase often spans multiple pages (termed as an erase block),
thereby complicating storage management.

Table 1 shows both the device and system-level energy and la-
tency costs involved with the read and write operations of a Toshiba
1Gb (128 MB) NAND flash[6] chip that we measured. Based on
our measurements, we find that the energy cost of writing (W (d))
and reading (R(d)) d bytes of data to and from flash can be mod-
eled as following:

W (d) (1
R(d) 2)

Comparison with Magnetic Disks: We find the energy cost as-
sociated with flash-based storage to be a linear function of the num-

ber of bytes written to or read from flash. However, magnetic disks
have a constant power consumption associated with keeping the

24.54 + d - 0.0962]
4.07 4+ d - 0.105u]
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Write Read
NAND Flash Energy Cost Fixed cost 13.2p) 1.073
Cost per-byte | 0.0202pJ | 0.0322u)
NAND Flash Latency Fixed cost 238us 32us
Cost per-byte | 1.530us 1.761us
NAND Flash + CPU Energy Cost | Fixed cost 24.541 4.071
Cost per-byte | 0.0962uJ | 0.105u)
NAND Flash + CPU Latency Fixed cost 274us 69us
Cost per-byte | 1.577us 1.759us

Table 1: Cost of NAND flash operations on the Mica2 sensor platform

disk in motion (a couple of watts) which makes this an unsuitable
storage medium for low-energy devices. Much like the seek over-
head in magnetic disks, there is a fixed cost of accessing a page on
flash, and then a per-byte overhead associated with each additional
byte written to (or read from) the page. Accessing adjacent sec-
tors on disk significantly reduces the seek overhead since the disk
head does not need re-positioning. Unlike disks though, accessing
adjacent pages on flash does not impact the fixed cost as this cor-
responds to the time during which an address is clocked in and the
flash read or write operation is enabled. Once enabled, the cost of
clocking data in/out of the flash chip is linearly dependent on the
size of data being operated upon. Note that the cost of reading or
writing n pages is n times the cost of reading or writing a single
page since each page is addressed separately.

Due to these differences, several design decisions made by tradi-
tional databases are not directly applicable to flash-based databases.
For instance, disk-based storage systems often uses in-place up-
dates to update a record or to overwrite an existing disk block.
However, performing the same operation on flash would require
reading the entire erase block, performing the modification, erasing
the block and then writing it back. This read-modify-erase-write is
a very energy-intensive operation, and therefore in-place updates
should be avoided whenever possible.

The problem of avoiding in-place updates has been explored on
multiple fronts in the database community. The use of shadow pag-
ing [29] avoids multiple writes within a page, though it results in
serious performance drawbacks. Vagabond [36] builds a database
on top of a log-structured [43] data store, using techniques such
as delta-chains to perform updates on the database. There is also
ongoing work to support flash-based databases in industry and re-
search groups—examples include FUEL [25], DELite [55] Poly-
hedra Flashlite [18], Birdstep RDM [8] and eXtremeDB [37]. A
number of flash-based sensor data storage systems have been built
as well [13, 20, 54].

StonesDB differs from all of these efforts by focusing on energy-
efficient use of the flash memory storage substrate for a sensor
database. This necessitates the re-design of a multitude of database
components — organization of data and indices on flash, buffering
strategies, and data structures that store and update data.

2.3 Optimize for Energy-efficiency

A traditional database system chooses its index structures and
query processing strategies to optimize for response time, whereas
a sensor database needs to optimize for low energy consumption.
This change has significant implications on the design of a sensor
database. For instance, traditional databases almost always con-
struct indices on data to improve query processing performance,
since sequential scan of data incurs high latency. However, in a
sensor database, there is a tradeoff between the cost of index con-
struction and the benefit offered by it. To illustrate, consider a B+
tree construction on a stream of sensor readings. A standard B+
tree construction algorithm for magnetic disks [41] would build the



tree dynamically as readings are appended to the archived stream.
However, since flash memory pages can not be overwritten without
an erase operation, insertions into the B+ tree are very expensive.
This cost is worth-while only if the number of reads due to queries
is sufficiently high. For data that is infrequently queried, it may be
better to skip the index construction altogether and use linear scans
of the data instead. Even when an index is desirable, the index
structure should be organized on flash so that index updates incur
as few erase operations as possible.

Thus, in an energy-optimized sensor database, the query work-
load including the types of queries and the frequency of their ex-
ecution will dictate the relative cost-benefit tradeoff of index con-
struction as well as the types of indices that are maintained. In ad-
dition, traditional algorithms for index construction over magnetic
disks need to be re-designed to ensure energy-efficiency implemen-
tations in a flash-based database system.

2.4 Handle Finite Storage

In traditional databases, incremental growth over the system life-
time is handled by periodic system upgrades; database administra-
tors deal with storage capacity exhaustion either by increasing stor-
age capacity or moving data to tertiary storage. In contrast, wireless
sensor networks are often designed to operate for many years with-
out human intervention. When these sensors are used to store rich
sensor data such as images or acoustic streams, the storage capac-
ity may be insufficient to store all data losslessly throughout the
lifetime of the sensor. In such instances, sensors will need to deal
with storage capacity exhaustion by intelligently “aging out” part
of the archived data to make room for new data. There has been
little research on performing data aging in a database. The closest
work is the vacuum cleaning technique proposed in Postgres [49]
to “vacuum” old data from secondary to tertiary storage.

Data aging in sensor database raises a number of challenges.
First, rather than naively aging the oldest data, strategies that age
out the least recently used or the least valuable data must be de-
signed. Second, rather than simply discarding data (and losing it
completely), it may be better to generate a coarser grained repre-
sentation of the data and age out the raw data; data can be pro-
gressively aged as its use or value diminishes. Data aging reduces
query precision since queries on coarser grained data can be an-
swered with less precision than that on the original data. While
aging and multi-resolution storage have been considered in Dimen-
sions [19], the tradeoff with query precision hasn’t been addressed.
Thus, an important goal of StonesDB is to resolve the tension be-
tween long-term storage and loss of query precision.

2.5 Support Rich Querying Capability

StonesDB is designed to support a wide range of queries over
a storage-centric sensor network, that is, over the historical data
stored across the sensor network. These queries can be broadly
classified into two families, discussed as follows.

The first family of queries consists of SQL-style queries that can
involve equality and range predicates over value and/or time, and
additionally a variety of spatial and temporal aggregates. There
has been considerable work on in-network processing of queries
in this family. The prior work, however, mostly focuses on live
data or recent data that is specified by a small sliding window. In
this context, energy-efficient query processing strategies have been
proposed to handle equality and range predicates [5, 14, 53], sim-
ple aggregates [4, 31, 47, 53] including min, max, count, and avg,
complex aggregates [22, 46] including median and top-k, and user-
defined aggregates such as contour maps and target tracks [23].

An equally important family of queries that have received con-
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siderably less attention are data mining queries to perform signal
processing, pattern identification, time-series and spatio-temporal
data analysis. These queries usually involve processing a large
amount of data. Support for these types of queries is necessary for
post-facto analysis of historical data across the spectrum of sensor
network applications. We now discuss the new query types that we
seek to support in StonesDB.

o Time-series Analysis Queries: Time-series analysis queries
are typically interested in detecting trends or anomalies in
archived streams. Such queries can specify ascending, de-
scending, spike, or non-continuous change patterns. This
class of queries are particularly useful in anomaly detection
applications such as fire monitoring and machine failure mon-
itoring. An example query would be “determine the param-
eters of an ARIMA model that best captures last 5 days of
temperature data”.

o Similarity Search Queries: In this class of queries, a user is
interested in determining whether data similar to a given pat-
tern has been observed in archived data. Similarity queries
are important for event detection applications such as habi-
tat monitoring, earthquake monitoring, and camera surveil-
lance. An example query would be “was a vehicle with li-
cense number 24V K 02 detected last week” in a vehicle mon-
itoring application using camera sensors. Similarly, in a habi-
tat monitoring network with acoustic sensors, a query could
be “was a bird matching acoustic signature S detected in the
last month”.

e Classification Queries: Target classification queries are re-
lated to similarity search queries, but go further in requiring
StonesDB to classify a given signal into a type of event. For
instance in [28], acoustic and seismic signals of vehicles are
used to determine which was the most likely vehicle that was
observed. Such classification queries use techniques such
as maximum likelihood, support-vector machines or nearest
neighbor to determine the best match corresponding to ob-
served data. An example query is “determine the types of
vehicles that were detected last week”.

e Signal Processing Queries: Many operations on sensor data
involve signal signal processing tasks such as FFT, wavelet
transform, and filtering. For instance, in a structural monitor-
ing application of buildings, a typical query is “find the mode
of vibration of the building” [52]. Such a query typically in-
volves using an FFT or spectrogram on the raw time-series
data of building vibrations to extract the frequency compo-
nents of the signal followed by determining the mode.

Our goal is to offer energy-efficient support for both families
of queries over historical data across the sensor network. To-
ward this goal, several challenges need to be addressed. Handling
such a broad spectrum of queries requires a query language that
is rich enough for them. A sufficient language may need to in-
tegrate SQL extensions proposed for sequence databases [45] and
new constructs for specifying non-traditional data mining queries.
In addition, processing the variety of queries over large amounts of
data across the sensor network poses significant challenges in the
design of a local sensor database, e.g., access methods and query
processing techniques, as well as a distributed database, e.g., query
planning and optimization across the network. Finally, depending
on the application, these queries may be executed one-time or pe-
riodically (a simple form of continuous queries). Efficient support
for a mixture of these execution modes is another issue to address.



2.6 Support Heterogeneous Sensor Platforms

A plethora of embedded sensor platforms are available today
ranging from very constrained, low-power sensors to more pow-
erful, PDA-class platforms. At the lowest end of sensor platforms
are highly constrained mote-class devices like Mica2 [12] and Te-
los [38] equipped with 4-10KB of RAM and 8 bit processors. Some
examples of intermediate-class sensor platforms include the Intel
iMote2 [11] and Yale’s XYZ [30] with 32 bit processors and many
megabytes of RAM. At the high end of the spectrum are larger
micro-servers platforms such as Stargates [48] that have more pow-
erful radios, processors and more RAM. The flash memory storage
substrate on these devices can differ as well since both NAND and
NOR flash memories may be used. A typical sensor deployment
could comprise one or more platforms discussed here.

A key goal of StonesDB is to be configurable to a heterogeneous
set of sensor platforms while providing functionality proportional
to the resources available on a platform. Such configurability will
often necessitate significant changes to the underlying design. For
instance, consider the design of StonesDB for the Mote platform
and the iMote?2 platform. These two platforms differ widely in their
memory capabilities — the Mote has under 10K of RAM whereas
the iMote2 has 32MB of RAM. A typical flash memory block is of
size 32-64KB, which is too large to buffer on the Mote but small
in comparison to the memory on the iMote2. Thus, the low-level
storage sub-system for the Mote platform needs to be severely re-
stricted in how it organizes data across erase blocks, whereas the
iMote?2 can use a considerably more sophisticated design.

2.7 Support Distributed Architectures

Our discussion thus far has focused on query processing at a
single sensor node. However, sensor deployments are often dis-
tributed, consisting of multiple remote sensor nodes that are wire-
lessly connected to sensor proxies or gateways. Queries on archived
data first arrive at the proxy and are then forwarded to one or more
sensor nodes for processing.

A number of challenges in distributed sensor data management
have been addressed in prior work including handling packet-losses
[31], handling uncertain data [14, 15], in-network data aggregation
[10], optimal data gathering tours [35], and others. In this paper,
we focus on a problem that is specific to a storage-centric sensor
network architecture — proxy caching. Since proxies are typically
far more resource-rich than the remote sensor nodes, an energy-
efficient sensor data management system should leverage the proxy
resources whenever possible to reduce resource consumption at
battery-powered sensor nodes. One possible technique for doing
S0 is to maintain a proxy cache containing data and query results.
Caching any retrieved data as well as query results at a proxy has
a number of benefits. If a subsequent query can be answered us-
ing cached values, it can substantially reduce query response times
while saving precious sensor resources. Proxy caching also im-
proves overall data availability and persistence, since it effectively
replicates archived data at the proxy. However, proxy caching comes
at high cost since sensors expend energy in communicating data to
the proxy. Thus, an important goal of StonesDB is to balance the
energy cost of caching with the benefits obtained with it.

3. ARCHITECTURE

StonesDB employs a two layer database stack that maps onto
the two tier architecture of a sensor network as shown in Figure 2.
As indicated earlier, our network architecture comprises of a lower
tier of battery-powered resource-constrained sensors nodes (e.g.,
Motes, iMotes) and an upper tier of resource-rich proxies. While
sensor nodes are assumed to be equipped with large flash storage,
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Figure 2: StonesDB architecture for a two-tier sensor network
comprising proxies and sensors. The sensor tier runs an ul-
tra low-power database stack that performs flash-optimized
energy-efficient archival and query processing and multi-
resolution data aging. The proxy tier performs intelligent
caching and indexing, and determines how to handle queries
with minimal energy cost.

their computation and communication capabilities are more con-
strained. For instance, Mote-class devices have 4KB RAM and a
10MHz processor while an iMotes have 32MB RAM and more ca-
pable Intel PXA processor. For our representative camera sensor
network application, such nodes are assumed to be equipped with
low-power imaging sensors (e.g. Cyclops [61]) for image capture
and image processing. The proxy tier is assumed to be tethered and
resource-rich.

System Architecture: The two-layer StonesDB stack comprises
of a local database that runs on each sensor node and a distributed
data management layer that runs on the proxy and interacts with
the local database layer. The local database in StonesDB has three
key components, (a) a query engine that generates energy-efficient
query plans for executing queries and presents query results with
confidence values, (b) data summarization and aging algorithms
that enable multi-resolution summaries of data for efficient query
processing and for space-saving storage of old data given flash
memory constraints, (c) an energy-efficient storage substrate that
offers partitioned storage and indexing to facilitate query process-
ing and to simplify aging of data. The instantiations of these three
components depends on the capabilities of the nodes. For instance,
a more resource-constrained Mica2 Mote will run a minimalist ver-
sion that supports a simple declarative query interface and a storage
substrate that supports simple data aging techniques [33]. A more
capable node such as the iMote will support richer set of queries
and more sophisticated storage and indexing techniques.

The distributed data management layer at the proxy comprises of
two key components. First, it employs a cache that contains sum-
maries of data observed at lower-tier nodes (e.g., low-resolution
images). Any data fetched from the sensors for query processing is
also stored in the cache. Second, it employs a query processing en-
gine that determines how to handle each incoming query. Queries
can be processed locally by using cached data or fetching more data
from the nodes, or they can pushed to the sensor nodes after some



initial processing.

System Operation: We describe the operation of StonesDB us-
ing the example of a camera sensor network. In a storage-centric
camera sensor network, the camera sensor nodes store high fidelity
raw images and transmit metadata to the proxy. The metadata can
include a low resolution image of frames where motion was de-
tected, features extracted from images such as the number of ob-
jects or size of objects, coordinates describing the field of view,
average luminance, and motion values, in addition to basic infor-
mation such as time and sensor location. Depending on the ap-
plication, this metadata may be two or three orders of magnitude
smaller than the data itself, for instance if the metadata consists of
features extracted from image.

We now consider how ad-hoc queries can be handled in such
a tiered storage-centric camera sensor network. A user can pose
queries over such a network using a declarative querying interface,
perhaps with a confidence bound that specifies the desired quality
of response. Consider a search query on a camera sensor network
where the user is searching for regions of the network where a par-
ticular type of object (say a face) is detected. Here, we assume that
the specific object that the user is looking for may not be known in
advance, hence, the data stored by the network is used to search for
new patterns in a post-facto manner.

The query is first routed to the sensor proxy which attempts to
answer the query using the summaries and metadata that it has ob-
tained from the sensors. If metadata includes a low-resolution im-
age, the proxy can process the query on the summary to get an ap-
proximate answer for the query. If the query can be satisfied with
the data cached at the proxy, it provides an immediate response to
the query. If the quality of the response is not sufficient to meet
the query needs or if the data relevant to the query is not present
in the cache, the proxy determines the subset of sensors that are
most likely to answer the query and can forward the query to these
Sensors.

The proxy is presented with a number of options in terms of how
to query the sensor tier. One option is to pull relevant data from
appropriate sensors and perform the query processing at the proxy.
This option might be preferable if the query involves considerable
image processing that requires more resources than is available
at the sensors, for instance, if the lower tier comprises resource-
constrained Motes. A second option is to push the entire query to
the relevant sensors and let the local databases at the sensors han-
dle the query on locally stored data. The proxy can then merge
results from the databases at individual sensors to and provide a re-
sponse to the user. This places greater querying complexity at the
sensor tier and might only be feasible when more powerful sensor
nodes are used. However, since computation and storage are far
less expensive than communication, such in-network querying is
considerably more energy-efficient. A third option is for the proxy
to partially process the query on the summaries that it has stored,
and send the query as well as partial results obtained by executing
the query on the proxy cache to the sensor. This can potentially re-
duce the computation requirement and storage accesses at the sen-
sor since the local database will only need to refine the results of
the partial query.

4. LOCAL DATABASE

An important service in a data management stack is an ultra low-
power embedded sensor database that enables users to query the
archived sensor data. More specifically, the sensor database offers
a service where (1) readings obtained from a specific sensor over its
entire lifetime are viewed as an archived stream arranged in order
of time, (2) high-level declarative queries can be posed against one
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or multiple archived streams, and (3) query answers are presented
with confidence values. The architecture of a local database, shown
in Figure 3, was sketched in the previous section. We now discuss
key issues in the design of these components.

4.1 Storage and Indexing

The storage and indexing module stores sensor data onto flash
and provides a set of access methods for uses in query process-
ing. As shown in Figure 3, this module has two components: the
lower component, Object Store, offers implementations of basic
data structures on flash, including streams, queues, stacks, and sim-
ple search trees [33]. The discussion below focuses on the upper
component, Partitioned Access Methods, that builds on the object
store to provide access methods for query processing.

In our design, readings obtained from a specific sensor can be
stored and accessed in a number of ways.

e Stream. In the basic approach, data is organized as a con-
tiguous sequence of readings in order of sensing time, and
can be accessed only through a sequence scan. Thus, an
archived stream in our system is analogous to a heap file in
traditional database systems.

e Index: In the second approach, index structures are built
on top the stream, based on one or multiple attributes of
the readings. Such indices will provide efficient support for
equality and range predicates on the matching attributes, elim-
inating the need to scan the entire stream. Standard indices,
such as hash indices, B-trees, and R-trees, will be equally
useful in our system.

e Summary: Efficient handling of non-traditional data min-
ing queries requires a different strategy. Typical queries in
this family, such as time series analysis and signal process-
ing queries, require a sequential scan of the data of interest.
Standard indices for equality or range predicates are not so
helpful to them. Processing of certain queries, however, can
be made more efficient by exploiting a lower-resolution sum-
mary of the data— the coarser grained representation can be
first scanned quickly to eliminate subsets that are not of in-
terest and identify parts that are likely to match; the full res-
olution versions of only these subsets are then scanned for



further processing. Summary-based access methods as such
can substantially reduce the energy costs of full scans.

Costs and Benefits of Access Methods. A fundamental differ-
ence between a sensor database and a traditional database is that
in the former system, auxiliary access methods such as indices and
summaries consume energy in their construction, so their benefits
in query processing come at a cost. Since the tradeoff between
benefits and costs of access methods is a significant issue, it chal-
lenges the conventional wisdom which indicates it is almost always
beneficial to create indices for read-only query workloads. Con-
sider a H-level B+ tree stored on flash memory. The complete cost
for a single B+ tree insertion is H page reads and page writes, i.e.
H(Cr+Cly), where C;. and C,, are the per page read cost and write
cost, respectively. Alternately, if index construction is avoided al-
together, and a sequential scan of the stream is needed to process
each query, which costs C/Rpage, Where Rpqge is the number of
readings stored in one page. A back-of-the-envelope calculation
using flash read and write costs [34] and a B+ tree of depth two
reveals that performing a sequential scan is 340 times more energy
efficient than building a B+ tree for it! Thus, the benefit of an index
offsets the high construction cost only when the data is accessed
very frequently. Otherwise it is more energy efficient to execute
the query by resorting to sequential scans.

For this reason, StonesDB supports lazy index construction. By
default, index construction is disabled; it is triggered dynamically
when it is deemed beneficial. This decision can be made based on
the knowledge of the current query workload, e.g., the presence of
periodic queries that need to repeatedly scan overlapping regions
of the stream, or the presence of multiple queries that overlap in
their search ranges. It can also be made based on the statistics
collected, e.g., the frequency of scanning the data in the recent past.
Additionally, indices can be independently maintained for different
partitions of the stream, which is explained more below.

Energy Efficient Construction and Maintenance of Access
Methods. Another issue pertaining to the storage system in a sen-
sor database is how to efficiently construct and maintain access
methods over flash memory, once a decision is made to built them.
As stated in Section 2.2, read, write as well as erase operations on
flash memory consume energy; hence, all these operations need to
be minimized to achieve an energy-optimized database. The stor-
age subsystem of StonesDB achieves energy-efficiency using two
techniques.

Fartitioned Access Methods. The first technique that StonesDB
uses to optimize energy is to create partitioned access methods.
More specifically, each stream in the flash memory store is orga-
nized into temporal segments, called partitions; auxiliary access
methods such as indices and summaries are built for each partition.
Under this approach, data and its indices are bundled together in
partitions; if the data needs to be deleted, its indices can be easily
located and pruned together with the data. Otherwise, one has to
search a large index created for the entire stream to prune index en-
tries pointing to the deleted data. The storage system can choose to
create logical or physical partitions. Logical partitions are simply
defined by the temporal ranges that they cover, and linked with the
relevant data and indices. In this scheme, however, deleting data
and indices may incur separate erase operations, if they belong to
different erase blocks. Physical partitions can provide an additional
benefit. In this scheme, the flash memory store is physically orga-
nized into partitions that are aligned with flash erase block bound-
aries. Each partition is a container comprising data and associated
indices and is completely self-contained; if deleted, the data and its
index are both discarded in one erase operation.

Figure 4 shows how partitioned access methods are performed in
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StonesDB. For Stream 1, based on the application specification or
internal decision, the database creates two indices for this stream,
e.g., a B+Tree and an R-Tree. Streams are broken into physical
partitions, with only the most recent partition under construction,
e.g., the partition labeled as “Datal” in this example. A new set
of indices are created for every new partition that is written. Each
partition co-locates a segment of the stream together with its asso-
ciated indices so that they can be pruned together later.

Write-Once Indexing. The presence of partitions enables the sec-
ond technique that StonesDB uses for energy optimization, which
we call write-once indexing. Our goal here is to ensure that indices
generated on the data stream are written only once to flash and are
not updated once written. This design principle aims to eliminate
read, write and erase overhead that is incurred when a flash memory
index is updated as described in Section 2.3. Clearly, if one wants
to create a B+tree for an entire stream, it will be very challenging
(if possible) to avoid updates of existing index pages. Partition-
ing data into smaller temporal ranges and creating a separate index
per partition raises the possibility of devising algorithms to achieve
write-once indexing.

A simple idea is that given a reasonable amount of memory, we
might be able to hold the entire B+tree in memory during its con-
struction for a partition and write it once to flash. The smaller the
partition is, the more likely the index fits in memory. A small value
for the partition size, however, may result in poor performance in
query processing: given a range query, we may have to search in
many partitions overlapping with the query-specified search range,
which results in higher accumulated overhead in traversing those
indices. How to find an appropriate partition size to strike the bal-
ance between the index construction cost and query processing cost
is a research issue that we will explore. In memory-constrained en-
vironments, e.g., platforms whose available memory is smaller than
or close to the size of an erase block, holding an index for a par-
tition is impossible. In such cases, more advanced techniques are
needed to ensure no (or very few) updates of existing index entries.

4.2 Summarization and Aging

The second main component of StonesDB addresses the summa-
rization and aging of data. Before we delve into details, it is worth
noting the difference between these two: while summarization can
be used during aging, it is applicable in a broader set of contexts,
as explained below.

Multi-Resolution Summarization. StonesDB provides the op-
tion of storing coarse-grained versions of data with varying granu-
larity. This scheme, which we refer to as multi-resolution storage,
serves three purposes: (1) coarse-grained summaries may allow
more efficient processing of certain types of queries, as discussed
above; (2) such summaries can be transmitted to proxies to facil-
itate query optimization there, as noted in Section 3; and (3) they
can be used to retain useful information about old sensor data while
aging the raw data to create space for new data.

Figure 4 shows an example of how the multi-resolution summa-
rization component handles a stream of images from a camera sen-
sor. The multi-resolution component takes the raw stream as input
and generates two summary streams — a wavelet-based summary
stream that captures key features of the images, and a sub-sampled
stream that retains every tenth image.

We focus our discussion below on summarization for aging. We
utilize multi-resolution storage to capture the key characteristics of
the data stream using coarse-grained summaries that use substan-
tially less storage space. These summaries can be used to respond
to queries on older data that has been deleted, though with lesser
confidence. Since summaries occupy less storage, they can be re-
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tained for significantly longer periods than raw data.

A key research contribution of our work in addressing the ques-
tion of what summaries to construct. The summarization algorithm
selected depends on the types of queries that are posed on the data,
user input such as precision requirements of queries over old data,
and the type of sensor data being stored. For instance, weather
data has temporal patterns, hence the summary might be a model
that captures the patterns in the data, and major deviations from this
pattern. In other instances such as habitat monitoring, the summary
can be histograms of events that have been observed in the network.
Techniques to generate summaries from raw data are another issue.
One approach that we will explore is to leverage a wealth of re-
search from the data mining community, including non-sampling
based approaches such as wavelet summaries [9] and histograms
[40]; and sampling-based techniques such as AQUA [7], and adapt
and compare them for energy-efficient implementation over flash.

Data Aging. As the flash starts filling up, some data needs to be
discarded to make room for future data requiring some partitions
to be aged. When the database determines that a partition worth
of data needs to be discarded, the aging component looks through
all the partitions, assigning each partition an erase age. The erase
age of a partition does not depend on the write timestamp of the
partition alone — other factors need to be taken into account such
as the importance of the data in the partition (e.g. some partitions
may hold certain event of interest) and the importance of the stream
itself (e.g. a summary stream is more important than a raw data
stream). Once all partitions have been assigned an erase age, the
“least valuable” partition can be discarded.

The primary challenge in aging sensor data is determining what
to age. StonesDB determines the erase age of data based on ap-
plication aging policies and priorities. In our current design, the
application provides its utility specification for queries — for exam-
ple, an application can specify that it needs raw data for 30 days
and then summaries that provides 95% confidence response for 90
days. This specification can be used to determine the erase age of
different partitions and age data accordingly.

4.3 Query Engine

The third component of StonesDB is the query engine. As ar-
gued earlier, unlike traditional query engines that are optimized for
response time, the StonesDB query engine is optimized for energy
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efficiency. This involves determining the most energy-efficient plan
for answering a query. Overall, query processing and optimization
in a sensor database is a remarkable challenge that we have just
started to explore. We next highlight two research issues.

Query Optimization: A Simplified View. The conceptual model
for the query optimizer is rather intuitive: first identify a set of fea-
sible plans, and choose the most energy efficient one from them.
Typical sensor applications are unlikely to issue complex queries
such as those in decision support systems. A traditional query plan
for a sensor database query may include a relatively simple tree of
operators, for example, involving a join, an aggregate function or
a pattern detection operator on top of the necessary access meth-
ods. This view is sufficient in the absence of data aging. What
remains to be done is to build a cost model that captures both flash
read cost and CPU cost for available implementations of each op-
erator in the query plan. Such a cost model can be derived from the
measurements given in Table 1 and the expected numbers of read
operations from flash and those of CPU computation. However,
when data aging also needs to be supported, the query processing
strategy changes and we discuss the implications below.

Probabilistic Query Processing. Data aging poses a unique
challenge for query processing and optimization. Recall that due
to finite storage, some older data that a query requires may have
been aged and summarized. In such cases, no single access method
may be able to retrieve all data for answering the query. There-
fore, the query needs to be split into a number of subqueries, for
each of which there is at least one access method that covers the
required data. Extra operations may be required to merge the re-
sults of the subqueries and derive the final result. A first related
issue is that sophisticated metadata needs to be maintained so that
the query optimizer is able to find a covering set of access meth-
ods. A second issue relates to the merging of results of subqueries,
especially in scenarios where some results are generated from raw
data while others are from summaries. A third issue concerns the
possibility of splitting a query into subqueries. It is well-known in
the literature that aggregation functions such as medium and per-
centile cannot be divided into subqueries with guaranteed correct
answers. The last two issues imply that the query answers will be
probabilistic in nature. While probabilistic query processing has
recently gained research attention [3, 2, 1], how to perform it in a
energy-constrained environment remains a new world to explore.

S. DISTRIBUTED DATA MANAGEMENT

The distributed data management layer in StonesDB unifies lo-
cal storage and database capabilities at individual sensor nodes into
a networked sensor database. StonesDB provides the user with the
abstraction of a centralized database over a distributed sensor net-
work, and transparently determines what data to cache at the proxy,
how to execute queries on cached data, and how to efficiently query
the sensor tier. In this section, we provide a brief glimpse of to key
questions that we are addressing that relates to distributed querying
of storage-centric sensor networks:

o What summaries to cache at a proxy to efficiently locate sen-
sors that have data relevant to a particular query?

e How should a query plan be split between the proxy and the
sensors?

Of these two problems, the first bears similarity to caching tech-
niques used in traditional distributed databases and web caching,
however, there are differences due to the energy-constrained na-
ture of the network and sensor data characteristics. To address the
second problem, we identify unique opportunities in the context of



storage-centric sensor networks, which, to the best of our knowl-
edge, have not been explored in other work in the literature.

5.1 Querying the Proxy Cache

Proxy caching in storage-centric sensor networks differs in a
number of ways from traditional caching techniques in databases
and networked systems. First, while traditional caches store a fre-
quently accessed subset of the data, the sensor proxies cache sum-
maries of the data to enable efficient search of remotely stored sen-
sor data. Second, traditional caching techniques are designed to
optimize performance objectives such as latency and bandwidth,
whereas proxy caching in sensor networks needs to minimize the
total energy used to transmit summaries from sensors to the proxy,
to forward queries from the proxy to sensors, to execute the queries
on locally stored data at the sensors, and to transmit the results of
the query back to the proxy. In this section, we discuss two prob-
lems in proxy caching in storage-centric sensor networks: what
summaries to cache and what resolution of summaries to cache.

What summaries to cache: The decision of what summaries to
cache depends on the types of queries posed on the data. For in-
stance, certain queries will simply retrieve a subset of the archived

data (e.g., retrieve all tuples where temperature exceeds 80 F) whereas

others will compute a function over a set of observations (e.g., max
temperature over the past day). StonesDB seeks to provide a fam-
ily of summaries suitable for sensor data caching. For example,
spatio-temporal data models that have been proposed for acqui-
sitional query processing [14], and in our recent work on model-
driven push [26] can be adapted to be used for proxy caching and
data retrieval. Here, a statistical model of sensor data (e.g.: ARIMA
model) is maintained at the proxy and raw data is stored at the sen-
sors. The proxy uses the cached data to answer queries on past
data, but if the query cannot be answered with the required confi-
dence interval, the query is pushed to the sensors which can pro-
cess the query on locally archived data. Besides statistical models,
the data that is cached at the proxy could be just lossy summaries
of archived data at a sensor such as a low-resolution summary or
metadata of images that were observed in a camera sensor network
(e.g.: TSAR [16]).

What resolution of summaries to cache: This question is rel-
evant to search-based sensor networks where the sensors transmit
low-resolution summaries of the data that they sense to the proxy.
More precise summaries of data at the proxy can enable the proxy
to answer a greater fraction of queries on its own without need-
ing to forward queries to the sensors. However, transmitting more
precise summaries incurs higher energy overhead. One of the trade-
offs that such a storage-centric query execution framework presents
is balancing the energy cost of updates with the overhead of false
positives. Transmission of more coarse-grained image summaries
to the proxy incurs less energy overhead but increases the fraction
of false positives. Alternately, transmission of more fine-grained
summaries incurs greater energy overhead but reduces false pos-
itives and hence query overhead. StonesDB seeks to adaptively
balance the cost of transmitting summaries together with the cost
of false positives to minimize energy consumption [16].

5.2 Querying the Sensor Tier

Upon a cache miss, the proxy queries the appropriate sensors
provide an accurate query response while simultaneously minimiz-
ing the energy cost incurred by sensors for communication. An in-
teresting problem that is unique to storage-centric query processing
is splitting the query processing between the proxy and the remote
sensors. Several possibilities arise for such split query processing.
First, since the proxy has a coarse-grain summary of the data, it
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can use this summary and/or an index of the data to prune the set of
sensor nodes that need to be queried (instead of flooding the query).
For instance, if a query to a camera sensor network asks for all in-
stances of a truck seen over the past hour, the low-resolution sum-
mary can be used to eliminate all nodes that didn’t see any objects
in this time period. Assuming the low-resolution image summaries
only indicate whether an object was seen but not its type, only those
nodes that detected an object in this time period need to be queried.

A more interesting possibility is to partially process the query at
the proxy and refine the result at the sensor node; this reduces the
query processing burden at the sensor nodes and saves energy. Con-
sider a query that requests the number of trucks seen by a camera
sensor over the past hour. Suppose that the proxy cache contains
data from the node for the first half hour. This data can be employed
to partially process the query at the proxy and determine the num-
ber of trucks seen for the first half hour. The sensor node can refine
this partial result by processing the query for the remaining period.
Another possibility is to use the coarse-grain summaries to pro-
cess a query and produce a result with a certain confidence bound;
if the confidence bound does not satisfy the query error tolerance,
the partial results can be sent to the sensor node for further refine-
ment until a result with sufficient confidence is produced. These
examples of split query processing illustrate how a resources at the
proxy can be leveraged to reduce the amount of data retrieved and
processed at the sensor node, thereby yielding an energy-efficient
design.

6. RELATED WORK

Related work can broadly be classified into the following cate-
gories — work in the sensor network domain towards treating the
sensor network as a database and work in the database commu-
nity towards building databases on resource-constrained platforms.
This section discusses only complete systems related to our work —
Cougar, TinyDB and BBQ fall in the former category and we dis-
cuss these first, while PicoDBMS and DELite fall in the latter cate-
gory. Other related work has been discussed in the relevant sections
where it has been referenced.

The approach adopted in Cougar [57] is to treat the sensor net-
work as a distributed database where data collection is performed
using declarative queries, allowing the user to focus on the data
itself, rather than data collection. Given a user query, a central
query optimizer generates an efficient query plan aimed at mini-
mizing resource usage within the network. The sensors sense data
and then transmit data matching some criteria to the base-station.
The amount of data transferred is further minimized by doing some
level of in-network processing on the data as it is being transferred
to the base.

TinyDB [32] uses an acquisitional query processing approach
where data is requested from sensors depending on the specific
query posed to the network. It allows user queries to be posed using
a database query language that allows both data collection and ag-
gregation. Given a user query, TinyDB generates data filters that it
then distributes and pushes onto individual sensor nodes. The sen-
sors send data matching the filter, which is then aggregated within
the network on its way to the base-station. Both these techniques
minimize resource usage and hence are energy-efficient for the sen-
sor network.

BBQ [14] improves over TinyDB by constructing data models
of the sensed data using statistical modeling techniques. The data
model and live sensor data are both used to respond to queries.
While this approach does introduce approximations with proba-
bilistic confidences, it allows significant energy and time savings
over the TinyDB approach. Queries that require low confidence



bounds can be answered at the base station itself with the help of
the data model, while queries with high confidence requirements
might require acquisition of some data from the sensor.

A multitude of techniques have been explored to generate data
summaries which could be used to generate data models and ap-
proximate responses to queries at the base station. Non-sampling
based approaches include the use of wavelet summaries [9] and his-
tograms [40], while examples of other sampling based approaches
include AQUA [7]. [60] uses small sketches to approximate data
aggregation within a sensor network.

PicoDBMS [56] is a complete database platform targeted at smart-
card platforms. Like sensor platforms, smart-card platforms are
highly resource constrained, however, unlike sensors node, they
are not energy constrained, since they depend on external energy
sources such as that of the card reader. The PicoDBMS design
is specifically targeted at minimizing the write operations to EEP-
ROM as these are time-consuming and reduce the performance of
the system. The paper proposes a novel storage model that indexes
data while it is being written, reducing write costs. PicoDBMS
also handles complex query plans with minimal RAM consump-
tion while supporting select, project, join and aggregate queries. A
key difference is that, unlike sensor networks, energy optimizations
are not a major design goal in PicoDBMS.

The DELite [55] project aims at constructing a relational database
on PDA-class platforms, which have significantly more available
resources (processor, memory and available power) in comparison
to the smart-card or sensor platforms. The goal of the project is to
support complex local queries as well as efficient database synchro-
nization with a central database. The project uses flash memory
for storage and focuses on constructing efficient query execution
plans to efficiently execute complex queries. [58] and [59] aim at
constructing efficient B-trees and R-trees respectively on NAND
flash storage media. Both these approaches are also targeted at
PDA-class platforms as they employ out-of-place data modification
techniques that require a substantial amount of memory, which is
unavailable on typical sensor platforms.

7. CURRENT STATUS AND CONCLUSIONS

In this paper, we argued that new technology developments in
flash memories and sensor platforms have enabled energy-efficient
storage and rich query processing on senor nodes and argue for
revisiting the sensor network as a database architecture. We pre-
sented StonesDB, a sensor network database architecture that we
are designing to exploit these trends. Our recent research has ad-
dressed several issues that arise in the design of StonesDB, al-
though much remains to be done. We recently developed Capsule
[33], a flash-based object store that provides energy-efficient im-
plementations of objects such as linked lists, arrays, streams and
trees. We are currently enhancing Capsule to handle the needs
of StonesDB, such as multi-resolution summarization, aging and
partitioned indexing. We have also investigated hierarchical data
management in sensor networks in the context of 7SAR [16] and
PRESTO [26]. TSAR envisions separation of data from meta-data
by emphasizing local archival at the sensors and distributed in-
dexing at the proxies. At the proxy tier, TSAR employs a novel
multi-resolution ordered distributed index structure, the Interval
Skip Graph, for efficiently supporting spatio-temporal and value
queries. PRESTO implements an initial version of our proxy cache —
the cache is used to answer queries while error tolerances can be
met, else the queries are forwarded to sensors. PRESTO also pro-
posed a novel model-driven push-based data acquisition technique
where the proxy builds a model of sensor data and transmits it
to the sensor. The sensor checks the model against ground-truth
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and transmits only the deviations. Our ongoing work focuses on
the challenges that arise in the design of the local database, in-
cluding support for rich, energy-efficient query processing, multi-
resolution storage and aging. We are also designing a distributed
layer that splits query processing between the proxy and remote
Sensors.
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