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ABSTRACT
We present a “black-box” approach to estimating query cardinal-
ity that has no knowledge of query execution plans and data dis-
tribution, yet provides accurate estimates. It does so by grouping
queries into syntactic families and learning the cardinality distribu-
tion of that group directly from points in a high-dimensional input
space constructed from the query’s attributes, operators, function
arguments, aggregates, and constants. We envision an increasing
need for such an approach in applications in which query cardi-
nality is required for resource optimization and decision-making
at locations that are remote from the data sources. Our primary
case study is the Open SkyQuery federation of Astronomy archives,
which uses a scheduling and caching mechanism at the mediator
for execution of federated queries at remote sources. Experiments
using real workloads show that the black-box approach produces
accurate estimates and is frugal in its use of space and in compu-
tation resources. Also, the black-box approach provides dramatic
improvements in the performance of caching in Open SkyQuery.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—distributed databases,
query processing; H.2.8 [Database Management]: Database Ap-
plications—scientific databases

General Terms
Design, Performance

1. INTRODUCTION
Database optimizers employ a bottom-up approach to query op-
timization. They require cardinality estimates1 in order to obtain
cost estimates for various query execution plans. Because exe-
cution plans are hierarchical, optimizers employ a constructive or
bottom-up approach to obtain cardinality estimates at every level
of the plan. In the bottom-up approach, the optimizer computes

1The term cardinality of a query refers to the number of rows in the query
result whereas selectivity refers to the probability of a row being selected.
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cardinality estimates of individual predicates and propagates these
estimates progressively up the query plan, constructing cardinality
estimates of operators, sub-queries, and finally the entire query.

Recently, several applications have emerged that interact with data-
bases over the network and benefit from a priori knowledge of
query cardinalities. These applications, which are the focus of this
paper, do not need require query execution plans or estimates at
every internal level. Examples include grid systems [26], proxy
caching [3], replica maintenance [22, 23], and query schedulers
in federated systems [2]. (Section 2.1 has more details). Accu-
rate estimates of query cardinality improves performance through
improved query efficiency, increased data availability, or reduced
network traffic. Additionally, these applications are severely con-
strained in the amount of resources they can expend on query es-
timation. Resource constraints include storage space, processing
time, and even the number of network interactions with the remote
data sources.

The bottom-up approach of query optimizers for cardinality estima-
tion is overkill for networked-database applications and bound to be
prohibitively expensive. In addition, accuracy in query optimizers
suffers from several modeling assumptions used in the bottom-up
approach, such as conditional independence, up-to-date statistics,
and uniform distribution of values in joins. Recent research initia-
tives [7,30] relax these assumptions in query optimizers by includ-
ing a self-tuning, self-correcting loop that refines estimates at each
level using feedback from actual query and sub-query cardinalities.
However, these approaches are either limited to range queries, be-
cause they are based on histograms, or require an intimate interac-
tion with the database, which is unavailable to networked database
applications.

We demonstrate that a simple “black-box” approach avoids the
extra overhead of estimating cardinality for every sub-query and
also avoids the drawbacks of the modeling assumptions used in
the bottom-up approach. This black-box approach groups queries
into syntactic families, called templates, and uses machine-learning
techniques to learn the distribution of query result sizes for each
family. Cardinality distributions are learned directly from points in
a high-dimensional input space constructed from query attributes,
constants, operators, aggregates, and arguments to user-defined
functions. Thus, they are not subject to the inaccuracies that arise
from modeling assumptions used in assembling an output estimate
from sub-queries. We estimate query cardinalities based on the
learned distribution and refine the distribution when the actual car-
dinality becomes available. This ongoing learning process creates a
natural, self-correcting loop. This is a black-box approach in that it
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estimates the cardinality of entire queries based only on the inputs
and outputs of query processing.

Our treatment includes a comparative evaluation of several tech-
niques that learn cardinality distributions in the high-dimensional
input space. These include model trees, locally-weighted re-
gression, and classification and regression. We previously re-
ported on the use and efficacy of classification and regression for
caching [17]. Our results show that different techniques present a
time/space versus accuracy trade off.

A wide variety of distributed applications do not require fine-
grained, sub-plan estimates and benefit from the increased accu-
racy and low space overhead of the black-box approach. We have
developed these general techniques and deployed them in one such
distributed application – The Open SkyQuery federation of Astron-
omy databases [28].

The Open SkyQuery federation presents a design space for which
the black-box approach is uniquely suited. Open SkyQuery is a
wrapper-mediator [27] system that allows scientists to cross-query
heterogeneous, globally-distributed Astronomy databases. The me-
diator includes a scheduler and a proxy cache that caches portions
of the federated data. On receiving a cross-query, the mediator par-
titions the query into components, one for each remote database. It
then uses cardinality estimates of the component queries to sched-
ule them across remote sites [19] and to make cache revocation de-
cisions within an economic caching framework [18]. In both cases,
cardinality estimates for the entire component query to a member
database suffice. (At the member database, the local optimizer con-
structs a query execution plan using its own private data structures.)

The federated architecture mandates data-independent estimation;
the system must operate without access to the underlying data,
making estimates based on the observed workload – queries and
their results – alone. Methods that rely on sampling or generating
statistics, e.g. data-dependent histograms, are not tenable, because
they require samples from Terabyte-sized databases in the federa-
tion. Scanning the database to build and maintain such statistics
has been shown to be extremely costly [1].

The complex nature of Astronomy queries adds to the challenge
of using only query workloads for cardinality estimation. Astron-
omy queries contain real-values attributes, multi-dimensional range
clauses, and user-defined functions in select and join clauses. Fur-
thermore, attributes are highly correlated with each other (invali-
dating conditional independence assumptions). Known techniques
estimate cardinality for queries that possess some of these charac-
teristics, but not all.

The black-box approach differs fundamentally from bottom-up es-
timation. It corresponds to the declarative query specification just
as the constructive approach corresponds to the imperative query
execution plan. Thus, the black-box approach is not naturally
suited for use within a database optimizer; it neither estimates the
cardinality of sub-queries nor identifies opportunities for parallel
execution and the ordering of operators within a query.

An experimental evaluation of black-box cardinality estimation
shows the suitability of the technique for distributed applications.
We evaluate it using multiple learning algorithms against an Open
SkyQuery workloads of 1.4 million queries. Results indicate that
black-box estimates require data structures of tens or hundreds of

kilobytes, produce estimates quickly, and that the accuracy of these
estimates greatly improves the performance of caching in Open
SkyQuery.

2. RELATED WORK
To motivate the black-box approach, we present a series of net-
worked applications that require accurate cardinality estimates
from remote data sources. Then, we review prior research on
data-independent cardinality estimation, examining its suitability
to such applications.

2.1 Applications
Recently, several caching and grid-based applications have emerged
that require cardinality estimates of queries. Often, these assume
the presence of knowledge systems to provide estimates. In ap-
proximate data caching [22], sources cache exact values and caches
store approximate values near the client. In presence of updates at
the server, approximations of cached values become invalid. On
invalidation, new approximations (based on the degree of precision
desired) are either propagated by sources to the caches or alterna-
tively demanded by queries. The goal is to minimize the overall
network traffic by lowering the cost of push by the server and cost
of pull by the queries. For non-aggregate queries, the exact compu-
tation of the pull cost of a query requires the knowledge of selec-
tivity of a query. This is also true in other push-pull models of data
dissemination [5].

In adaptive caching environments, cache state is adjusted dynam-
ically as workload changes. Cache replacement algorithms often
compute the benefit of caching a data object in which the benefit
is based on various statistics, one of them being the size of query
result against that object. Systems such as DBProxy and Bypass-
Yield Caching [18] assume that query result sizes are known a-
priori. The efficacy of these techniques depends on the correctness
of this assumption.

In GridDB [16], a data-centric view of the grid has been proposed
in contrast to a process centric view of Condor [15] and Globus
[10]. Due to the long nature of scientific queries, Interactive query
processing (IQP) is considered an essential feature of GridDB [16].
In IQP, users often want to know just the size and cost of running
expensive jobs and base further jobs on these answers. This re-
quires accurate cardinality estimates.

In our experience with the Sloan Digital Sky Survey, we have wit-
nessed several load balancing and scheduling applications [11] in
which such knowledge is required. In this paper, we have consid-
ered one such scientific application, the Open SkyQuery federation
of Astronomy databases, which needs cardinality estimates to make
scheduling decisions as well as to populate its proxy cache. For the
caching system, we recently reported a 50% degradation in absence
of accurate estimates [17].

2.2 Data-Independent Cardinality Estimation
We review the prominent data-independent methods for cardinality
estimation and learning in optimizers and consider their applicabil-
ity to the above applications. These methods are derived from the
concept of self-tuning in which queries are estimated using learned
distributions and the actual result sizes of queries provide feedback
to refine these distributions. Current work on self-tuning is limited
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in that either: (1) it restricts the classes of queries that may be es-
timated; or, (2) techniques are closely tied to the optimizer. To the
best of our knowledge, ours is the first technique to support general
queries in a data-independent fashion.

Most self-tuning research has been conducted in the context of his-
tograms, which limits the techniques to range queries. Histograms
cannot be used for point queries and user-defined functions.

Aboulnaga and Chaudhuri [1] use the query feedback approach
to build self-tuning histograms. The attribute ranges in predicate
clauses of a query and the corresponding result sizes are used to
select buckets and refine frequency of histograms initialized using
uniformity assumption. Both single and multi-dimensional (m-d)
histograms are constructed by this method. Higher accuracy on m-
d histograms is obtained by initializing them from accurate single
dimensional histograms.

STHoles [8] presents the technique most similar in spirit to our
black-box approach. STHoles refines the layout and frequency
of existing histogram buckets by allowing nesting of buckets. As
queries to a region increase, new buckets are initialized within ex-
isting buckets to improve the accuracy. The algorithms use very de-
tailed query feedback from the query execution engine, examining
the distribution of data within query results. STHoles works well
in refining existing histograms and also in building histograms in a
data-independent fashion, based on queries and their results alone.

ISOMER [29] constructs histograms that are correct and consistent
with query feedback. It utilizes the maximum entropy principle to
select a distribution that has the maximum information among a set
of distributions each of that is consistent with the query feedback.

CXHist [14] builds workload-aware histograms for selectivity esti-
mation on a broad class of XML string based queries. XML queries
are summarized into feature distributions and their selectivity is
quantized into buckets. Finally, it employs a naive-Bayes classi-
fiers to compute the bucket to which a query belongs. The naive-
Bayes approach assumes conditional independence among the fea-
tures within a bucket.

User-defined functions present a different challenge, because the
function obfuscates the relationship between the underlying data
distribution and the query result size. UDFs demand an approach
that learns the output result size distribution directly. He et al. [13]
define a self-tuning framework for defining the cost model of user-
defined functions (UDF). To estimate the cost of a query, they
examine the cost of the k-nearest neighbors to that query in the
multi-dimensional space defined by the function arguments. The
estimated cost is computed as a weighted average of the cost of
these neighbors. They do not specifically estimate result sizes (it
is left as future work), but their technique is suitable. Our black-
box approach extends these techniques, learning in a richer space
that includes attributes, constants, aggregates, and operators. We
also take a different approach to learning, using either regression
trees or classification and regression, that constructs a model on
compact, summary data structures.

DB2’s learning optimizer (LEO) [30] provides the most widely-
applicable learning technique, which includes learning for join
predicates, keys created by the DISTINCT and GROUP BY clause,
derived tables, user-defined functions, etc. However, the cardinality
estimates created by LEO are obtained by correcting modeling er-
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Figure 1: Abstract Architecture of Open SkyQuery

rors at every level of the query execution plan. Thus, LEO is tightly
coupled to a DB optimizer. The corrections provided by LEO do
not adapt to or learn data distributions or result size distributions
that vary with input parameters.

3. CASE STUDY: OPEN SKYQUERY
In this section, we describe the Open SkyQuery federation of As-
tronomy archives. In particular, we motivate the need for accurate
cardinality estimates and define the resource constraints placed on
the estimator.

Figure 1 shows the abstract architecture of the Open SkyQuery fed-
eration. Open SkyQuery uses a wrapper-mediator architecture [27].
Users submit federated queries (that access multiple databases),
which the mediator divides into component sub-queries that are ex-
ecuted at their respective sites. The mediator includes a scheduler,
which decides the order in which various member sites are to be
visited for sub-query execution. This order is decided so as to min-
imize network traffic and query response time. Because scientific
queries are long-running and data-intensive, the primary measure
in the scheduling decision is the cardinality of each sub-query. In
earlier versions of the system, the scheduler polled each database
for the actual cardinality of its component query. This is a bottle-
neck as it increases average query response time.

The mediator includes an adaptive cache that replicates objects,
such as columns (attributes), tables, or views, from member
databases so that sub-queries to the member database may be
served locally by the mediator. This reduces the network band-
width usage of data-intensive queries. The cache uses the cardi-
nality of each sub-query to decide when to load and evict database
objects. More specifically, cardinality specifies the network cost of
the current query in a rent-to-buy economic framework [18].

The scheduler needs cardinality estimates for each sub-query. The
cache may also need estimates for a combination of sub-queries
when distributed joins are specified in the query. In either case, the
mediator has to estimate query cardinalities using a small amount
of space. Each mediator in the system must generate estimates for
all the federation’s member databases, using only local storage.

In addition, estimation models are to be learned with minimum
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 (((G.flags_r & 0x10000) = 0) or (G.flags_r & 0x1000) = 0) 

join fGetNearbyObjEq(185,−0.5, 1) as D
on P.objid = D.objid
where (P.r between 8.0 and 11.0) 
order by distance

select [select−list]
from Star where
ra between 119.72417 and 122.72417 and
dec between 67.64444 and 70.64444 and
r between 12.0 and 17.0 and
((g−r) >= 0.37) and ((g−r) <= 0.54) and
((r−i) >= 0.07) and ((r−i) <= 0.15)

 select [select−list] 
 from Galalxy as G

 where 
 ((G.flags_r & 0x10000000) != 0) and

select [select−list]

 (((G.flags_r & 0x40000) = 0) or (G.psfmagerr_r <= 0.2)) and

 on G.objid = N.objid
 join fGetNearbyObjEq(334.36013, 0.266444, 17) as N 

 ((G.flags_r & 0x8100000c00a4) = 0) and

from PhotoPrimary as P

Figure 2: Complex user queries on member databases in the
Open SkyQuery federation

access to data. In general, the mediator is far from the member
databases. This creates an access barrier between the mediator and
the servers. Management boundaries create privacy concerns mak-
ing it difficult to access the databases to collect statistics on data.
The data is mostly accessed via the restricted Web-services wrap-
per interface (Figure 1). Even if the mediator can store summary
statistics, the member sites may choose not to invest their resources
in the I/O-intensive process of collecting statistics on all of the
data [9].

The continuous stream of user queries and their results at the me-
diator provide indirect access to queries and data and can be used
for learning output cardinality models. Queries in the Open Sky-
Query federation are complex, which makes learning of estima-
tion models a non-trivial task. A typical query is a conjunction
of multiple range and user-defined function clauses in the predi-
cate expression, as well as user-defined functions in the join clause.
We consider three real queries taken from a member database of
the Open SkyQuery federation. These queries exemplify the com-
plexity of learning an estimation model from queries (Figure 2).
(The select list is suppressed as it does not influence cardinality.)
The first query shows the combined use of range clauses and user-
defined functions, the latter occurring in both the join and the pred-
icate clause. The user-defined function fgetNearByObjEq returns
a temporary table of nearby objects. Its arguments vary depend-
ing upon whether a circular, a rectangular, or a polygonal region
is selected. The second query is a five-dimensional range query in
which the first three range clauses are on database attributes and
the last two are on temporary attributes created from subtracting
values from two database attributes. The third query is function
join with bit operators in the predicate clause. Histograms, such
as STGrid [1] and STHoles [8], efficiently learn estimation mod-
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Parameter Space
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Figure 3: Learning in templates

els when query workloads consist predominantly of range clauses
on database attributes. Because they build multi-dimensional his-
tograms, they can also estimate range clauses with mathematical
operators on a combination of attributes (such as g - r >= 0.37 in
the second query), but cannot update the histogram bucket bound-
aries from this combined information. Estimation models based on
nearest neighbor methods have been shown to be more effective
for user defined functions [13]. However, Open SkyQuery work-
loads consist of a combination of range (simple or complex) and
user-defined function clauses.

We conclude that the federation needs a light-weight, data-independ-
ent, and general estimation mechanism, which accurately predicts
query cardinality.

4. THE BLACK-BOX APPROACH
Cardinality estimation treats query evaluation, and optimization
as a black box, examining the input query and the cardinality of
its results alone. Data distributions are unknown, owing to data-
independence requirements, and cardinality estimates at every sub-
query level are not required by our applications. The approach first
groups queries into syntactic families. It then learns cardinality
distributions directly as a function of query parameters, such as
attributes, operators, constants, aggregates, and user-defined func-
tions and their arguments. We apply several machine learning tech-
niques, including classification and regression, model trees, and
locally-weighted regression. These result in concise and accurate
models of the cardinality distribution. When a query arrives, car-
dinality is estimated using the model. When the query is executed,
the query parameters and its result together update the model. This
results in feedback-based learning.

The black-box approach works best when workload satisfies certain
criteria. We discuss the most important criteria that enable learning
from workload, improve accuracy, and limit space overhead in the
black-box approach. An example at the end of the section illus-
trates the learning process for complex queries.

4.1 Estimating Query Cardinality
Grouping Queries: The black-box system groups queries into
templates. A template τ over SPJ (Select-Project-Join) queries and
user-defined functions (UDFs) is defined by: (a) the set of objects
in the from clause of the query (objects imply tables, views, or
tabular UDFs) and (b) the set of attributes and UDFs occurring in
the predicate expressions of the where clause. Intuitively, a tem-
plate is like a function prototype. Queries belonging to the same
template differ only in their parameters. For a given template τ , the
input parameters (Figure 3(a)) are: (a) constants in the predicate ex-
pressions, (b) operators used in the join criteria or the predicates, (c)
arguments in table valued UDFs or functions in predicate clauses,
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and (d) bits which specify if the query uses an aggregate function in
the select clause. A template’s parameters do not include attributes
in the select clause; the parameters of a template are only those
features in a query that influence/determine its cardinality.

Collecting Query Parameters: The parameters of a query that in-
fluence its cardinality form a vector. Figure 3(b) shows vectors with
parameters and cardinalities from a few queries. For a template, the
parameter space refers to all the possible combinations of parame-
ters, each chosen from their respective domain. A query belonging
to a template refers to one of these combinations and has a corre-
sponding yield in the range R = (0, max(ti)) in which max(ti)
is the maximum yield of a query in a given template, i.e., the size
of a relation for a query to a single relation and the size of the cross
product for a join query.

Once the template is created, only the template parameter values
and the corresponding cardinalities are retained. The parameter
values represent a point in the input space associated with the car-
dinality observed at that point; i.e., the cardinality is a function of
the multi-dimensional point in the parameter space represented by
the parameter values. The system has no knowledge of the exact
role of the parameters in query execution. In a template, the pa-
rameter values represent a cardinality distribution that the system
uses to estimate the cardinality of future queries to the same tem-
plate. Precisely, the actual cardinality distribution of a template τ

over n queries is the set of pairs

τD = (p1, y1), (p2, y2), . . ., (pn, yn) (1)

in which pi is the parameter vector of query qi, and yi is its cardi-
nality. Because of the high dimensionality of the parameter space,
the system employs machine learning techniques to approximate
the cardinality distribution.

Approximating the distribution: Most attributes in the Open
SkyQuery databases are numeric and record various physical prop-
erties of the astronomical bodies. Thus, query parameters are also
numeric, making regression the natural technique for cardinality
estimation. Regression models cardinality as a function of the
values of a multi-dimensional parameter vector [6]. The simplest
form of regression is linear regression [20] in which the cardinality
yi is modeled as a linear function of the multidimensional vector
pi = pi,1, . . . , pi,n as

yi = wo + w1pi,1 + . . . + wnpi,n (2)

in which the coefficients wo, w1, . . . , wn are estimated using the
least squares criterion. However, a naive application of regression
introduces a high learning bias, because a linear model cannot cap-
ture the non-linearity of the parameter distribution. We apply three
learning techniques, namely classification and regression, model
trees, and locally-weighted regression. All of these techniques par-
tition the input space and use regression within the partitions in
order to estimate cardinality. They differ in the criteria and meth-
ods they use for partitioning. They also differ in their computa-
tional complexity, space requirements, generality, and ease of use.
Specifically, the techniques show a trade-off between size and ac-
curacy. Based on the requirements of a distributed application, one
of these techniques may be chosen. In the Open SkyQuery, we have
opted for classification and regression because of its low computa-
tional complexity and space requirements.

1. Classification and Regression: In classification and regres-
sion, the system groups queries within a template into classes

and transforms the distribution in equation 1 to an approxi-
mate, class distribution

τC = (p1, c1), (p2, c2), . . . , (pn, cn) (3)

in which ci = CF (yi) and CF is a classification function
that transforms the numerical cardinality into a nominal class
value (Figure 3(c)).

The system learns this class distribution using decision trees
[25]. Decision trees recursively partition the parameter space
into axis orthogonal partitions until there is exactly one nom-
inal class (or majority of exactly one class) in each partition.
The partitioning is based on information gain of parameters
so as to minimize the depth of recursion, i.e., the parameter
attribute with the highest information gain is chosen as the
partitioning attribute. The system uses decision trees as they
are a natural mechanism for learning a class distribution in
the parameter space in which independence among parame-
ter values cannot be assumed.

By learning the τC classes of yields and not the τD values
of cardinalities, there is some loss of information. The sys-
tem regains some of this lost information by constructing a
linear regression function within each class. A class spe-
cific regression function gives cardinality values for different
queries that belong to the same class.

Finally, the system uses k-means clustering as the classifica-
tion function CF in which k is the number of classes and is a
dynamically, tunable parameter. Several techniques [12, 24]
can be used as a wrapper over k-means to find a suitable k

from the lowest and highest observed yield value, or it may
be chosen based on domain knowledge.

2. Model Trees: Model trees store a piece-wise linear approx-
imation of τD . Like decision trees, they use a divide-and-
conquer principle to recursively partition the parameter space
into axis orthogonal partitions until cardinality values can be
accurately predicted using a linear regression model. The
partitioning criteria choose an attribute that maximizes the
expected error reduction, in which the standard deviation of
the cardinality values serves as the error measure. We con-
sider pruned model trees, as they provide higher accuracy
over non-pruned trees, and are also much simpler. However,
pruning reduces accuracy as they introduce discontinuities
between adjacent linear models at the leaves of the pruned
tree. A smoothing process [31] is applied to compensate for
the these sharp discontinuities and regain some accuracy

3. Locally-weighted Regression: Given a test parameter vector,
locally-weighted regression weighs all the training parameter
vectors according to a distance metric to the test parameter
vector. It then performs a linear regression on the weighted
vectors. Training vectors close to the test vector receive a
high weight; those far away receive a low one. In other
words, the linear regression model is constructed on-the-fly
for the particular test vector at hand and is used to predict the
instance’s class value. The distance function is chosen as the
inverse of the Euclidean distance function. Since all train-
ing is done at prediction time, i.e., the vectors are scanned
to compute the weights, locally-weighted regression is much
slower than the models described above.

Refinement: Once the system has used the estimate and served
the query result, the size of the result is used as a feedback to refine
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Figure 4: Applying the black-box to SDSS queries

the estimation models. Refinement includes changing the partition-
ing of the input space and updating the regression function in each
partition. For classification and regression, repartitioning the in-
put space means rebuilding the decision tree. Similarly, for model
trees, the model tree must be rebuilt. Owing to their compact size,
rebuilding the learning models is not expensive and could be done
for every query. Our experiments show that it takes less than 20
seconds over thousands of queries(Section 5). However, we elect
to batch updates, rebuilding trees after collecting a fixed number of
queries in a template. We are currently exploring methods of recur-
sive least-squares error and incremental induction trees to update
the classification and regression model in situ. However, we hold
that incremental update is not a critical feature of learning models
for black-box cardinality estimation.

Locally-weighted regression is an incremental technique. Each
new query becomes part of the training vectors. This incremen-
tal advantage comes at a cost. Regression functions are built on
demand for each query, making locally-weighted regression more
expensive at runtime. In a sense, incremental advantage is achieved
by deferring the model update, processing updates at query time as
opposed to when the feedback occurs.

4.2 Learning from Queries
Cardinality distributions that may be learned accurately from query
workloads alone possess certain properties, such as syntactical lo-
cality and data locality. Additionally, learning techniques are ro-
bust to workload properties that are a challenge for traditional op-
timizers, such as multi-dimensionality, multi-way joins, and user-
defined functions. We highlight the properties of the Open Sky-

Query workload and how it interacts with learning techniques.

High Template Concentration: The black-box approach works
best when a small number of templates characterize most queries.
As it happens, most real-world application workloads consist of
queries created through pre-designed interfaces such as forms and
prepared statements [4]. Such an interface naturally results in
queries within the same template that vary only in a parameters
(in the predicate and join clauses), operators, and aggregates. This
makes templates analogous to function prototypes.

The Open SkyQuery workload exhibits extremely high template
concentration. In a typical month’s workload, there are 1.4 mil-
lion queries. The top 77 templates capture 97% of these queries.
Open SkyQuery templates originate from static forms as well as
repeatedly used user programs. These user programs are dynamic
in nature – they are debugged and modified to capture new science
questions – but templates change slowly over time. Nevertheless,
the high concentration allows the black-box approach to provide
high accuracy at low space overhead.

High Parameter Value Concentration: Queries of a given tem-
plate have parameter values that effectively represent a very small
part of the entire attribute domain. They often involve nearest
neighbor or region searches, resulting in consecutive queries with
small parameter differences. Thus, there is high concentration in
parameter values for a large number of queries of a single tem-
plate. This gives the system sufficient sample queries to learn a
distribution.

High Dimensionality of Queries: Queries are said to be multi-
dimensional if they possess more than one predicate clause in the
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query, where predicate clauses can be range clauses or user-defined
functions. Query dimensionality also increases if queries allow
specification of user-defined functions in join clauses. High dimen-
sionality forces the use of a multi-regression model [6]. This is the
primary reason for our choice of regression as the basic learning
technique for estimating query cardinalities.

Selection of Relevant Parameters: While decision tree learning
algorithms are designed to learn which are the most appropriate
parameters to use for making classification decisions, adding irrel-
evant or distracting parameters to the training set often “confuses”
the learning algorithm. This is especially true of parameters in user-
defined functions which do not contribute to query cardinality esti-
mation. We currently use domain knowledge to prune such param-
eters. We are experimenting with instance-based learning methods
for relevant parameter selection. Similarly, it is important that the
relevant parameters encode the maximum information available,
i.e., include both syntactic and semantic information. For exam-
ple, a range predicate clause of form “col BETWEEN constant1
and constant2” is transformed as (constant1,constant2-constant1).
The difference captures the distance between the two constants and
has more semantic information than other feature vectors, such as
(constant1,constant2). This is also true for bit operators where an
expression of the form “col bit op const eq op const”, in which
bit op ∈ (|, &) and eq op ∈ (=, 6=), is transformed to an exact
value of the column “col”.

Learning from queries is not space efficient when the underlying
distribution is uniform. In the classification and regression model,
the decision tree recursively partitions for each training instance
to take up space in proportion to the number of instances encoun-
tered. (Accuracy is not a concern, as regression learns the uniform
distribution.) It is easy to detect such distributions when there are
primary key attributes in the predicate expression and the system
avoids learning such distributions.

4.3 An Illustrative Example
We illustrate the black-box approach using an example Astronomy
template from the SDSS workload. This example template repre-
sents most typical templates in the SDSS workload. In particular,
we show (a) how the query cardinality can be estimated without
creating/learning statistics at every sub-query level, and (b) how the
underlying distribution can be indirectly learned using only queries
and their result. We compare it with the alternative bottom-up ap-
proach commonly employed by query optimizers, which uses his-
tograms (single or multi-dimensional) to approximate base table
distributions.

Consider the following template

SELECT * FROM

Photo P,
Field F
WHERE P.fid = F.fid and
P.NearObj(@ra,@dec,@radius) and
P.rv2 + p.cv2 <= @velocity and
F.u > @in1 and F.g < @in2

The relation Photo stores attributes about astronomical bodies.
These attributes are its id (objid), spatial location (ra and dec),
and velocities (rowv,colv). The relation Field stores the at-
tributes which measure the radiation intensity (a u, a g) of a pho-
tometric field (fid). Given a field of certain radiation intensity

Number of queries 1, 403, 833

Number of query templates 77

Percent of queries in top 15 templates 87%
Network traffic from all queries 1706 GB

Percent traffic from top 35 templates 90.2%

Table 1: SDSS Astronomy Workload Properties

(F.u > @in1 and F.g < @in2), queries to this template select
those objects from photo that are spatially close (within @radius)
of a point (P.NearObj(@ra,@dec,@radius)) and have a
certain velocity (P.rv2 + p.cv2 <= @velocity ).

To estimate cardinality of queries to the above template, the
bottom-up approach considers the query execution plan (QEP)
shown in Figure 4(a). Sub-estimates are needed at every level of
the plan to correctly compute the cardinality of the query at the top
level. The large number of these sub-estimates (in this case 5) in-
crease optimization costs adding to the overhead of the bottom-up
approach. Further, sub-estimates are calculated by assuming con-
ditional independence between attributes. Incorrect propagation of
these sub-estimates up the plan lead to inaccuracies.

Complex queries make it difficult to translate from an underlying
data distribution to a cardinality estimate. User-defined functions
present an extreme case, because they are totally opaque to a query
optimizer. Figure 4(b) shows the underlying data distribution of at-
tributes @ra and @dec. The query uses function NearObj against
this distribution, which computes a spatial range query. Figure 4(c)
annotates the data distribution with ranges evaluated by the func-
tion. Such a range query is estimable using multi-dimensional his-
tograms. However, the function prevents cardinality estimates from
being drawn from a histogram. It turns what is in fact a range query
into a point query in the parameter space (Figure 4(d)) with cardi-
nality that is a function of the input parameters.

We illustrate the black-box approach using classification and re-
gression as our learning technique. We demonstrate how to es-
timate function NearObj from the point queries. For the sam-
ple query, the actual learning occurs in a twelve-dimensional input
space over all operators, constants, and function parameters. For
simplicity, we visualize just the function in its two spatial dimen-
sions.

The high variance in cardinality for queries in this template gives
the black-box approach a cardinality distribution to learn. The
training/feedback data consists of the observed cardinality of com-
pleted queries. Figure 4(e) shows the logarithm of the cardinality
at each point. It learns by observing that some queries have high
(H) cardinality value (log values greater than 3.5) and some low
(L) (Figure 4(f)). It classifies this distribution using decision trees,
which split on specific values of the parameters, dividing into re-
gions of purely high cardinality and purely low cardinality. We
show splits into two cardinality classes (Figure 4(g)). In practice
the technique uses between 4 and 8 yield classes, depending upon
the natural clustering of cardinality values in the workload. Figure
4(g) shows an initial split on the dec parameter and then a split on
the ra parameter. The decision tree itself can be used for estima-
tion, but we improve upon it by using regression. In each decision
tree leaf node, we look at the original cardinality values for queries
and approximate this distribution through linear regression. We
show this pictorially in Figure 4(h).
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Template Number of % Domain Dimensions in Available Query Semantics
Queries Requested Feature Vector Index

T1 23343 5.1 x 10e-7 4 1 Range query on a single table
T2 103148 4.3 x 10e-27 6 0 Function query on a single table
T3 761605 2.9 x 10e-18 4 0 Function query on a single table
T4 4142 4.7 x 10e-4 3 0 Function query on 2 joined tables
T5 68603 3.5 x 10e-14 4 1 Equality query on a single table
T6 3176 1.3 x 10e-22 5 0 Function query on 3 joined tables

Table 2: Six important query templates in the SDSS workload

5. EXPERIMENTAL RESULTS
We first describe the workload and quantitatively evaluate it with
respect to the properties (Section 4.2) that enable effective use of
the black-box approach. We then measure the accuracy and effi-
ciency of the black-box approach under various machine learning
techniques by comparing it with a bottom-up approach. In par-
ticular, we show that, without constructing sub-estimates at every
level, the black-box approach accurately predicts the cardinality of
incoming queries and constructs learning models with minimum
space and time overhead. We also show the impact that accurate
cardinality estimates on the network performance of the caching
module in Open SkyQuery. This demonstrates the efficacy of the
black-box approach in distributed environments. All experiments
were performed on a IBM workstation with 1.3GHz Pentium III
processor and 512MB of memory, running Red Hat Linux 8.0.

5.1 Workload Properties
We took a month long trace of queries against the Sloan Digital Sky
Survey (SDSS) database. The SDSS is a major site in the Open
SkyQuery federation. Our trace has more than 1.4 million queries
that generate nearly two Terabytes of network traffic. An analysis
of the traces reveal that an astonishingly small number of query
templates capture the workload (Table 1). A total of 77 different
query templates occur in all 1.4 million queries. Further, the top 15
of these templates account for 87% of the queries, and the top 35
account for 90% of the total network traffic. Thus, the SDSS traces
exhibit a remarkable amount of template concentration.

Individual templates exhibit the desirable workload properties de-
scribed in Section (4.2). To quantify workload properties, we study
the top six templates (in the number of queries) that account for
68.7% of the workload (Table 2). The number of queries shows
the high concentration of queries in few templates. The % do-
main requested indicates the fraction of domain values accessed
by queries as a percentage of all values in the database. The ex-
tremely low percentages indicate high parameter value concentra-
tion. The top templates also show that the high-dimensionality of
queries contributes to learning. The dimensions in feature vec-
tor indicates the number of input parameters that are partitioned by
classification and regression. This corresponds to the features of
a template that provide information and indicate that many dimen-
sion must be used to accurately estimate this Astronomy workload.

This is a representative one month workload from the SDSS
database of the Open SkyQuery. We predict that workloads for
other Astronomy databases show similar properties. Unfortunately,
other large-scale workloads are not publicly available.

5.2 Metrics and Methodology
We show the accuracy and efficiency of the black-box approach
over the entire workload of 1.4 million queries. We then zoom-in

over the top six templates, which form a large percentage of the
workload and show (a) the learning accuracy in each template and
(b) the low space and time complexity of the relevant data structures
in each template. For these templates, we also show the influence
of various parameters in determining cardinality of queries.

Comparison Methods: We compare the accuracy of the black-box
approach (BB) with, estimates from a commercial optimizer (MS
SQL 2000) (OPT). Optimizer estimates in MS SQL 2000 are stored
on a per attribute basis as a variation of max-diff histograms [21].
Commercial optimizers do not store estimates of sub-plans gen-
erated during optimizations, but use the base-table statistics and
propagate them up using the assumption of conditional indepen-
dence. While it is known that this introduces error in the opti-
mizer, it was difficult to implement or obtain implementations of
the latest research in the bottom-up approach, which relaxes these
assumptions, because they are tightly integrated with source-code
of proprietary optimizers [7, 30]. In the OPT method, histograms
were constructed only for the attributes that were present in the
query workload, using 5% sampling. The reader is directed to
the documentation on MSSQL for creating and maintaining statis-
tics [21]. For the black-box approach, we use the three models of
regression: classification and regression (CR), model trees (MT),
and locally-weighted regression (LWR) to obtain accuracy and ef-
ficiency measures. In addition, for simple templates, such template
T1, with only range clauses in its predicate expressions, we im-
plement self-tuning histograms [1] (HIST). HIST relaxes the as-
sumption of conditional independence and constructs a histogram
incrementally from queries and their results only. This technique
only works for range clauses and not user-defined functions and,
therefore, was not implemented on other templates.

Refinement and Parameters: To compare the overall accuracy
and efficiency of the 1.4 million query workload, we use on-line re-
finement. In on-line refinement, a query is simultaneously issued to
the BB and the OPT methods and the estimation error is recorded.
In the BB method, if a template is found the query is estimated
from the existing model, and finally the query and its result update
the model. If a template is not found, the OPT estimate is taken
as the initial estimate. Since there are few templates, this is done
for few queries. The OPT estimate is taken as the default estimate
that is always available in such distributed applications. To show
the accuracy and efficiency over the top six templates, we switch to
offline/batch refinement. In offline/batch refinement, we build an a
priori model using training queries and then use the model to make
predictions using testing queries. In addition, we keep the distribu-
tion of test queries the same as those of training queries. The size
of the training set is varied from 5% to 50%.
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(a) Template T1
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(b) Template T3
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(c) Template T4
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(d) Comparison with
self-tuning histograms

Figure 5: Accuracy results for the SDSS workload

Figure 6: Overall Performance

Measuring Accuracy and Efficiency: To measure the overall ac-
curacy of our approach, we use the average absolute relative error

Ē =
1

N

X

q∈W

| ρ(q) − ρ̂(q) |

ρ(q)
(4)

in which ρ(q) and ρ̂(q) are the actual and estimated yield of a query
q in the workload W , and N is the total number of queries in W .
We use the same error measure when measuring accuracy of all
queries in a template in which case N corresponds to the total num-
ber of queries in a template.

The Open SkyQuery mediator requires different metrics to measure
the effect that accuracy has on the performance of caching. For the
caching module, we use the absolute error averaged over all queries
as the error measure

Ē =

P

q∈W
| ρ(q) − ρ̂(q) |

P

q∈Qi
ρ(q)

(5)

in which ρ(q) and ρ̂(q) are the actual and estimated yield of a query
q in a given template. This absolute error corresponds well with the
notion of total network traffic saved, the performance measure for
the cache.

5.3 Accuracy
The black-box approach (with CR as the learning technique) is
about 4 times more accurate than the optimizer when consider-
ing the entire workload (Figure 6). The overall improvement can
be attributed to improved estimates for user-defined functions and
complex expressions. The black-box approach learns from input
parameters for which the optimizer is not able to create distribu-
tions from base statistics. We further divide the workload into sim-

Figure 7: Influence of Parameters on Query Cardinality

ple and complex templates. Simple templates consist primarily of
queries with range and join clauses. Complex templates comprise
all queries with user-defined functions and mathematical expres-
sions on attributes. The optimizer’s poor performance makes it
unreliable over the complex workload. We believe that optimizer
results on simple workload will improve with a higher sampling
rate.

Individual templates have different query semantics and access pat-
terns. We compare learning in the black-box approach using the
various learning techniques and the optimizer. In the black-box ap-
proach, the amount of training data varies (as shown on X-axis).
We report the accuracy over all methods for the training set. Figure
5(a) shows learning over Template T1, which is a 2-dimensional
range query template. Optimizers are better suited suited to learn
from simple queries as in Template T1. However, the range clauses
are on two, highly-correlated spatial coordinates, ra and dec. OPT
errs while propagating the base statistics up the plan, leading to in-
accuracies. All of the learning techniques are able to estimate fairly
accurately with model trees being the most accurate.

The black-box approach provides the most improvement when op-
erating over queries with a combination of simple range clauses and
user-defined functions. For such queries, the optimizer estimates
cardinality as 1. While this heuristic provides a reasonable esti-
mate over queries with very low cardinality, SDSS function queries
fetch large datasets, leading to large errors. We show the effect
of various learning techniques in Figure 5(b) and using Template
T3, which has the largest number of queries. Queries in template
T3 are proximity queries, which use a user-defined function to find
nearby object in a rectangular region. Model trees present the best
learning method for such a template. Locally weighted regression,
which performs poorly on other templates, estimates reasonably on
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Figure 8: Space Performance

this template.

Scientific queries often use mathematical and bit operators and are
quite common in the SDSS workload. Figure 5(c) considers such a
query in template T4. Specifically, the predicates in the query add
two attributes and compare the result with a constant. However, the
optimizer chose to use the primary index and perform a table scan,
thereby overestimating the cardinality of each query.

Figure 5(d) shows the comparison of model trees and classification
and regression with a self-learning histogram technique [1] using
template T1. This technique learns a multi-dimensional histogram
from queries and the results apply to simple range clauses only. We
do not restructure the histograms as proposed, but refine them in-
crementally using queries and their results. Their technique learns
effectively over queries (providing only 20% error over 30% train-
ing data) and can be applied for such templates. The classification
and regression approach is slightly less accurate owing to the yield
classification step. Model trees are most accurate, but the size of
the tree is slightly more than the total histogram size.

Figure 7 shows the influence of various parameters over the cardi-
nality of each query. While the actual number of parameters are
high in each template, the learning techniques prune away the un-
necessary parameters, thereby reducing the dimensionality of the
learning space. This results in succinct data structures, as we will
show subsequently.

5.4 Space Utilization and Running Time
The learning techniques have different space requirements. The
space requirement of classification and regression (CR) is the size
of the constructed decision tree. Regression functions have negli-
gible space requirement. Similarly, for model trees, it is the size of
the model tree. In locally-weighted regression there is no a priori
learned model constructed from the training set, but a new regres-
sion model is constructed for each test instance. Therefore, we do
not calculate space requirement for LWR. For OPT, the space re-
quirement is the size of the histograms calculated, as described in
the MSSQL 2000 documentation [21]. The overall space require-
ment was calculated by summing the size of constructed models
over all queries at the end of the workload. For individual tem-
plates, size was calculated over the minimum number of queries
required as training data after which the learned model was consid-
ered stable.

Figure 9: Time Performance

Figure 8 shows the space requirement of the black-box approach
using different learning techniques and the optimizer over the en-
tire workload. It also shows the individual space requirements of
each template. The estimation model data structures used in the
black-box approach are very space efficient. Overall, classification
and regression has the smallest space requirement, with the size of
decision tree varying from tens or hundreds of kilobytes. The suc-
cinct decision trees created in classification and regression make it
a viable choice for applications where space is at a premium, such
as Open SkyQuery. The largest tree overall was that of template
T3. When constructed with all 750,000 queries in the template, it
required only 286 KB. Even for Template T5, which is a template
on an equality predicate for a primary key, the space requirement
is extremely low, because there is very little information to clas-
sify. Model trees use nearly double the space of classification and
regression. In model trees, the space requirement for the workload
not in the top six templates compares with the space requirement of
decision trees in classification and regression approach. Since this
amounts to one-third of the workload, the overall space requirement
is less than double the space requirement. However, for the impor-
tant templates the space requirement is almost doubled. The opti-
mizer space requirement for the overall the workload is comparable
to the space requirement of MT technique. The optimizer space re-
quirement is calculated from the one-dimensional histograms con-
structed over individual attributes present in the workload. Because
there is high syntactic locality in the workload, i.e., heavy attribute
reuse, the optimizer is also space efficient. However, the CR tech-
nique competes with the optimizer and provides more accurate es-
timates. If the optimizer were to be more accurate, it would need
multi-dimensional histograms, which add significantly to its space
requirements. Additionally, the total space requirement of the op-
timizer over all attributes, not just over the attributes in the current
workload, was 2612KB.

Figure 8 reports the optimizer space requirement for each individ-
ual template. The optimizer requires the least space in Template
T1, which is a two-dimensional range query template. However,
our learning approach, because of high “locality” in query access
patterns, learns the distribution using 200 queries and, thus, occu-
pies comparable space.

Estimation runtime performance follows that of space performance,
because small data structures may be accessed quickly. The clas-
sification and regression technique in the black-box approach ex-
hibits good runtime performance (Figure 9) and model trees are
comparable to the optimizer. Locally-weighted regression is an ex-
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ception. It takes much longer as the prediction model is rebuilt for
each test instance at runtime. We show time results for only the
important templates. Decision trees present the most computation-
ally efficient learning data structures, taking only O(mn(logn))
construction time in which m is the number of parameters and n

are the training examples. The time taken to construct the linear
regression function is negligible. For template T5, which took the
longest to learn and stabilize, the decision tree was constructed in
15.5 seconds. The optimizer time costs are calculated based on
the time it takes to optimize a query and estimate its cardinality.
The optimizer results are a clear reflection of the core thesis of
this paper that for many applications, expensive optimization is not
needed for cardinality estimates and a black-box learning approach
suffices. In addition, the total time requirement of the optimizer
over all queries was close to one hour.

5.5 Impact on Open SkyQuery
Our final goal is to show that distributed applications benefit sig-
nificantly from using a black-box approach. We revert to the case
of Open SkyQuery and consider the effect on its caching function.
The performance of the caching module is measured in terms of
total network traffic saved. In one variant of this experiment, the
caching module uses exact cardinality values to make caching de-
cisions. We call this this the prescient estimator. The prescient
estimator gives an upper-bound on how well a caching algorithm
could possibly perform. We compare this with the OPT method
and the CR learning technique. Because the CR learning technique
uses the least amount of space, it is naturally suited to caching.
As a cardinality estimator for Open SkyQuery caching, the black-
box approach outperforms the optimizer and approaches the ideal
performance of the prescient estimator. The total amount of data
sent across the network to serve the entire 1706 GB of the SDSS
workload. We report the network savings over the entire workload,
and compare it with the ideal performance of the prescient estima-
tor. Based on the estimates, CR saves 532.15 GB when compared
with 307.22 GB for the optimizer. CR also compares well with
the prescient estimator, reducing network savings by only 5% from
558.49 GB to 532.15 GB. Caching results also show the sensitivity
of caching in Open SkyQuery to accurate yield estimates. Nearly
all of the benefit of caching may be lost. The Optimizer loses 45%
of network savings.

6. CONCLUSIONS
The black-box approach offers an alternative to estimating query
cardinalities that is compact, efficient, and accurate. It does not re-
quire knowledge of the distribution of data and avoids inaccuracies
from modeling assumptions, such as the conditional independence
of attributes. In contrast, database query optimizers use a bottom-
up method to compose query cardinality estimates, propagating es-
timates up a query execution plan based on estimates of data distri-
butions. This makes sense for database, because they also need to
know cardinalities for each sub-query in order to choose between
various query plans, and because they have access to the under-
lying data. Several emerging applications, such as proxy-caching,
data-centric grids, and federated query processing, need to estimate
query cardinalities, but have neither access to data distributions nor
do they require sub-query cardinalities. Hence, the black-box ap-
proach suits them well. In this paper, we demonstrate this using
the Open SkyQuery as a case study. We study the cardinality es-
timation requirements of the Open SkyQuery, describe the black-
box approach as applied to it, and present experimental results that

show dramatic increases in the performance of caching in the fed-
eration.
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