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ABSTRACT
Prior research shows that database system performance is
dominated by off-chip data stalls, resulting in a concerted effort to
bring data into on-chip caches. At the same time, high levels of
integration have enabled the advent of chip multiprocessors and
increasingly large (and slow) on-chip caches. These two trends
pose the imminent technical and research challenge of adapting
high-performance data management software to a shifting
hardware landscape. In this paper we characterize the performance
of a commercial database server running on emerging chip
multiprocessor technologies. We find that the major bottleneck of
current software is data cache stalls, with L2 hit stalls rising from
oblivion to become the dominant execution time component in
some cases. We analyze the source of this shift and derive a list of
features for future database designs to attain maximum
performance.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational databases. H. 2.6 [Database
Machines]. H. 3.4 [Systems and Software] Performance
evaluation. C. 1.2 [Multiple Data Stream Architectures
(Multiprocessors)]

General Terms
Performance, Design, Experimentation.

Keywords
Database Engine. Performance Characterization. Chip
Multiprocessors. Staged Database Systems.

1. INTRODUCTION
Database management systems is a multibillion dollar industry
with high-end database servers employing state-of-the-art
processors to maximize performance. Unfortunately, recent
studies show that processors are far from realizing their
maximum performance. Prior research [20] indicates that
adverse memory access patterns in database workloads result
in poor cache locality and overall performance. Database

systems are known to spend at least half of their execution
time on stalls, implying that data placement should focus on
the second-level (L2) cache [4], typically found on chip in
modern processors.

Over the past decade, advancements in semiconductor
technology have dramatically changed the landscape of on-
chip caches. The increase in the number of transistors
available on-chip has enabled on-chip cache sizes to increase
exponentially across processor generations. The trend of
increasing on-chip cache sizes is apparent in Figure 1 (a),
which presents historic data on the on-chip cache sizes of
several processors in the last two decades. The upward trend in
cache sizes shows no signs of a slowdown. Industry advocates
large caches as a microarchitectural technique that allows
designers to exploit the available transistors efficiently to
improve performance [7], leading to modern processors with
mega-caches on chip (e.g., 16MB in Dual-Core Intel Xeon
7100 [23], and 24MB in Dual-Core Intel Itanium 2 [30]). 

Large caches, however, come at the cost of high access
latency. Figure 1 (b) presents historic data on the L2 cache
access latency, indicating that on-chip L2 latency has
increased more than 3-fold during the past decade — e.g., from
4 cycles in Intel Pentium III (1995) to 14 cycles in IBM
Power5 (2004). Caches enhance performance most when they
capture fully the primary working set of the workload;
otherwise, they provide only marginal improvements in the
miss rate as size increases. Database workloads typically have
a small primary working set which can be captured on chip,
and a large secondary set which is beyond the reach of on-chip
caches for modern processors. Conventional wisdom dictates
that large on-chip caches provide significant performance

Figure 1. Historic trends of on-chip caches on
(a) size, and (b) latency.
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benefits as they eliminate off-chip memory requests. In reality,
a large cache may degrade the performance of database
workloads because the cache’s high latency slows the common
case (cache hits) and introduces stalls in the execution, while
the additional capacity fails to lower the miss rate enough to
compensate.

Over the past decades, microprocessor designs focused
primarily on tolerating stalls by exploiting instruction-level
parallelism (ILP). The resulting wide-issue out-of-order (OoO)
processors overlap both computation and memory accesses,
but fall short of realizing their full potential when running
database workloads. Database workloads exhibit large
instruction footprints and tight data dependencies that reduce
instruction-level parallelism and incur data and instruction
transfer delays [4, 21]. Thus, increasingly aggressive OoO
techniques yield diminishing returns in performance, while
their power dissipation is reaching prohibitive levels [7]. The
shortcomings of out-of-order processors, along with the
continued increase in the number of transistors available on
chip, have encouraged most vendors to integrate multiple
processors on a single chip, instead of simply increasing the
complexity of individual cores. The resulting chip
multiprocessor (CMP) designs may affect data stalls through
promoting on-chip data sharing across cores and increasing
contention for shared hardware resources.

In this paper we investigate the performance of database
workloads on modern CMPs and identify data cache stalls as a
fundamental performance bottleneck. Recent work in the
database community [3, 4, 21] attributes most of the data stalls
to off-chip memory accesses. In contrast to prior work, our
results indicate that the current trend of increasing L2 latency
intensifies stalls due to L2 hits1, shifting the bottleneck from
off-chip accesses to on-chip L2 hits. Thus, merely bringing
data on-chip is no longer enough to attain maximum
performance and sustain high throughput. Database systems
must also optimize for L1D locality.

In this study we recognize that chip multiprocessor designs
follow two distinct schools of thought, and present a taxonomy
of processor designs and DBMS workloads to distinguish the
various combinations of workload and system configuration.
We divide chip multiprocessors into two "camps." The fat
camp employs wide-issue out-of-order processors and
addresses data stalls by exploiting instruction-level parallelism
(e.g., Intel Core Duo [1], IBM Power 5 [16]). The lean camp
employs heavily multithreaded in-order processors to hide data
stalls across threads by overlapping data access latencies with
useful computation (e.g., Sun UltraSparc T1 [17]). Even
though LC is heavily multithreaded, it is a much simpler
hardware design than the complex out-of-order FC. We divide
database applications into saturated workloads, in which idle
processors always find an available thread to run, and
unsaturated workloads, in which processors may not always
find threads to run, thereby exposing data access latencies. We
characterize the performance of each database workload and
system configuration pair within the taxonomy through cycle-
accurate full-system simulations using FLEXUS [11] of OLTP
(TPC-C) and DSS (TPC-H) workloads on a commercial
DBMS. Our results indicate that:

• High on-chip cache latencies shift the data stall
component from off-chip data accesses to L2 hits, to the

point where up to 35% of the execution time is spent on
L2 hit stalls for our workload and CMP configurations.

• Increasing the L2 cache size from 4MB to 26MB reduces
throughput by up to 30%. In comparison, increasing the
cache size while keeping the L2 hit latency constant yields
nearly 2x speedup due to lower miss rates.

• High levels of on-chip core integration increase L2 hit
rates, improving performance by 12-15% and increasing
the relative contribution of L2 hit stalls to 10% and 25%
of execution time, respectively, for DSS and OLTP.

• The combined effects of high L2 latency and on-chip core
integration increase the contribution of L2 hit stalls on
execution time by a factor of 5 for DSS and a factor of 7
for OLTP over traditional symmetric multiprocessors,
explaining the observed departure from prior research
findings.

• Conventional DBMS hide stalls only in one out of four
combinations of chip designs and workloads. Despite the
significant performance enhancements that stem from
chip-level parallelism, the fat camp still spends 46-64% of
execution time on data stalls. The lean camp efficiently
overlaps data stalls when executing saturated workloads,
but exhibit up to 70% longer response times than the fat
camp for unsaturated workloads.

• To hide stall time when executing DBMS across the entire
spectrum of workloads and systems, the software must
improve both L1D reuse/locality and exhibit high thread-
level parallelism across and within queries and
transactions. Data locality helps eliminate stalls
independent of workload type. Increased parallelism helps
exploit the abundance of on-chip thread and processor
execution resources when the workload is not saturated.

The remainder of this document is structured as follows.
Section 2 proposes a taxonomy of chip multiprocessor
technologies and workloads. Section 3 presents our
experimental methodology and Section 4 analyzes the behavior
of a commercial database server on chip multiprocessors, as a
function of hardware designs and workloads. Section 5
discusses the effects of hardware parameters on data stalls.
Section 6 discusses software techniques to enhance parallelism
and reduce the L2 hit stall component. Finally, Section 7
presents related work, and Section 8 concludes.

2. CMP CAMPS AND WORKLOADS
In this section we propose a taxonomy of chip multiprocessor
technologies and database workloads and analyze their
characteristics. To our knowledge, this is the first study to
provide an analytic taxonomy of the behavior of database
workloads in such a diverse spectrum of current and future
chip designs. A recent study [10] focuses on throughput as the
primary performance metric to compare server workload
performance across chip multiprocessors with varying
processor granularity, but has stopped short of a detailed
performance characterization and breakdown of where time is
spent during execution. Through a series of simulations we
find that the behavior of database systems varies as a function
of hardware and workload type, and that conventional database
systems fail to provide high performance across the entire
spectrum. The taxonomy enables us to concentrate on each
segment separately and derive a list of features a database
system should support.

1 We refer to the time spent by the processor accessing a cache
block that missed in L1D but was found in L2 as “L2 hit stalls”.
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2.1 Fat Camp vs. Lean Camp
Hardware vendors adopt two distinct approaches to chip
multiprocessor design. One approach uses cores that target
maximum single-thread performance through sophisticated
out-of-order execution and aggressive speculation (fat-camp or
FC). Representative chip multiprocessors from this camp
include Intel Core Duo [1] and IBM Power5 [16]. The second
approach favors much simpler designs with cores that support
many thread contexts1 in hardware (lean-camp or LC). Such
cores overlap stalls in a given thread with useful computation
by other threads. Sun UltraSPARC T1 [17] and Compaq
Piranha [5] fall into this camp. Table 1 summarizes the
characteristics of each technology camp.
Integrating multiple cores on a chip multiprocessor exhibits
similar effects within each camp (e.g., increase in shared
resource contention). In this paper we study the increasing
performance differences between fat and lean camps when
running identical database workloads, assuming that both
camps are supported by the same memory hierarchy. Thus, it
suffices to analyze the characteristics of each camp by
focusing on the characteristics of the different core
technologies within each camp.
Because LC cores are heavily multithreaded, we expect them
to hide stalls efficiently and provide high and scalable
throughput when there is enough parallelism in the workload.
However, when the workload consists of a few threads, the LC
cores cannot find enough threads to overlap stalls, leaving long
data access latencies exposed. On the other hand, the FC cores
are optimized for single-thread performance through wide
pipelines that issue/complete multiple instructions per cycle,
and out-of-order speculative execution. These features exploit
instruction-level parallelism within the workload to hide stalls.
Thus, we expect LC cores to outperform FC cores when there
is enough parallelism in the workload, even with much lower
single-thread performance than that of an FC core. However,
when the workload consists of few threads, we expect the
response time of the single-thread optimized FC cores to be
significantly lower than the corresponding response time of
their LC counterparts.
In addition to the performance differences when comparing
single cores, an LC CMP can typically fit three times more
cores in one chip than an FC CMP, resulting in roughly an
order of magnitude more hardware contexts in the same space.
In this paper we do not apply constraints on the chip area.
Keeping a constant chip area would favor the LC camp
because it would have a larger on-chip cache than the FC

camp, allowing LC to attain even higher performance in
heavily multithreaded workloads, because LC is able to hide
L2 stalls through multithreading.

2.2 Unsaturated vs. Saturated Workloads
Database performance varies with the number of requests
serviced. Our unsaturated workload highlights single-thread
performance by assigning one worker thread per query (or
transaction) it receives. A conventional DBMS can increase
the parallelism through partitioning, but in the context of this
paper we can treat this as having multiple clients (instead of
threads). As explained in Section 6.1, the reader should also
keep in mind that not all query plans are trivially
parallelizable.
We observe that the performance of a database application
falls within one of two regions, for a given hardware platform,
and characterize the workload as unsaturated or saturated. A
workload is unsaturated when processors do not always find
threads to run. As the number of concurrent requests increases,
performance improves by utilizing otherwise idle hardware
contexts. Figure 2 illustrates throughput as a function of the
number of concurrent requests in the system when running
TPC-H queries on a commercial DBMS on a real 4-core IBM
Power5 (FC) server. Increasing the number of concurrent
requests eventually results in a saturated workload, where
there are always available threads for idle processors to run.
Peak performance occurs at the beginning of the saturated
region; increasing the number of concurrent requests too far
overwhelms the hardware, reducing the amount of useful work
performed by the system and lowering performance.

3. EXPERIMENTAL METHODOLOGY
We use FLEXUS [11] to provide accurate simulations of chip
multiprocessors and symmetric multiprocessors running
unmodified commercial database workloads. FLEXUS is a
cycle-accurate full-system simulator that simulates both user-
level and operating system code. We use the SimFlex
statistical sampling methodology [28]. Our samples are drawn
over an interval of 10 to 30 seconds of simulated time (as
observed by the operating system in functional simulation) for
OLTP, and over the complete workload execution for DSS. We
show 95% confidence intervals that target ±5% error on
change in performance, using paired measurement sampling.
We launch measurements from checkpoints with warmed
caches and branch predictors, then run for 100,000 cycles to
warm queue and interconnect state prior to collecting
measurements of 50,000 cycles. We use the aggregate number

1 We refer to hardware threads as “hardware contexts” to
distinguish them from software (operating system) threads.

Table 1. Chip multiprocessor camp characteristics.

Core Technology Fat Camp (FC) Lean Camp (LC)

Issue Width Wide (4+) Narrow (1 or 2)

Execution Order Out-of-order In-order

Pipeline Depth Deep (14+ stages) Shallow (5-6 stages)

Hardware Threads Few (1-2) Many (4+)

Core Size Large (3 x LCsize) Small (LC size)

Figure 2. Unsaturated vs. saturated workloads.
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of user instructions committed per cycle (i.e., committed user
instructions summed over the simulated processors divided by
total elapsed cycles) as our performance metric, which is
proportional to overall system throughput [28].

We characterize the performance of database workloads on an
LC CMP and an FC CMP with the UltraSPARC III instruction
set architecture running the Solaris 8 operating system. The LC
CMP employs four 2-issue superscalar in-order cores. The LC
cores are 4-way multithreaded, for a total of 16 hardware
contexts on the LC CMP. The hardware contexts are
interleaved in round-robin fashion, issuing instructions from
each runnable thread in turn. When a hardware context stalls
on a miss it becomes non-runnable until the miss is serviced. In
the meantime, the LC core executes instructions from the
remaining contexts.

The FC CMP employs four aggressive out-of-order cores that
can issue four instructions per cycle from a single hardware
context. The two CMP designs have identical memory
subsystems and clock frequencies and feature a shared on-chip
L2 cache with size that ranges from 1MB to 26MB.

We estimate cache access latencies using Cacti 4.2 [29]. Cacti
is an integrated cache access time, cycle time, area, leakage,
and dynamic power model. By integrating all these models
together, cache trade-offs are all based on the same
assumptions and, hence, are mutually consistent. In some
experiments we purposefully vary the latency of caches
beyond the latency indicated by Cacti to explore the resulting
impact on performance or to obtain conservative estimates.

Our workloads consist of OLTP (TPC-C) and DSS (TPC-H)
benchmarks running on a commercial DBMS. The saturated
OLTP workload consists of 64 clients submitting transactions
on a 100-warehouse database. The saturated DSS workload
consists of 16 concurrent clients running four queries from the
TPC-H benchmark, each with random predicates. We select the
queries as follows [24]: Queries 1, 6 are scan-dominated,
Query 16 is join-dominated and Query 13 exhibits mixed
behavior. To achieve practical simulation times we run the
queries on a 1GB database. We corroborate recent research
that shows that varying the database size does not incur any
microarchitectural behavior changes [24]. Unsaturated
workloads use the above methodology running only a single
client, with intra-query parallelism disabled to highlight
single-thread performance. We tune both the OLTP and DSS

workloads to minimize I/O overhead and maximize CPU and
memory system utilization.

We validate FLEXUS by comparing against an IBM
OpenPower720 server that runs the same workloads. We
calculate the cycles per instruction (CPI) on OpenPower720 by
extracting Power5’s hardware counters through pmcount [2],
post-processing the raw counters using scripts kindly provided
by IBM, and comparing the results with a FLEXUS simulation
that approximates the same IBM server. Figure 3 presents the
absolute CPI values and their respective breakdowns. The
overall simulated CPI is within 5% of the measured CPI for
both OLTP and DSS workloads. The computation component
for OpenPower720 is 10% higher, which we attribute to
Power5’s instruction grouping and cracking overhead. The
data stall component is 15% higher for FLEXUS due to the
absence of a hardware prefetcher mechanism.

Prior research [26] measures the impact of hardware
prefetching on the performance of OLTP and DSS workloads
and finds that even complex hardware prefetchers that
subsume stride prefetchers yield less than 10% performance
improvement for OLTP workloads, while their impact on scan-
dominated DSS queries is statistically insignificant. Join-
bound queries do see as much as 50% improvement, but
contribute relatively little to total execution time in our DSS
query mix. Even if a stride prefetcher could match the
performance improvements of [26], we estimate that the
performance improvement due to a stride prefetcher on our
OLTP workload will be less than 10%, while the performance
improvement on our scan-dominated DSS workload will be
less than 20%. Furthermore, employing a stride prefetcher will
not change the performance trends that are the focus of this
paper.

4. DBMS PERFORMANCE ON CMPS
In this section we characterize the performance of both CMP
camps on a commercial DBMS running unsaturated and
saturated DSS and OLTP workloads. For unsaturated
workloads the performance metric of interest is response time,
while for saturated workloads the performance metric of
interest is throughput. Figure 4 (a) presents the response time
of the LC CMP normalized to the FC CMP when running
unsaturated (single-thread) workloads. Figure 4 (b) presents
the throughput of the LC CMP normalized to the throughput of
the FC CMP when running saturated workloads. 

Figure 3. FLEXUS validation using the saturated DSS 
workload.
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The LC CMP suffers up to 70% higher response times than FC
when running unsaturated (single-thread) DSS workloads and
up to 12% higher when running unsaturated OLTP workloads,
corroborating prior results [21]. The performance difference
between FC and LC on unsaturated OLTP workloads is
narrower due to limited ILP. Even though FC exhibits higher
single-thread performance than LC, the LC CMP achieves 70%
higher throughput than its FC counterpart when running
saturated workloads (Figure 4 b).

Figure 5 shows the execution time breakdown for each camp
and workload combination. Although we configure the CMPs
with an unrealistically fast 26MB shared L2 cache, data stalls
dominate execution time in three out of four cases. While FC
spends 46% - 64% of execution time on data stalls, LC spends
at most 13% of execution time on data stalls when running
saturated workloads, while spending 76-80% of the time on
useful computation. The multiple hardware contexts in LC
efficiently overlap data stalls with useful computation, thereby
allowing LC to significantly outperform its FC counterpart on
saturated workloads.

Despite prior work [4] showing that instruction stalls often
dominate memory stalls when running database workloads, our
CMP experiments indicate that data stalls dominate the
memory access component of the execution time for all
workload/camp combinations. Both camps employ instruction
stream buffers [15], a simple hardware mechanism that
automatically initiates prefetches to successive instruction
cache lines following a miss. Our results corroborate prior
research [21] that demonstrates instruction stream buffers
efficiently reduce instruction stalls. Because of their
simplicity, instruction stream buffers can be employed easily
by the majority of chip multiprocessors, thus we do not further
analyze instruction cache performance.

We conclude that the abundance of threads in saturated
workloads allows LC CMPs to hide data stalls efficiently. The
multiple hardware contexts available on the LC CMP allow it
to perform useful computation while some of the contexts are
stalled on long latency data access operations, thereby
improving overall throughput. In contrast, the FC CMP fails to
utilize fully its hardware resources because database
workloads exhibit limited ILP. FC processors would also
benefit from multithreaded operation, but their complexity
limits the number of hardware contexts they can employ. Our
calculations show that each FC core would require more than
15 hardware contexts to fully overlap data stalls, which is

infeasible due to the complexity and power implications it
entails. Thus, FC CMPs cannot hide data stalls the way
context-rich LC CMPs can.
However, we expect that in spite of less than ideal performance
on database workloads, FC CMPs will still claim a significant
market share due to their unparalleled single-thread
performance and optimized execution on a variety of other
workloads (e.g., desktop, scientific computing). Thus, database
systems must be designed to perform well on both CMP
camps, independent of workload type. To maximize
performance across hardware and workload combinations,
database systems must exhibit high thread-level parallelism
across and within queries and transactions, and improve data
locality/reuse. Increased parallelism helps exploit the
abundance of on-chip thread and processor execution resources
when the workload is not saturated. Data locality helps
eliminate stalls independent of workload type.
Figure 5 shows that in six out of eight combinations of
hardware and workloads, data stalls dominate execution time
even with unrealistically fast and large caches. In Section 5 we
analyze the data stall component of execution time to identify
dominand subcomponents and trends, that will help guide the
implementation and optimization of future database software.
In the interest of brevity, we analyze data stalls by focusing on
saturated database workloads running on FC CMPs, but the
results of our analysis are applicable across all combinations of
hardware and workloads that exhibit high data stall time.

5. ANALYSIS OF DATA STALLS
In this section we analyze the individual sub-components of
data cache stalls and identify the emerging importance of L2
hit stalls, which account for up to 35% of execution time for
our hardware configurations and workloads. This represents a
a 7-fold increase in percent of execution time, as compared to
traditional symmetric multiprocessors with small caches
running the same set of workloads.
Section 5.1 explores the impact of increased on-chip cache
sizes on the breakdown of data stalls, both for constant (low)
hit latencies and for realisitic latencies provided by Cacti. In
Section 5.2 we analyze the impact of integrating multiple cores
into a single chip. Finally, in Section 5.3 we study the effects
of high levels of on-chip integration by increasing the number
of available cores on chip.

5.1 Impact of on-chip cache size
Large on-chip L2 caches can shift the data stall bottleneck in
two ways. First, larger caches increase the amount of data
stored in the cache, resulting in higher hit rates that shift stalls
from memory to L2 hits, thereby increasing the relative
importance of L2 hit stalls. Second, rising hit latencies
penalize each hit and increase the number of stalls caused by
L2 hits without changing the number of accesses to other parts
of the memory hierarchy.
Figure 6 (a) presents the impact of increasing cache size on
DBMS performance. We simulated both OLTP and DSS
workloads on a FC CMP, with cache sizes ranging from 1MB
to 26MB. To separate the effect of hit rates from that of hit
latencies, we perform two sets of simulations. The upper
(dotted) pair of lines shows the performance increase achieved
when the hit latency remains fixed at an unrealistically low 4
cycles. The lower (solid) pair of lines shows performance
under the more reasonable hit latencies for each cache

Figure 5. Breakdown of execution time
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configuration as supplied by Cacti. These estimates are
conservative because hit latencies supplied by Cacti are
typically lower than the ones achieved in commercial products.
In all cases, increasing the cache size significantly improves
performance as more of the primary L2 working set fits in the
cache. However, the two sets quickly begin to diverge, even
before the cache captures the entire working set (between 8MB
and 16MB for our workloads). Even though there is no cycle
penalty for increasing L2 sizes in the fixed-latency case, we
see diminishing returns because even the biggest cache fails to
capture the large secondary L2 working set. In contrast,
realistic hit latencies further reduce the benefit of larger
caches, and the added delay begins to outweigh the benefits of
lower miss rates even before the working set is captured. The
adverse effects of high L2 hit latency reduce the potential
performance benefit of large L2 caches by up to 2.2x for OLTP
and 2x for DSS.
Figure 6 (b) and (c) show the contributions of realistic L2 hit
latencies to data stalls and overall CPI for OLTP and DSS
respectively. In the fixed-latency case (not shown) the stall
component due to L2 hits quickly stabilizes at less than 5% of
the total CPI. On the other hand, realistic latencies, are
responsible for a growing fraction of the overall CPI,
especially in DSS, where they become the single largest
component of execution time. The remainder of the CPI
increase comes from instruction stalls due to L2 hits, again an
artifact of larger (and slower) caches. Instruction stalls due to
L2 are especially evident in the OLTP workload, where they
account for roughly half of the overall CPI increase.
Increasing cache sizes and their commensurate increase in
latency can have dramatic effects on the fraction of time spent
on L2 hit data stalls. For our workloads running on a FC CMP
we measure a 12-fold increase in time spent in L2 hit stalls
when increasing the cache size from 1MB to 26MB; rising hit
latencies are responsible for up to 78% of this increase.

5.2 Impact of core integration on a single chip
In this section we study the outcome of integrating multiple
processing cores on a single chip. We compare the
performance of a commercial database server running OLTP
and DSS workloads in two variants of our baseline system: (a)
a 4-processor SMP with private 4MB L2 caches at each node,
and (b) a 4-core CMP with a single shared 16MB L2.
Figure 7 presents normalized CPI breakdowns for the two
systems, with labels indicating the actual CPI. We observe that
the performance of the CMP systems is higher. The difference
in the performance between the SMP and the CMP systems can

be attributed to the elimination of coherence traffic. Data
accesses that result in long-latency coherence misses in the
SMP system are converted into L2 hits on the shared L2 cache
of the CMP and fast L1-to-L1 on-chip data transfers. Thus, the
L2 hit stall component of CPI increases by a factor of 7 over
the corresponding SMP designs, explaining the disparity of our
results as compared to prior research findings [24].

5.3 Impact of on-chip core count
Chip multiprocessors integrate multiple cores on a single chip,
which promotes sharing of data through the common L2 cache.
At the same time, contention for shared hardware resources my
offset some of the benefits of fast on-chip data sharing.

To study the impact of high levels of core integration on chip
we simulate saturated OLTP and DSS workloads on a FC chip
multiprocessor with a 16MB shared L2 as we increase the
number of cores from 4 (the baseline) to 16.

Figure 8 presents the change in performance as the number of
processing cores increases. The diagonal line shows linear
speedup as a reference. We observe a 9% superlinear increase
in throughput at 8 cores for DSS, due to an increase in sharing,
after which pressure on the L2 cache adversely affects
performance for both workloads. OLTP, in particular, realizes
only 74% of its potential linear performance improvement. The
pressure on the cache is not due to extra misses — in fact, the
L2 miss rate continues to drop due to increased sharing as
more cores are added. Rather, physical resources such as cache
ports and status registers induce queueing delays during bursts
of misses. These correlated misses are especially common in

Figure 6. Effect of cache size and latency on (a) throughput, (b) CPI contributions for OLTP, and (c) CPI contributions for DSS

0

0.5

1

1.5

2

2.5

0 10 20 30
L2 Cache Size (MB)

C
PI

L2-hit stalls all D-stalls Total

0
0.5

1
1.5

2
2.5

3

0 10 20 30
L2 Cache Size (MB)

N
or

m
.T

hr
ou

gh
pu

t

DSS-const DSS-real
OLTP-const OLTP-real

0
0.5

1
1.5

2
2.5

3

0 10 20 30
L2 Cache Size (MB)

C
PI

L2-hit stalls all D-stalls Total

Figure 7. Effect of chip multiprocessing on CPI

0%
20%
40%
60%
80%

100%

SMP CMP SMP CMP

OLTP DSS

N
or

m
al

iz
ed

 C
PI

Comp I-stalls L2-hit Other-D-stalls Other

1.40 1.01 1.95 1.46

84



OLTP and are largely responsible for the sublinear speedup
when adding more cores.

5.4 Ramifications
Our analysis of data stalls and the impact of microarchitectural
parameters on L2 hit stalls have several ramifications. 

First, the shifting L2 hit bottleneck indicates that simply
bringing data on chip no longer suffices to attain maximum
performance in database workloads. In the future it will
become increasingly important to bring data beyond L2 and
closer to L1. The shift arises primarily from the combination of
increased L2 hit latencies and the effects of integration; lower
miss rates from larger cache sizes contribute much less to this
effect. 

Second, incorporating large and slow caches on chip can have
detrimental effects in the performance of database systems.
The best design points of the future might be CMPs that
incorporate caches large enough to capture the primary L2
working set but not larger, so they can maintain low hit
latencies. This observation runs counter to the conventional
wisdom that larger caches are always a good way to use extra
transistors [7].

Third, increasing the number of cores that share an on-chip L2
cache does not cause an inordinate number of additional cache
misses for database workloads. In fact, these workloads exhibit
significant sharing between cores. However, they do cause
extra pressure that can reduce performance in spite of the
lower miss rate. We expect that future CMP designs will
feature specially-designed L2 caches to reduce this pressure,
allowing workloads to benefit from the effects of sharing.

6. PARALLELISM AND LOCALITY
To maximize performance across the full spectrum of
workloads and hardware configurations a DBMS must
intelligently balance parallelism and locality. Under light load
both fat and lean camp systems suffer from idle hardware
contexts and exposed data stalls. The database system should
try to improve response time by splitting requests into many
software threads that exploit the available hardware resources. 

6.1 Increasing Parallelism
Database applications are inherently parallel. A workload
consisting of multiple queries or transactions causes the

creation of a large number of worker threads to serve the
requests, resulting in inter-transaction and -query parallelism.
In many cases, individual requests can themselves be broken
up into multiple threads to increase the level of parallelism
even further. This is particularly useful when the workload is
unsaturated, in which case dividing work among more threads
can utilize the otherwise idle hardware contexts.
Pipelining and operator-level parallelism [14] divide a query
into producer-consumer pairs, which can execute in parallel
and reduce overall execution time. Besides increasing
parallelism, pipelining and operator-level parallelism also
enhance the temporal locality of intermediate data, so they are
quickly reused and can be safely discarded afterwards. For
example, they allow the DBMS to avoid materializing
intermediate results, which consume buffer pool pages and
may incur significant I/O overheads when their size grows.
Partitioning, which is orthogonal to operator-level parallelism,
divides the input data set into independent subsets that can be
processed concurrently. Database tables can be partitioned
either vertically or horizontally, depending on the expected
access patterns (i.e., queries). A query that accesses a
partitioned table may then be divided into a number of
independent sub-queries that each operate on part of the
partitioned data, thereby improving performance.
However, partitioning is static and complex to set up.
Workloads where the types of requests are unknown in
advance or fluctuate often gain little from any one partitioning
scheme, and cannot be repartitioned easily. Moreover, there
always exist queries that a chosen partitioning scheme cannot
handle efficiently (e.g., vertical partitioning penalizes queries
that access entire rows). Also, some queries and most
transactions are not amenable to partitioning, or cannot be
fully partitioned. For example, queries that require sorted
outputs and read from unsorted inputs must serialize at a sort
stage.

6.2 Improving Data Locality
Saturated LC systems exhibit nearly ideal performance, as they
are designed to overlap stalls with useful computation from a
pool of eligible threads. On the other hand, saturated FC
systems face a significant data stall bottleneck that must be
addressed to improve performance. Any technique that reduces
data stalls will also improve the performance of unsaturated
workloads, independent of hardware configuration.
STEPS [13] schedules threads in transactional workloads
explicitly to achieve high instruction locality. Similar
techniques may improve data locality. For example, binding
producer/consumer threads together on the same core can
improve the data locality. Similar to STEPS, the producer
could then yield to the consumer whenever it produces enough
data to fill L1-D, allowing the consumer to use the data before
it is pushed further down the memory hierarchy. The
abundance of hardware contexts on lean camp cores also
provides interesting opportunities for scheduling, especially in
cases where multiple threads access the same data over a short
time window.
A growing number of proposals for cache-conscious
algorithms [8, 25] and execution have arisen out of the
database community. Their goal is to provide cache-friendly
access patterns and data structures. MonetDB/X100 [31] uses
vectorized processing and column-wise storage to improve
both spatial and temporal data locality in query processing.

Figure 8. Effect of CMP core count on throughput
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PAX [3] restructures the data layout in the disk and memory
pages to reduce the number of cache misses. Similarly, [22]
proposes a modified (read-only) B+ tree that improves cache
behavior. Chilimbi [9] proposes the use of compilers to
automatically produce cache-conscious structures.
While these techniques will improve L1 hit rates as well, they
do not account for the small L1D sizes and they are still likely
to exhibit a large number of L2 accesses which are getting
increasingly slow. Historically, these approaches have focused
mainly on bringing data on chip, thereby improving L2 hit
rates. The shift of data stalls from off-chip accesses to on-chip
hits may require re-evaluating these techniques to also improve
L1D hit rates.

6.3 Staged Database Systems
Staging is an emerging paradigm in software server design. A
staged server processes work in “stages” rather than as
monolithic requests. In a staged database system [12, 14], a
stage implements one or few similar relational operators and
maintains private data and control mechanisms. Incoming
requests are decomposed into “packets” and routed to the
appropriate stages. The packets indicate the work requested on
behalf of the incoming query, and form series of producer-
consumer pairs. 
Every packet can be scheduled individually, and its execution
is decoupled from the others. Thus, staging naturally enhances
workload parallelism and can utilize otherwise idling
computational resources. As discussed in Section 6.2, besides
increasing parallelism, a staged database system may also
enhance L1-D locality through explicit scheduling of packets
and producer/consumer pairs. The modular design of staged
database systems make them an ideal candidate to alleviate the
constantly shifting performance bottlenecks without the
overhead of completely redesigning the system. We believe
staged database systems hold great potential and we are eager
to explore the design space.

7. RELATED WORK
Barroso et al. [6] conduct a performance study of OLTP and
DSS workloads on a distributed shared memory multiprocessor
and conclude that instruction and data locality on OLTP can be
captured effectively only by large caches. Our study shows that
data stalls dominate the execution time of modern chip
multiprocessors even with very large caches, because the
dominant stall component then shifts to L2 hits. Barroso et al.
[5] compare the performance of the Piranha chip
multiprocessor against a single out-of-order processor with
similar resources, but do not consider FC core designs for the
Piranha chip.
Ranganathan et al. [21] examine the performance of database
workloads on shared-memory multiprocessors and identify
simple optimizations that improve performance when
employed by aggressive out-of-order processors. However this
study does not consider lean cores, which outperform their
aggressive out-of-order counterparts on saturated workloads
despite their low single-thread performance. Lo et al. [19]
study the performance of database workloads on simultaneous
multithreaded (SMT) processors and show that aggressive
wide-issue out-of-order SMT processors can outperform their
single-threaded out-of-order counterparts. However, wide-
issue out-of-order processors with an abundance of hardware
contexts are complex designs, and their area and power

overhead render them unsuitable for CMP designs that target
database workloads. In our study we show that even simple in-
order multithreaded processors can outperform aggressive out-
of-order ones when the database workload exhibits significant
thread-level parallelism.
Staged computation is an emerging proposal for the design of
software servers. An effort derived from research in the area of
operating systems proposed a staged server programming
paradigm that divides computation into stages and schedules
requests within each stage [18]. This work improves the cache
performance of a Web server and a Publish-Subscribe server
by following the proposed server programming paradigm.
Welsh et al. in [27] propose a staged event-driven architecture
for implementing highly performing internet services. The
primary focus in this work is to prevent the resource over-
commitment when the demand of the server exceeds the
service capacity, and not the memory hierarchy performance,
which is the dominant bottleneck for data-intensive
applications, such as the database servers. Our philosophy for a
staged database system is derived from [12], which outlines the
main characteristics of staged database servers.

8. CONCLUSIONS
High levels of integration have enabled the advent of chip
multiprocessors and increasingly large (and slow) on-chip
caches. These two trends pose new performance challenges to
the database community, which is not ready for dramatic shifts
in hardware design. This study presented a performance
characterization of a commercial database server in a number
of representative chip multiprocessor technologies. The
simulation results indicate that data cache misses are the
performance bottleneck in memory-resident databases, with L2
hit stalls rising from oblivion to become the dominant single
execution time component in some cases. We discussed several
techniques to reduce the data stall component and derive a list
of features for future database designs.
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