
Predicate-based Indexing of Enterprise Web Applications

Cristian Duda
ETH Zurich, Swizerland

cristian.duda@inf.ethz.ch

David A. Graf
ETH Zurich, Switzerland

dagraf@student.ethz.ch

Donald Kossmann
ETH Zurich, Switzerland
kossmann@inf.ethz.ch

ABSTRACT
Searching the Web has become a commodity. However, extending
applications with search capabilities is still an open research topic
[2]. Large enterprise applications such as SAP and Oracle Finance
implement their own search engines. Vendors of small applications
cannot afford such an investment and, as a result, small applications
either do not provide search facilities or have very imprecise search
capabilities. The main problem is to efficiently and completely in-
dex dynamic pages which are not physically on disk. This demo
shows a generic approach to enhancing enterprise web applications
with search capabilities. The approach is independent of the lan-
guage in which pages are written and it does not require to start the
web container. It is based on extended inverted files and it is ap-
plied to the PetStore application, a popular Web-based application
based on the J2EE framework.

1. INTRODUCTION
Consider the search box in a web application. It is supposed to

retrieve the dynamically-generated pages which contain the given
keywords. Current enterprise search is confronted with the follow-
ing reality: dynamically generated pages cannot be accurately in-
dexed since they do not physically exist on disk. Typical enterprise
Web applications combine static content with dynamic content re-
trieved from databases. Depending on parameters or internal ap-
plication logic, several dynamic pages may actually be generated
from a single web page. The immediate consequence is that not
all pages which could be returned are actually included in the re-
sult list. Only static content of the source pages and some dynamic
content which is irrelevant for search (SQL queries embedded in
the page) can be indexed by current technology.
Indexing application logic is, generally, undecidable. We address

the problem by specifically focusing on web applications. Our goal
was (i) to provide search functionality which works in the granular-
ity of final web pages. (ii) support queries which contain keywords
from both the static and dynamically generated part. Moreover,
we aimed to do it generically, both independent of the language in
which a web page is written and without accessing the web con-
tainer.

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

(a) Typical Enterprise Web Page

2

4

Admin

Coding

PId Project

Hello Paul Smith,

Your list of Projects:

Hello <<name [empid = ...]>>

<<List >>

projects.jsp?empId=e1

2

5

Admin

P/R

PId Project

Hello Mary Connor,

Your list of Projects:

projects.jsp?empId=e2

Your list of Projects:

 - project [empid = ...]

(b) All Corresponding Dynamic Web Pages

DATA

<</List>>

projects.jsp?empId= ...

 - ...

Figure 1: Typical Structure of a Web Page in an Enterprise
Web Application

Motivating Example
Consider a web page which displays information about employ-
ees, such as the one in Figure 1a. Independently of the language
in which it is described, it consists of some static, common con-
tent (the text ”Your list of Projects”), and a list with dynamically-
generated content which appears in designated places on the page.
Data is taken from a database, to generate two possible final web
pages. In this case, the page is dependent on the parameter empid
(the id of the employee) and there are as many generated pages
as there are values for the parameter. The static content is shared
between all pages.
We developed search functionality which support queries such

as the following: ”Hello” (returns both Paul’s and Mary’s pages);
”Hello Paul”, ”Hello Mary” (each returns a single page - that of
the corresponding employee) but also ”Admin Connor” (which re-
turns Mary’s page). The queries return document which are not
physically on disk, and use combinations of words from both static
and dynamic content. The challenges were: generality (i.e., ab-
straction from the language of the enterprise web pages and inde-
pendence from web container, completeness (i.e., index all possible
pages as dictated by the application logic) and efficiency (especially
important since there can be a lot of pages).
In this paper, we attain generality by reducing application logic

to patterns which are common in enterprise applications; as a re-
sult, we obtain a simple and abstract view of the web application
logic. Simple predicates are used to encode all page variants such
as the ones above, and this provides completeness to our approach.
Efficiency is obtained by completely avoiding the generation of all
possible pages, and by using a unified, optimized, view on all of
them (normalization). By also enhancing traditional inverted files
with predicates, search functionality works at the level of dynami-
cally generated pages.
The rest of the paper is organized as follows: Section 2 briefly

describes how patterns and predicates can be used for indexing and

102

(a) Dynamic Page:
Hello <out expr=”doc (...)/ empl[emp id=$emp id]/Name”</out>
(b) Instance 1:
Hello <out>Paul Smith</out>
(c) Instance 2:
Hello <out>Mary Connor</out>

Figure 2: The ”Output” pattern

searching enterprise applications. Section 3 describes the patterns
encountered in dynamic enterprise applications. Section 4 applies
our preliminary framework to the Java Pet Store application. Sec-
tion 6 draws conclusions and summarizes ongoing and future work.

2. PREDICATE-BASED INDEXING OF
ENTERPRISE APPLICATION DATA

As mentioned in Section 1, indexing application logic is an un-
resolved problem. Our solution is to explicitly focus on the appli-
cation logic of enterprise web applications and to find a modality
to abstract it, by still being able to index its effect. We present a
framework capable of achieving this goal.

2.1 Patterns
The key to solving the above-mentioned problem is the follow-

ing observation: there are only a few common patterns exhibited
by the application logic. Each pattern specifies a way in which dy-
namic content and data can be placed on the generated pages. As an
example, a page can contain lists of values taken from a database,
or alternative parts of content depending on a parameter. As an ex-
ample, the two patterns of the page in Figure 1 are a simple Output
of a name and a List of projects, both dependent on the value of
the empId parameter. Figure 2a describes how a dynamic web page
can abstractly represent an element associated to the Output pat-
tern. For each possible value of the parameter emp id, there will
be a final page which contains the name of the employee with the id
emp id. In this abstract notation, we express the output expression
as an XPath expression. This abstract representation of a page is
one key to achieving generality.
The importance of patterns can be summarized as follows: by

using patterns we abstract away from the actual language used to
define the web page (e.g., JSP, PHP). There are more patterns used
in the construction of web pages (e.g., If, List, Placeholder) and
they will be categorized in Section 3. This can be considered a
model-driven approach to building web sites [1], an approach taken
for example by WebRatio [8]. In particular, in choosing these pat-
terns, we were also inspired by the elements of the Java Standard
Tag Library [5] - an attempt to the encapsulate application logic of
web pages in reusable tag libraries.

2.2 Instances
Each pattern specifies a way in which dynamic content and data

can be placed on the page. A pattern affects a specific part of a
dynamic web page, and specifies all the possibilities in which the
affected content (a part of a page) can appear on a result page. We
will call Instance each possibility to generate content, as dictated
by a pattern.
For example, the Output pattern specifies two instances: one for

each possible value of its parameter (emp id) - represented in Fig-
ure 2b and 2c . An instance contains the common content of the
page (the text Hello) and the specific content of the instance (the
name of each employee, as described by the result of the XPath ex-
pression). The instances of the List pattern are also two (i.e., the

<select pred=”$emp id=1”>
<out>Paul Smith</out>

</ select>
<select pred=”$emp id=2”>

<out>Mary Connor</out>
</ select>

Figure 3: Normalized View of the ”Output” Instances(Figure 2)

list of Projects of each employee). The List pattern is presented in
Section 3.2.
The notion of Instances can be used to determine all possible

pages which could be generated from an enterprise web page. The
set of all pages is the cross-product of the instances depending on
each value of each parameter . Note that instances are used only
conceptually: we never explicitely generate all pages resulted from
a dynamic enterprise web page.

2.3 Normalization
As mentioned before, indexing enterprise web applications must

be done in terms of the generated pages. An important mention is
that the set of all generated pages is the cross-product of all possible
instances.
It is inefficient to index all instances by explicitly generating

them since the number of instances can explode. For efficiency in
terms of indexing space, we separate the common content, which
we index once, and the variable content, which we index separately.
In case of the web application in Figure 1, the static content of the
page is the common part, while all possible names of persons and
all possible the lists of projects constitute the variable part, which
differentiates instances between them.
Based on this observation, we can build a unified, Normalized

View, of the instances intended from such enterprise data. Figure 3
shows the Normalized view for the example of Figure 1. It includes
common content once, and all possibilities of variable content. In
order to mark the fact that a certain part of content belongs to a
certain pattern and to a certain instance for that pattern occurrence,
we associate a simple predicate to each variable content. The com-
mon content has the implicit predicate true. In Figure 3, pred-
icates are encoded using XML elements select. They contain
a variable name associated to the parameter, and a key; each key
corresponds to a possible value for the parameter. Therefore, the
Normalized View enhances the original data with predicates and
the two possible instances are uniquely identified by the predicates
$emp id = 1 and $emp id = 2, respectively.
Because of the above-mentioned properties, the Normalized View

can be used to infer all instances of a given page. Therefore, to
generate an instance, it is enough to apply on the normalized view
the predicate which characterizes the instance, and select only the
specific content from the normalized view which matches the pred-
icate. Common content, with an implicit predicate true, will there-
fore be included in all instances.

2.4 Enhanced Inverted Files
The idea of Normalized View immediately reflects on Indexing:

We apply a simple and powerful modification of traditional inverted
files: i.e., we add a new column which specifies the predicate with
which the content of that specific keyword is marked, as displayed
in Figure 4. Common content is marked with the predicate true.
Furthermore, if a keyword depends on more parameters, the Pred-
icate is a conjunction of simple predicates. If a keyword appears
in more instances, several entries are mentioned for it, as for the
keyword Admin which appears in both instances $emp id = 1 and

103

DocId Keyword Predicate
d1 Hello true
d1 Paul $emp id = 1
d1 Smith $emp id = 1
d1 Mary $emp id = 2
d1 Connor $emp id = 2
d1 Admin $emp id = 1
d1 Admin $emp id = 2

Figure 4: Portion of the Enhanced Inverted File for Web Page
in Figure 1

$emp id = 2. Query processing will also be adapted to take into
account the modification of the index format. It is relevant to men-
tion that also position and count information can be encoded, but
are not included here for reasons of space. Their overhead on index
size and performance is however very reasonable.

2.5 Search
Traditionally, keyword search is performed by retrieving the in-

dividual ”posting” lists for each keyword in the query, and sub-
sequently merging them. Still faithful to this technique, the en-
hanced model must also merge the predicates associated to the
postings corresponding to the same document. The effect is that
results are returned as a pair < doc, predicate > (i.e., in the gran-
ularity of the instances). As an example, the query for ”Con-
nor Admin” will merge the lists: (< d1, $emp id = 1 >) and
(< d1, $emp id = 2 >, < d1, $emp id = 2 >), and return
(< d1, $emp id = 2 >) as a result. We use a version of a a special
sweep-line algorithm for merging inverted lists. The above tech-
niques can be applied to all of the specified patterns that will be
described in Section 3.
This section presented a generic framework for indexing appli-

cation data. More details, including algorithms for Normalization,
Indexing and Query Processing can be found in [3].

3. PATTERNS IN ENTERPRISE WEB AP-
PLICATIONS

We describe the few basic patterns we identified in web appli-
cations. A very high percentage of the observed applications use
only these patterns. We describe a single scenario for each pattern,
and mention the further possible scenarios which it can also cov-
ers. First, however, we describe the conventions used to specify the
patterns:

Content Descriptors
In order to abstractly describe the content of an enterprise web page
and in order to be able to specify possible pattern occurrences, we
use a language-independent format. A file written in this format is
called a content descriptor. The format contains typical elements of
dynamic web pages. The use of content descriptors does not restrict
generality of the approach, it is however necessary in order to easily
refer to elements of the page which exhibit a certain pattern, and to
ignore parts of the page which do not contribute to the search result.
In future, we intend to apply the pattern-based approach directly to
the XML representation of JSP pages.

Datasources
In the enterprise world, we have access both to the content files and
to the data used to generate dynamic content. The dynamic part of a
web page (written in a language such as JSP or PHP), also describes
data access. As a convention, we use XPath and XQuery expres-
sions for this purpose. This brings maximum decoupling from the
data model, and is especially sustained by the fact that commercial

databases such as Oracle and DB2 can provide an XML-View of
any relational table, and allow XML-SQL queries to be performed
on mixed content.

Parameters
Application logic might be dependent on parameters. Each value
of a parameter creates another possibility to generate the existing
page. For each parameter, its name and its domain must be known
and declared in the content file. In the following example, the con-
tent file contains one parameter with the name category id. The
domain of this parameter is loaded from an XML file, using an
XPath or XQuery expression, as explained in Section 3.
<params>

<param name=”category id”
domain=”doc(’petStoreData.xml ’)// Category/@id”/>

</params>
This way to specify parameters provides another level of abstrac-
tion as what regards the method used to transmit parameters to the
web page. The method (in particular GET or POST) is abstracted
away and actually irrelevant for the indexing and for the search
process.
Rules
The content descriptor encodes an abstract version of usual appli-
cation logic. In order to enable the search functionality, it is neces-
sary to specify where patterns occur in the abstract representation.
Therefore, we use a special notation which marks specific elements
as carrying the behaviour of certain patterns, independently of the
language of the dynamic web page. As explained above, using a
content descriptor does not reduce generality. This could be applied
to any XML-representation of a web page which follows the spec-
ified guidelines for the content descriptor. In particular, we plan to
adapt the framework to an XML-version of the JSP language. Rule
examples can be found in Section 3. From a usablity perspective, it
is very likely that in future rules will be automatically generated by
development tools, such as [8], a model-driven web development
tool.
Here are the patterns we identified in enterprise web applica-

tions:

3.1 "If"
Description:
This pattern is useful to describe that parts of dynamic web pages
which appear only depending on the value of one parameter. In
the following document, the if element contains content that is de-
pendent on the parameter category id. The rule identifies match-
ing elements (i.e., all if elements in the content descriptor). The
variable m will be associated to each one of these elements. Con-
ditional branches are indentified by the case subelements for each
value ofm, and the conditions as defined in the cond subelements
of each case (associated to the variable c). In our case, there is a
separate instance for each value of the parameter category id.
Extensions of this pattern can describe multiple choice, alterna-

tives (e.g., drop boxes), try/catch blocks, all implemented by our
approach.
Content Descriptor:
<if>

<case cond=”$category id==FISH”>
The param category id is FISH

</case>
<case cond=”$category id==BIRDS”>

The param category id is BIRDS
</case>

</if>

104

Rule:
<if match=”// if ” cases=”$m/case” condition=”$c/@cond”/>

Instance1:
<case cond=”$category id==FISH”>

The param category id is FISH
</case>

Instance2:
<case cond=”$category id==BIRDS”>

The param category id is BIRDS
</case>

3.2 "List"
Description
This pattern is used to represent a list of results from a query. Em-
bedded elements mapped to the Output pattern are used for dis-
playing the results. The reference in the list definition declares
the query which specifies the actual elements of the list. Each of
these element can be accessed by using the symbolic value declared
in the attribute item. List patterns may also be dependent on pa-
rameters: an instance (i.e., a list) is created for each possible value
allocated to the parameters of the list. For each of these instances,
the content of the element in the list element in the content de-
scriptor is considered and eventual elements corresponding to the
Out pattern are, at their turn, instantiated.
Content Descriptor
<li reference =”doc (’...’)/ products /[@cat id=$category id]”

item=”$p” params=”(’ category id ’)”>
<out expr=”$p/Name/text()”/>

Rules
< list match=”// li ” ref=”$m/@ref” item=”$m/@item”

params = ”$m/@params”/>
<out match=”//out”/>
Instance1:
< list ... > Cat1 product1 Cat1 product2 ... </ list>

Instance2:
< list ... > Cat2 product1 Cat2 product2 ... </ list>

3.3 "Placeholder"
Description
Imports another content file to which rules may also apply. A
typical example are headers or copyright messages common to all
pages, or even dynamic subpages which just contain common code
for displaying the current product categories in a store.
Content Descriptor
<include path=”versionComment.xml”/>
Rule
<include match=”// include” path=”$m/@path”/>

3.4 More Patterns in Application Data
This section listed patterns we identified in enterprise web ap-

plications and the specific techniques applied for indexing such
applications. There exist however several other patterns that we
identified in (non-web) enterprise data, which are mentioned in [3],
among which Annotations, Alternatives, Excluded, Versions. To all
these patterns, a predicate-based approach can be applied. They all
correspond to point predicates (e.g. id = 1), except Versions, for
which time intervals encode the moment of the document modifi-
cations. The complete list and more details can be found in [3].

http://daveslaptop:8000/petstore/category.screen?category id=BIRDS

Figure 5: Example of the PetStore Application

Figure 6: Indexing the Pet Store Web Application

4. DEMO
We have implemented the predicate-based indexing framework

in Visual Studio.Net 2005. We applied it to the J2EE PetStore ap-
plication (Figure 5), implemented using JSP. We added indexing
and search functionality to the application.

4.1 Test Environment
The framework was run on an IBM Thinkpad T42 Laptop, with

1 GB RAM memory and 70 GB hard disk. The demo shows how
data can be indexed based on the content files and rules, and how
keyword and phrase search can be performed. The Indexes are en-
hanced inverted files, as described in Section 2.4. A GUI is used for
specifying the content file and the rules for performing indexing, or
the the keywords or phrase query in case for performing search.
Results are < doc, predicate > pairs, presented in a user-friendly
way and with the possibility to view the initial page in the browser.

4.2 Test Data
We manually generated content files for the relevant files in the

J2EE PetStore application. An fragment from this page, when dis-
played in a browser with the parameter category id = BIRDS,
can be seen in Figure 5.

Content Descriptors
The content descriptor (Section 3) for this dynamic web page con-
tains the parameter definition and parameter domains, loaded from
the original XML data file of the PetStore application:

105

<params>
<param name=”category id”
domain=”doc(’petStoreData.xml ’)/.../ Category/@id”/>

</params>

The menu on the left of Figure 5 is the list of all categories, which
is not dependent on parameters. It can be represented as follows:

< list ref=”doc (’...’)/../ Category/ CatDetails [lang=’en−US’]”
value=”$r”>
<out expr=”$r/Name/text()”/>

</ list>

The list element is mapped to a List pattern and declares a list
with categories loaded from an XML-file. The definitive content
is defined with an XPath expression. The out subelement of list,
corresponding to the Out pattern, will display the name of each cat-
egory selected from the XML file by the list patterns. Specifically,
category names are: Birds, Cats, Dogs, Fish, Reptiles.
The product list, displayed at the right in Figure 5, describes

the products of a given category and, therefore, depends on the
parameter category id:

< list ref=”doc (’...’)/.../ Prod[@category = $category id]/... ”
params=”(’ category id ’)”
value=”$r”>
<out expr=”$r/Name/text()”/>
<out expr=”$r/ Description / text () ”/>

</ list>

In the same way, this new list element selects product elements for
the given category id, while name and description of each product
are displayed by applying the out pattern.

Rules
The rules for each pattern in the Java PetStore application are de-
clared exactly as described in Section 3. It is worth mentioning that
the rules associating the behaviour of the List andOutpatterns to the
list and out elements in the content descriptors are declared just
once for the whole application, and, therefore, not for each content
descriptor. This is made possible by applying patterns rigourously
throughout the application. In particular, the initial JSP pages of
the PetStore application made use of tag libraries. This made the
generation of content descriptors straightforward.

4.3 Indexing and Search
Indexing (described in Section 2.4) can be performed with sev-

eral options. It is possible to add positioning and scoring informa-
tion to the index or to save the index in a compressed or uncom-
pressed way. These options are available through the GUI shown
in Figure 6, a screenshot of the application during indexing pro-
cess. Before the actual indexing is performed, the normalized view
is created (but only materialized when required). In the normalized
document, the dynamic parts are tagged with encoded parameter in-
formation. Here is an example: the product names and descriptions
for category id = BIRDS. In this example, “1” encodes the
parameter category id and the value “4” represents the encoded
value of the string “BIRDS” for this parameter.

<e:s v=”1” k=”4”>
Amazon Parrot: Great companion for up to 75 years
Finch: Great stress reliever

</e:s>
For maximum space gain, indexing also makes use of the same
dictionary-based compression techniques as in the actual normal-
ized view. The mapping between encoded and actual parameter

Figure 7: Example Query Result

values is maintained and will be used after query processing, when
presenting the results to the user. Both keyword search and phrase
search are possible on the enhanced inverted files. If enabled, re-
sults are ranked based on the relevance of the instance result among
the whole set of instances. Since parameters are encoded, result are
decoded and presented to the user as in Figure 7.

4.4 Statistics
One big advantage of predicate-based indexing is the small size

of the index (for dynamic content). We compared it to the tradi-
tional index (all instances materialized):
Original Data: Database 40kb, Source files 4.9kb
Traditional Indexing: Index 33.5kb, Materialized Pages 51.8kb
Predicate-based Indexing: Index 10.8 kb, Normalized View 7kb
First, it is important to mention that the traditional index is sig-

nificantly bigger then the predicate-based one because common
content is indexed repeatedly in the traditional approach. Also, the
overhead of predicates is not high. Second, normalization pays
off and the space gain is significant compared to the traditional
approach of materializing all instances. Actually, normalization
achieves a compression ratio of almost 8 times as compared to
full materialization. Third, generating all possible combinations of
page content and database would also be unfeasable. Taking into
account only the combinations allowed by the application logic (as
abstracted by patterns) brings clear benefits in space. Query pro-
cessing time is not included here because of possible lack of pre-
cision considering the small data size. It is however comparable
to the traditional approach (i.e., the overhead of predicates is not
high) and does not exceed 10 milliseconds.

5. DISCUSSION
The previous sections described the framework for indexing en-

terprise applications and its use for indexing a real application (Sun’s
Java Pet Store). This section discusses several points sustaining the
general applicability of the approach:

• Collaboration of the application developer. For this demo,
the content descriptors have been manually generated. We
think that along with a new wave of more complex enter-
prise web applications, most part of these applications will
be automatically generated, or generated using tools. This
will alleviate the work of the application developer, who will
need to describe the functionality only once.

• Expressiveness of rule language. Our current rule language
can express a large part of the functionality in the Pet Store
application. A significant exception are update pages (such
as “Add to cart”), and for a good reason. In this case, content
is indexed only if it does not depend on hypothetical values
(e.g., we do not index the products a user might introduce
in its Shopping Cart, or the amount the user might pay with
his credit card). We aim however to address issues related
to modelling workflows in web applications. However, since
update pages are relevant in this context, they will be even-
tually be included in the solution.

106

• Tools and Automation. Our implementation focused on a
tool for indexing and query processing enterprise web appli-
cations based on abstracting the application logic. This ab-
straction and the specification of rules could be in future sup-
ported by tools such as WebRatio [8], while current Web Ap-
plication Framework such as Struts [7] or Java Server Faces
[4] can serve as a base for deriving application architecture,
the page models and workflows.

6. CONCLUSIONS
We have presented an architecture which adds search capabilities

to web applications in a generic way. It is independent of the lan-
guage of the application and does not require the collaboration of
the web container. Although preliminary, the approach is promis-
ing for its accuracy and its applicability to current enterprise stan-
dards such as Java Standard Template Library (JSTL[5]). The idea
could also be applied in the context of indexing the Hidden Web
[6], but our proposed approach does not require a running web con-
tainer for indexing and search. A particular disadvantage of hidden
web crawling is the necessity to “guess” possible input values for
fields in web forms (such as a login page), in order to have access
to the pages returned after the form was submitted. Our framework
eliminates this by having access to both source files and database
(i.e., values are known). Next steps in future work are applying the
framework to a complex enterprise application and fully adapting it
to the JSP-XML and JSLT format are the next decisive steps. Also,
security and privacy issues could be expressed in terms of predi-
cates, which is a natural application of the ideas in this framework.
To conclude, we aim to provide a framework capable of indexing
any AJAX-enabled web application.

7. REFERENCES
[1] S. Ceri, P. Fraternali, A. Bongio, M. Brambilla, S. Comai, and

M. Matera. Designing Data-Intensive Web Applications.
Morgan-Kaufmann, The Morgan-Kaufmann Series in Data
Management Systems, 2002.

[2] J. Delgado, , R. Laplanche, and V. Krishnamurthy. The New
Face of Enterprise Search: Bridging Structured and
Unstructured Information. The Information Management
Journal, Vol. 39:40–46, 2005.

[3] J.-P. Dittrich, C. Duda, B. Jarisch, D. Kossmann, and M. A. V.
Salles. Keyword Search on Application Data. Technical
report, ETH Zurich, 2006.

[4] Java Server Faces. http://java.sun.com/javaee/javaserverfaces/.
[5] Java Standard Tag Library.

http://www.java.sun.com/products/jsp/jstl.
[6] S. Raghavan and H. Garcia-Molina. Crawling the Hidden

Web. In VLDB, pages 129–138, 2001.
[7] Struts. http://struts.apache.org/.
[8] WebRatio. http://www.webratio.com.

107

