Rethinking Choices for Multi-dimensional Point Indexing:
Making the Case for the Often Ignored Quadtree

Position Paper

You Jung Kim and Jignesh M. Patel
Department of Electrical Engineering and
Computer Science
University of Michigan
2260 Hayward, Ann Arbor, MI, USA

{youjkim, jignesh}@eecs.umich.edu

ABSTRACT

Multi-dimensional point indexing methods play a critical
role in a variety of data-centric applications, ranging from
image retrieval, sequence matching, and protein structure
comparison. Many of these applications require manipulat-
ing point data in low to medium dimensional space, either
because of the inherent nature of the problem, or due to the
use of dimensionality reduction techniques such as PCA. A
common choice of indexing method for these applications is
often the “ubiquitous” R*-tree. In this paper, we challenge
this popular choice of indexing for low and medium dimen-
sional point data and investigate the use of Quadtree as an
alternative index structure.

Our paper shows that the regular and disjoint decom-
position method used by Quadtrees provides a significant
structural advantage over the R*-tree, which suffers from
high overlap amongst MBRs even for low dimensional data.
In addition, the unbalanced nature of the Quadtree has
a surprisingly beneficial effect on the buffer pool utiliza-
tion. Using analytical models and extensive empirical eval-
uation we show that the often ignored Quadtree far outper-
forms the R*-tree (and the Pyramid-Technique) for indexing
low and medium dimensional point datasets. Consequently,
our work makes an important contribution, which motivates
the reconsideration of the often ignored Quadtree indexing
structure for the common problem of multi-dimensional in-
dexing.

1. INTRODUCTION

Due to the demanding need for efficient multi-dimensional
indexing methods in many database applications, signifi-
cant research effort has been invested towards developing
new multi-dimensional indexing methods. Of these index-
ing methods, the R*-tree [2], one of the R-tree [10] variants,

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).

You may copy, distribute, display, and perform the work, make derivative
works and make commercial use of the work, but you must attribute the
work to the author and CIDR 2007.

374 Biennial Conference on Innovative Data Systems Research (CIDR)
January 7-10, 2007, Asilomar, California, USA.

281

is most widely used.

Since it is well-known that the performance of the R*-tree
deteriorates rapidly with increasing data dimensionality [4],
the R*-tree is not used for handling very high-dimensional
datasets. However, high-dimensional datasets are plagued
with the curse of dimensionality, and general high perfor-
mance high-dimensional indexing methods that work across
a variety of applications still remain a legitimate research
goal (and is likely to continue to be an open research prob-
lem for at least the near future). However, for many high-
dimensional applications, a practical method is to apply
a dimensionality reduction method such as principal com-
ponents analysis (PCA) to transform the high-dimensional
dataset into a low or medium dimensional datasets (usu-
ally with 8 or fewer dimensions). The use of R*-tree for
low and medium dimensional point indexing has been advo-
cated for many years and many applications have been built
using R*-trees. A few examples of such applications are sim-
ilarity search in sequence databases [1], image retrievals in
multimedia databases [6,17], subsequence matching in time-
series databases [15,16], and similarity searches in protein
structure databases [19]. A common characteristic of these
examples is that they all rely on R*-trees for indexing multi-
dimensional point datasets, which usually have less than 8
dimensions. In this paper we critically examine this conven-
tional choice and explore the use of the Quadtree index [18]
as a more efficient alternative to the “ubiquitous” R*-tree
for indexing low and medium dimensional datasets.

We note that Quadtree structure has been around for
many decades even within the context of database systems [9,
11], but it is still not as widely accepted as the R*-tree. We
speculate that the reasons for largely ignoring the Quadtree
for database indexing are: 1) the unbalanced nature of the
index structure, especially for skewed data, and 2) the mis-
match between the size of a non-leaf node and a disk block
size. Nevertheless, the Quadtree has some nice properties as
it employs a disjoint and regular space partitioning strategy.
This partitioning method has an advantage over the R*-tree
which suffers from rapidly increasing overlap of MBRs even
for relatively low dimensionality. Furthermore, we observe
that the Quadtree is better at handling skewed data as it
is not encumbered by problems caused by methods that re-
quire producing a balanced index structure. In addition,
its unbalanced structure actually provides an advantage for

buffer management as it results in better spatial locality
compared to other balanced index structures. In addition,
drawbacks related to the large fan-out and low node oc-
cupancy in the Quadtree can be alleviated to some extent
with efficient node packing techniques which we employ in
our implementation.

There are more than a few dozen indexing structures for
multi-dimensional point data [3, 4,8, 14], and each year a
few more indexing structures are proposed. Among these
alternatives, the Pyramid-Technique [3] is notable and it
was shown to be far superior to the Hilbert R-tree [12] and
the X-tree [4]. The Pyramid-Technique is also based on the
disjoint space partitioning similar to the Quadtree. How-
ever, instead of using a balanced space split, it adopts an
unbalanced space split strategy. We note that the Pyramid-
Technique has been shown to outperform existing methods
for very high dimensional data, but its performance is un-
known for low and medium dimensional data. As an alterna-
tive to the R*-tree, we also examine the Pyramid-Technique
extensively.

Some previous work [13] has compared the R-tree and the
Quadtree in a commercial database, but that study only
focuses on a 2 dimensional GIS spatial data and the perfor-
mance of the R-tree and the Quadtree is not compared for
higher-dimensional point data.

In this paper, we compare the performance of the R*-
tree, the Quadtree, and the Pyramid-Technique for low and
medium dimensional point data. Using disk-based indices

implemented in SHORE [5], we demonstrate that the Quadtree

significantly outperforms the other two indexing methods.
Consequently, we make the case that it is time to consider
the unbalanced Quadtree index for efficient querying on low
to medium dimensionality point datasets.

2. IMPLEMENTATION

In this section, we describe our implementation of the
R* tree, Pyramid-Technique, and Quadtree indices as disk-
based index structures in the SHORE [5] storage manager.

SHORE has an R*-tree implementation, but it only works
for two dimensions. So, we implemented a general R*-tree
in SHORE following the description in [2]. In addition, we
use the following optimization for an efficient disk layout:
Once the R*-tree is created using multiple inserts, the origi-
nal index is traversed using a breadth first method, and each
visited node is rewritten to disk sequentially. As a result,
we create an R*-tree such that all non-leaf and leaf sibling
nodes are clustered sequentially on disk. The clustering of
non-leaf and leaf sibling nodes results in efficient disk ac-
cess. Compared to the original R*-tree, the optimized R*-
tree improves query performance by about 5-20%. (We have
not implemented a bulkloading algorithm which can lead to
faster loading times.)

To make sure that our R*-tree implementation is not

slower compared to the 2D R*-tree implementation in SHORE,

we compared the performance of window queries on 2D
datasets for the two implementations, and found that our
implementation is actually consistently slightly faster than
the implementation in SHORE.

The Pyramid-Technique is based on transforming high di-
mensional points to one dimensional points, and then using
the BT tree to index the one dimensional points. For win-
dow query processing, the query is transformed into a set of
range searches on the B tree. We implemented both naive

282

and extended Pyramid-Techniques as described in [3]. The
naive Pyramid-Technique is used for uniform data and the
extended Pyramid-Technique is used for skewed data. We
simply use the SHORE B™ tree implementation and the
bulkload algorithm that is already implemented in SHORE.

The Quadtree is an index structure based on a hierarchi-
cal regular decomposition of space. We implemented the
Quadtree in the following way: First, a Quadtree is created
using records of a constant (known) size for the non-leaf
nodes, and using the page size for the leaf node (technically
we are implementing a bucket Quadtree [18]). Then, we
traverse the original index starting from the root using a
breadth first search. During the traversal, we copy each vis-
ited node and write it sequentially to disk, producing a new
(final) Quadtree index file. When copying each node, both
non-leaf nodes and leaf nodes are packed to variable size
records, leaving only a small amount of space to allow for
updates. Finally, at the end of the traversal of the original
Quadtree, we simply point to the new file as the Quadtree in-
dex file, and delete the original file. Essentially, our method
produces a compact disk layout for the Quadtree index and
is a quick prototype for a bulkloading algorithm.

Note that in our Quadtree construction method, we are
using a compact packing method. This is crucial for an ef-
fective Quadtree index since the internal Quadtree nodes
can be much smaller than a disk page, and the occupancy
of the leaf-level buckets is often very low. In addition, the
breadth-first traversal method for packing is a natural order
for packing as sibling nodes are frequently co-accessed dur-
ing the processing of a query. (The impact of the packing
technique is described in more detail in Section 4.4).

For concurrency control, our current Quadtree implemen-
tation simply uses the record-level locking in SHORE. For
consistency update queries start by grabbing an exclusive
lock on the root node. A more detailed discussion of highly
efficient concurrency control method for Quadtree indices is
beyond the scope of this work and is part of future work.
However, it seems that the regular and non-overlapping de-
composition structure of the Quadtree can potentially be
effectively exploited using predicate-based locking methods
or optimistic concurrency control methods.

3. ANALYTICAL COMPARISON

In this section, we will analytically compare the perfor-
mance of R*-tree, Pyramid-Technique, and Quadtree in-
dices. For this comparison, we use an analytical formula
proposed in [3]. This analytical formula requires as input in-
formation about the minimum bounding rectangles (MBR)
in an index structure, and then estimates the average num-
ber of page accesses for a range query Q based on this in-
formation.

We also considered another analytical methods. For in-
stance, an analytical formula proposed in [7] estimates page
accesses in R-tree variants only using data characteristics,
without requiring information about the actual index struc-
ture. However, this formula works accurately only if the
data dimensionality is fairly small, for the following reason.
This formula is derived assuming square-shaped MBRs and
a good index structure which has no overlap amongst MBRs.
In the case of R-tree variants, this is a highly optimistic as-
sumption even for low and medium dimensional data. As
shown in [4], as data dimensionality increases, the ratio of
MBR overlaps increases rapidly. The increased overlaps of

Table 1: Notations

Symbol Definition

d number of dimensions

P number of pages in an index

M; = (L;, H;) MBR of a node ¢ with low and high coordinates L; and H;
Li = (liay ey liyg) d-dimensional low coordinate of a MBR ¢

H; = (hi1, ..., hi,a) | d-dimensional high coordinate of a MBR i

Q=(q1,-,94) range query with side lengths q1,....,q4

DA(3) probability of accessing a page 4

PA total number of pages accessed by a range query Q

MBRs in turn result in increased page accesses. Since the
formula does not consider overlap among MBRs, the estima-
tion error will increase with increasing data dimensionality.
To check this observation, we experimentally compared the
actual number of page accesses and predictions from [7].
For this experiment, we used 2, 4, and 8 dimensional uni-
form data sets with 2 million points and range queries of
size 1% volume of the data space. The estimation errors
from [7] for the R*-tree are 4%, 95%, and 99% for 2, 4, and
8 dimensional datasets.

We note that the formula in [3] can be directly used for
the R*-tree. However, the formula needs to be adjusted
for the Pyramid-Technique and our packed Quadtree. In
the following discussion, we will present the original analyt-
ical formula presented in [3] and adapted formulas for the
Pyramid-Technique and our packed Quadtree. We make the
following assumptions:

1. The data space is a d-dimensional unit hypercube [0..1

2. Queries are hypercubes uniformly distributed over the
unit hypercube and they are always placed completely
inside the unit hypercube.

3.1 R*-tree

Given a query @ = (q1,....,g4) and the information about
MBRs in an index, the expected number of page accesses
is computed in the following way. First, for the query Q,
the probability of accessing a page i, DA(7), is calculated.
Next, the expected number of page accesses is calculated as
a sum of DA(%) over all pages 7 in the index.

In the case of a point query @, considering that the volume
of the data space is 1, DA(i) corresponds to the volume
of a MBR, M;, in a page i. For a range query @, DA(7)
corresponds to the volume of the MBR enlarged by the size
of Q, and the formula to compute DA(z) for the range query
Q is:

d
DA() = [[(Hi,j — Lij + a5)

j=1

(1)

We note that the above formula does not consider a bound-
ary effect in which an enlarged MBR exceeds the boundary
of the data space. Although the boundary effect can be
negligible in low dimensional spaces, estimation errors in
predicting page accesses increases as data dimensionality in-
creases. To adapt the formula to the boundary effect, the
following formula is proposed in [3].

(2)

d
. min(H; ;,1 —q;) —max(L;; — ¢;,0
DA(@)Z | | (J Jl)_q‘ (J J)
i=1 !

14,

283

To consider the boundary effect, [3] assumes that a range
query @ is always completely placed inside the data space.
This assumption essentially reduces the data space volume
to H¢:1 1 — g;. Furthermore, with this assumption, one has
to a(fjust the boundaries of the MBRs in the index to fall
within the reduced area. This adjustment is accomplished in
Equation 2 by ensuring that the minimum and the maximum
values of the MBRs are within the reduced area. A detailed
proof of the above formula is given in [3].

Then, the expected number of page accesses is the sum of
DA(i) over an entire index, and can be calculated as:

P

PA =" DA(i)

i=1

3.2 Quadtree

The formulas used for the R*-tree can also be used for a
regular Quadtree, but not for our packed Quadtree. To esti-
mate the number of page accesses accurately, it is necessary
to adapt the formulas to our Quadtree packing scheme.

The formulas for the R*-tree assume that a node 7 in an
index corresponds to a single page i. Therefore, DA(7), is
proportional to the volume of the MBR, M;, enclosing the
node i. However, in our packed Quadtree, several nodes
can be packed into a single page (see Section 2). Note that
since our packing strategy packs nodes in a breadth-first
order, these nodes need not be adjacent in space, and some
of these nodes could be at different levels in the index.

To calculate DA(¢), we first have to calculate the volume
of the MBRs in a page enlarged by Q. Let V'(7) denote this
volume. For the MBRs, Mi,...,M,,, in a page i, V'(3) is:

V@)= YL V(Mi,Q) =YL, V(IMinM;, Q)
+ Y ckes V(M N M; N M, Q) + ...
+ (“D)™W(MiNMaNMsN...N My, Q)

where V(M;, Q) = []}_, min(H; ;, 1—q;) —max(Li; —gj, 0).

In the above formula, V(M;, Q) represents the volume of
a MBR i enlarged by @ and it is calculated after removing
the parts of the MBR outside the effective data space (for
reasons discussed in Section 3.1).

V'(4)
d
j=1 (1—4q5)
Note that in the above formula the denominator is needed
since the volume of the data space is not 1, but H}i:l(l —

g;) since we assume that a range query Q is completely
positioned inside the data space.

DA@) = 3)

2048 T ~ 8192 T T T T - T —~ 16384 T T T T - -
2 e e] Lt B Wi
o> 1024 KT o 4096 T 1 =) 1 |
I KT 154 I 8192 s
S 512 x o S 2048 | S s 2
> > v Hemrree Koo d > IE
& 256 p & 1024 X I g 40% B
5 * & ><* " & ’ S R
g 187 g s12f 5 2048 RV
- o a =] K
s 64 s 256 | o s o
s 32 > y L 04T g
2 2 128 1] g
o 16 R* tree —+— s} : R* tree —+— a 512 R* tree —+—
<) ; Pyramid T. —%— o 64+ .H Pyramid T. —*— | <) Pyramid T. —%—
< By~ . __ Quadtree —o z & . __ Quadtree o z 256 . . . Quadtree o
001 01 1 2 4 6 8 10 0.01 01 1 2 4 6 8 10 0.01 01 1 2 4 6 8 10

Query volume (%)

(a) Uniform-2D

Query volume (%)

(b) Uniform-4D

Query volume (%)

(¢) Uniform-8D

Figure 1: Analytical model prediction of disk accesses with uniformly distributed synthetic datasets

Finally, as in the case of the R*-tree, the expected number
of page accesses for the packed Quadtree is calculated as:

PA= i DA()

i=1

3.3 Pyramid-Technique

The Pyramid-Technique [3] is based on an unbalanced
space partitioning: The data space is split into 2d pyramids
and each pyramid is further divided into several partitions,
each of which corresponds to a page in the B*-tree.

To index a d-dimensional point, the Pyramid-Technique
transforms the point into a 1-dimensional pyramid value and
indexes the pyramid value in the B¥-tree. The transformed
pyramid value, p, is computed as: p = v + h, where v is an
integer in the range of [0, 2d — 1], representing the pyramid
that encloses the d-dimensional point. A is a real number in
the range [0,0.5]. h represents the height of the point inside
the pyramid v from the center (at value 0.5) for the v or the
(v-d)-th dimension.

A range query in the Pyramid-Technique is processed as
follows: First, each of the 2d pyramids is checked to deter-
mine if it intersects with the query @Q. If there is a point in-
side) with a pyramid value in the range [v, v+0.5], the pyra-
mid v intersects with Q). Next, for each intersecting pyramid,
the range of the pyramid values affected by @, [hiow, Rrign],
is determined. Finally, for each intersecting pyramid v, the
Bt-tree is searched with the range query [v-+hiow, v+hnigh]-
For more details on the Pyramid-Technique, please see [3].

Similar to the analytical formulas for the R*-tree and the
Quadtree, given a B*-tree index created using the Pyramid-
Technique, we can derive a formula that estimates the ex-
pected number of page accesses. To compute this estimate,
we need information from the BT -tree regarding the range
of pyramid values in a page i. Let the page ¢ have pyramid
values in the range [p;;, pin], where p;; = v;; + h;; and
DPi,h = Vin + hip. Then, the probability of accessing the
page %, DA(1), is proportional to the range of the pyramid
values enlarged by the size of the v; ;-dimensional value of
Q.
More formally, let = denote a dimension in @ that can
affect the page 1.

|

Then, DA(i) is defined as:

ifvi; <d
ifv,; >d

Vil
Vil — d

284

Table 2: Evaluation of the Analytical Models: Av-
erage estimation errors in predicting the number of
page accesses

Indexes Average estimation errors

2D 4D 8D
R*-tree 6.2% | 15.7% 7.5%
Quadtree 4.9% | 14.7% 4.4%
Pyramid T. | 20.1% | 2.7% 1.7%

DA()
min(|h; , — 0.5|,1 — ¢z) — max(|h;; — 0.5| — gz,0)
1—q»

if viy <d

min(|h;n +0.5],1 — qz) — max(|hi; + 0.5 — gz, 0)
1—qs

if vig >d

Note that the absolute values of h;; and h;,; shifted by
+0.5 are the values in the original data space [0..1]. Also,
the minimum and maximum are used to remove the parts
that exceed the data space. In addition, in contrast to the
formulas for the R*-tree and Quadtree, note that 1-g, is used
as a denominator instead of H?zl(l — g;)- This is because
the probability of accessing a page i, DA(%), is only affected
by the range of values in a single dimension.

Finally, the overall expected number of page accesses is
calculated as:

PA= ZP: DA()

i=1

3.4 Comparison

In this section, we test the accuracy of the analytical mod-
els. For this test, we use 2, 4, and 8 dimensional uniform
datasets with 2 million points, and compare the actual num-
ber of page accesses with the analytical predications. For
this test, we used 1024 queries that are uniformly distributed
and completely inside the data space. Since our analytical
model does not capture the effects of using a buffer pool,
for this comparison, we simply flushed the buffer pool after
processing each query.

The Table 2 shows the average estimation errors of the
prediction compared to actual measurements. As can be
seen in this table, the analytical model is fairly accurate for

Table 3: Index construction time (minutes)

Dataset R*tree | Pyramid-T. | Quadtree
Uniform-2D | 90.8 2.0 3.6
Uniform-4D | 61.6 2.0 3.7
Uniform-8D 69.8 11.8 14.0
F.Cover-2D 21.8 1.4 0.9
F.Cover-4D 20.8 1.3 0.8
F.Cover-8D 19.1 1.8 2.4

MAPS-2D 92.8 19.1 3.3
MAPS-4D 704 11.7 3.5
MAPS-8D 75.7 12.9 10.1

all the index types.

The predictions of the analytical models are shown in Fig-
ures 1 (a), 1 (b), and 1 (c), for the 2, 4, and 8 dimensional
datasets respectively. For each figure, these figures plot the
predicted number of page accesses per query for increasing
query sizes. As can be seen from these figures, the analytical
models predict that the Quadtree will outperform the R*-
tree in all cases. It also shows that the Quadtree will outper-
form the Pyramid-Technique on relatively low dimensional
data and with small window queries in higher dimensions.
In addition, the models predict that the Pyramid-Technique
will outperform the Quadtree for high dimensional data with
large window queries. As shown in the next section, these
predictions agree well with the actual experimental results,
which adds confidence that the experimental results are not
due to implementation differences but rather due to intrinsic
characteristics of index structures.

4. EXPERIMENTS

In this section, we present experimental results compar-
ing R*-tree, Pyramid-Technique, Quadtree indices and a se-
quential file scan implemented in SHORE [5]. (The sequen-
tial file scan serves as a baseline). SHORE was configured to
use 8KB page size, and in all experiments except the one in
which we evaluate the effect of buffer pool size, the SHORE
buffer pool size was set to 8MB. This small buffer pool size
allows us to clearly see the effect of I0s. Note that we also
present some results with settings when the indices are com-
pletely resident in memory. All experiments were performed
on a machine with 2GHz Intel Xeon processor running Red
Hat Linux version 2.4.20.

The Quadtree was implemented as described in Section 2,
and pages were only packed to 70% of their capacity to
mimic the scenario in which addition space is left to ac-
commodate future index updates.

For our experiments, we used both synthetic and real
datasets. For the synthetic dataset, we used a dataset con-
taining 2 million uniformly distributed points in 2, 4, and
8 dimensional data space (labeled as Uniform-2D, Uniform-
4D, and Uniform-8D respectively). In addition, we used the
following two real datasets: the Forest Cover data containing
the forest cover type for 30 x 30 meter cells from US For-
est Service Region 2 Resource Information System (http://
kdd.ics.uci.edu/databases/covertype/covertype.html),
and the MAPS Catalog data containing photometric and
astrometric information extracted from the Palomar Obser-
vatory Sky Survey (http://iparrizar.stcloudstate.edu/
~juan/MAPS_Database/).

The Forest Cover dataset contains 581,014 entries with 54

285

Table 4: Index size (pages)

Dataset R*tree | Pyramid-T. | Quadtree File
Uniform-2D 4,267 6,950 4,124 5,918
Uniform-4D | 6,822 8,934 7,789 | 7,906
Uniform-8D | 12,422 12,004 13,603 | 11,835
F.Cover-2D 1,268 2,020 1,413 | 1,719
F.Cover-4D 2,027 2,597 2,114 | 2,297
F.Cover-8D 3,592 3,776 4,423 | 3,483

MAPS-2D 5,387 7,058 7,352 | 6,009
MAPS-4D 7,468 9,072 13,170 | 8,027
MAPS-8D | 13,221 13,194 16,079 | 12,017

attributes. Of these 54 attributes, there are 10 quantitative
attributes. To measure the performance with varying di-
mensionality, we ran Principle Component Analysis (PCA)
on the dataset over the 10 quantitative attributes to gen-
erate 2, 4, and 8 dimensional datasets, which are labeled
as F.Cover-2D, F.Cover-4D, F.Cover-8D, respectively. The
use of PCA reduces the dimensionality of data without a
large loss of information, and this method is used to mimic
the use of dimensionality reduction methods in many high-
dimensional applications.

The MAPS dataset contains about 90 million objects with
39 attributes. To keep our experiments manageable, we used
the first 2 million objects. To provide some variety, we did
not use PCA on this dataset. Instead, to produce data with
varying dimensionality, we used the first 2, 4, and 8 at-
tributes from the original dataset to get 2, 4, and 8 dimen-
sional datasets, which are labeled as MAPS-2D, MAPS-4D,
MAPS-8D, respectively.

For our query workload, we generated hypercube shaped
range queries with varying query volumes. Query volume
is defined as the percentage of the query hypercube volume
over the data space volume. For the synthetic datasets,
queries are uniformly randomly positioned in the underly-
ing data space. For real data, we used both uniform random
queries, and skewed queries that follows the distribution
of the underlying data. In all experiments, for each point
shown on the graph we have a corresponding query workload
of 1024 queries and we report the average per query execu-
tion times and the average per query disk page accesses.

4.1 Index size and creation times

Table 4 shows index sizes for 2, 4, and 8 dimensional
datasets. This table indicates that on average Quadtrees
are about 22% larger than R*-tree and Pyramid-Technique
indices, while R*-tree and Pyramid-Technique indices re-
quire almost the same amount of disk space. This is because
Quadtrees have more non-leaf and leaf nodes than the other
indices, and there is an extra storage overhead for saving
meta-information for each node.

Table 3 shows index creation times. For index creation,
first multiple inserts are used for creating the R*-trees and
Quadtrees. Then, the index is traversed to produced a disk-
efficient layout. The Pyramid-Technique uses the native
SHORE BT-tree bulkloading mechanism. The main obser-
vation here is that our naive bulkloading method for the
Quadtree compares very favorably compared to the Pyramid-
Technique. (Our R*-tree bulkloading is quite naive and a
true bulkloading method is likely to be significantly faster.)

2048 — 2048 - - - 2048 [— e —
7 2 Z 1024 | @
£ 3% E 510 L] E 10241 el
2 . 2 > &
g 128 % * g 256 x * * E g 512 I
5 64 * o 5 128 g XX 5B =y 3
£ 32 * A Ca £ 64 % B g 256 P K X
E 1,6} . - £ o £ i
5 ¥ aa & B 8 18+ T
5 4 File scan —=— 5 16 / File scan —=— - 5 * File scan —=—
3 2 R* treg -t] sl R* tree -+ | 3 64 A R* treg -t
hn} 11 8 Pyramid T. - 5 Pyramid T. - & Pyramid T. -
Y7 Quadree @ 4f 9 Quadmee o L. Quadree @
001 01 1 2 4 6 8 10 001 01 1 2 4 6 8 10 001 01 1 2 4 6 8 10

Query volume (%)

(a) Uniform-2D

Query volume (%)

(b) Uniform-4D

Query volume (%)

(¢) Uniform-8D

Figure 2: Total execution time for varying data dimensionality with uniform synthetic datasets

812 8192 m— e S 16384 —_—
@ 4096 @ = -~ =
4096

S 2048 & o 8192 g0
g —— € S 2048 * = o
S 1024 g K S B < =
> 512 g ¥ > 1024 | e B > 4096 o
[} 256 . I n] 512 % ’ o] I / « K
% 128 * e =3 8 S 2048 o
2 64 . et 2 256 = 8 e
g 2F A 8 128] S 102447
8 16 File scan —=— 3 n File scan —=— | 3 File scan —=—
g 8 & R* tree ——+— S 6 a R* tree - ° 512 R* treg -+
v 4 Pyramid T. - w 32+ Pyramid T. - v Pyramid T.
a £) Quadtree & a 16 &)) Quadtree o o 256) Quadtree &

001 01 1 2 4 6 8 10 001 01 1 2 4 6 8 10 001 01 1 2 4 6 8 10

Query volume (%)

(a) Uniform-2D

Query volume (%)

(b) Uniform-4D

Query volume (%)

(c¢) Uniform-8D

Figure 3: Number of disk page accesses for varying data dimensionality with uniform synthetic datasets

4.2 Evaluation with synthetic datasets

In this section, we compare the performance of indices
with uniform data. Figures 2 and 3 present average query
execution times and disk accesses for query volumes ranging
from 0.01% to 10% for 2D, 4D, and 8D datasets. As shown
in these Figures, the query execution times are proportional
to the number of disk accesses for all three indices.

With Uniform-2D, the Quadtree and R*-tree show almost
the same performance although the number of disk accesses
for the Quadtree is slightly less than that of the R*-tree. In
addition, both indices outperform the Pyramid-Technique
by 3-21 times in all queries.

With Uniform-4D, the Quadtree performs the best while
the R*-tree performs the worst among three indices. The
Quadtree still outperforms the Pyramid-Technique by 1.5 to
8 times in all queries, although the Quadtree speedup over
the Pyramid-Technique decreases with increasing query vol-
umes. The reason for the poor performance of the R*-tree
is due to the increased overlap amongst MBRs with increas-
ing dimensionality, which results in multiple path traversals
during query processing.

For the Uniform-8D dataset, the Quadtree still outper-
forms the Pyramid-Technique for small window queries, but
the Pyramid-Technique begins to outperform the Quadtree
for large window queries. In fact, the Pyramid-Technique
does better than the Quadtree on high dimensional data
with large window queries.

Figure 3 shows that with small window queries the num-
ber of disk accesses with the Pyramid-Technique is signif-
icantly higher than that with the Quadtree. This figure
also shows that the number of disk accesses incurred by the

286

Pyramid-Technique increases more gradually compared to
the Quadtree. This is due to the unbalanced space split
strategy used in the Pyramid-Technique. Compared to the
balanced space split used in the Quadtree, the unbalanced
space split incurs more page accesses for small window queries,
especially when window queries are further away from the
center of data space. However, the unbalanced space split
incurs less page accesses than the balanced space split for
large window queries.

In summary, based on this experiment with uniform data-
sets, we make the following observations:

1. The Quadtree index outperforms the R*-tree in all
cases, although the performance of these two index
structures is comparable in 2 dimension.

The Quadtree outperforms the Pyramid-Technique with
relatively low dimensional data and with small window
queries in higher dimensions.

The Pyramid-Technique outperforms the Quadtree in
high dimensional data with large window queries.

Finally, we note that the analytical results in Figure 1
shows slightly higher number of page accesses than the one
in Figure 3. This is because Figure 3 shows the number of
page accesses using a buffer pool, while Figure 1 shows the
number of page accesses without any buffering.

4.3 Evaluation with real datasets

In this section, we compare the performance of the three
indices using real datasets. For this experiment, we used
skewed queries that follow the underlying data distribution,

Query volume (%)

(a) MAPS-2D

Query volume (%)

(b) MAPS-4D

Query volume (%)

(¢) MAPS-8D

2048 2048 2048
—~ 1024 —~ —_
o 1024
ﬁ 512 E ﬁ 1024
> 256 P = 5121 [= T
s 128 . ST R S e
< 64 T s g 108 ¥ g8 s J * oD n
E 3 e E - ° £ 25 g
= 16 3 et = 64 ¥ 8 pas JE!
9 8 I it . k] 30 | = i | S .
5 47 o File scan —=— 5 File scan —=— 5 128 File scan —=—
] ot R* tree -+ o 16+ g R* tree -+] R* tree -+
hn} 1 o Pyramid T. - 5 Pyramid T. - & Pyramid T. -
4 ‘ ‘ __ Quadtree —a 8L ‘ __Quadtree —=o 64 & ‘ __ Quadtree —a
001 01 1 2 4 6 8 10 0.01 01 1 2 4 6 8 10 001 01 1 2 4 6 8 10
Query volume (%) Query volume (%) Query volume (%)
(a) MAPS-2D (b) MAPS-4D (c) MAPS-8D
Figure 4: Total execution time for varying data dimensionality with the MAPS Catalog dataset
8192 8192 - 16384 T T
,,,,,,,, TR - - - - - -
& 4096 G A096 Lo ; B 7 A e S
8 2048 " 8 oas | O g 81921
& 1024 * & I % * B T
a * S 1024} X g = o X
Z 512) N 5 > 4096 4
T 256 * T 512 o @ gt
3 . e =] ¥ E g8
& 12 * — & o567 S 2048 B
- %)
5z ¢ o S 128t '] 3 "
g 32 X .~ File scan —m— i g 64 | ai File scan —=— | 2 1024) File scan —=—
] 16 T oR* tréle % R* tree -+] g R* treg -+
a 8 g8 Pyramid T. - a 32 ¢ Pyramid T. - a 512 Pyramid T. -
af ‘ Quadtree -0 1648 __Quadtree 5 | & ‘ Quadtree &
0.01 01 1 2 4 6 8 10 0.01 0.1 1 2 4 6 8 10 001 01 1 2 4 6 8 10

Figure 5: Number of disk page accesses for varying data dimensionality with the MAPS Catalog dataset

since such queries are more representative of actual queries
with real datasets. (We also present results with random
queries in Section 4.5.) In addition, we used the extended
Pyramid-Technique designed for handling skewed data [3].
Using the extended Pyramid-Technique for skewed data im-
proves query performance by up to 59% compared to using
the naive Pyramid-Technique.

Figures 4 and 6 compare average query execution times,
and Figures 5 and 7 compare disk accesses for the three index
structures on the real datasets. As shown in these Figures,
Quadtrees significantly outperform R*-trees and Pyramid-
Technique indices in all cases. Furthermore, compared to the
results with uniform data, Quadtrees outperform Pyramid-
Technique indices even for the 8 dimensional datasets, and
the Quadtree speedup over other indices is more significant.
For example, Quadtrees are faster than Pyramid-Technique
indices by 5-11, 2-12, 2-7 times on the MAPS-2D, MAPS-
4D, and MAPS-8D datasets respectively, and by 3-10, 5—
29, and 3-68 times on the F.Cover-2D, F.Cover-4D, and
F-Cover-8D datasets respectively.

One reason for the higher Quadtree speedup is the rela-
tively poor performance of the other indices when handling
skewed data. For the R*-tree, since there is high overlap
amongst MBRs and skewed points can be spread under sev-
eral non-leaf nodes, the R*-tree suffers from traversing mul-
tiple paths. For example, the average number of overlapping
MBRs per a random point query is 54, 2845, and 4353 with
the MAPS-2D, MAPS-4D, and MAPS-8D datasets respec-
tively, which constitute 1%, 38%, 34% of the total MBRs in
the R*-trees respectively.

For the Pyramid-Technique, its unbalanced space split
strategy can be adversarial for skewed data. Figure 8 il-

287

L

(a) Quadtree

(b) Pyramid-Technique

Figure 8: Interaction between query and parti-
tioning boundaries

lustrates this point with an example. This figure shows the
Quadtree and the corresponding Pyramid-Technique index
built on a skewed 2 dimensional dataset which is clustered
in the bottom-left region. Each square in the Quadtree
and each region in the Pyramid-Technique corresponds to
a leaf page. A striped rectangle represents a query win-
dow, and gray regions are the ones affected by the win-
dow query. As shown in this figure, with a skewed query,
there are more data regions that intersect with regions in
the Pyramid-Technique compared to quads in the Quadtree,
which in turns leads to a larger number of page accesses for
the Pyramid-Technique.

To experimentally confirm the adversarial effect of the
unbalanced space split for skewed data, we measured the fil-
tration ratio, which is defined as the number of points that
are not contained within the window query over the number
of points retrieved in accessed pages. As more false hits are
retrieved, the filtration ratio increases. With a 10% query
volume and the MAPS-8D dataset, the filtration ratio of the

512 = = r r r r 512
> 64 K & > > 128 7 * A et
g 327 * E S 64+ R
= L K 3 - I=!
5] 16 o n| 3 5} 5] 32
£ gl - - £ £ 2
= e e = F = 16 B
c 4 + X o c 4 B c
S | .- e) S) S gl)
5 2 e pal File scan —=— 5 2t File scan —=— | 5 File scan —=—
] 1 R* tree - 8 1l R* tree -+] 2 R* tree -+
hn} i Pyramid T. —* & 8 Pyramid T. —% hn} Pyramid T.
o . . Quadtree —5 & . . Quadtree —5 L . . . Quadtree —&
0.01 0.1 1 2 4 6 8 10 0.01 0.1 1 2 4 6 8 10 0.01 0.1 1 2 4 6 8 10
Query volume (%) Query volume (%) Query volume (%)
(a) F.Cover-2D (b) F.Cover-4D (c¢) F.Cover-8D
Figure 6: Total execution time for varying data dimensionality with the Forest Cover dataset
2048 = = = = - - 4096 T T T T 4096 r r r r r r
1024 2048 = = = = - - _ __ 7 0 i 1
2 ol I] 7 2048 O
§ 512) 8 1024 P) o KR S
g 256 s K & s12f R 1 g 1024
& K £ T 2 n
= 152 X > 256 Tk ; > 512 p- o a a8
@ ¢ 128 f - B @
§' 32 ‘ e E’ 64 % 5 ') | §_ 256 . =
2 16+ X e 2 32t 8 2 128
8 8L 4 § 16 s 1 8
g 2 """ File scan —=— g File scan —=— 2 64 File scan —=—
v R* tree ——+-- k] 8r R* tree -+ v 32 A R* tree ——+--
a 2 + Pyramid T. a 4r B Pyramid T. —% a Pyramid T.
1 L El e B Qladtrée B i 24)) . Quadtree —= 16 &)) . Quadtree —&
0.01 0.1 1 2 4 6 8 10 0.01 0.1 1 2 4 6 8 10 0.01 0.1 1 2 4 6 8 10

Query volume (%)

(a) F.Cover-2D

Query volume (%)

(b) F.Cover-4D

Query volume (%)

(c) F.Cover-8D

Figure 7: Number of disk page accesses for varying data dimensionality with the Forest Cover dataset

Quadtree using a balanced space split strategy is 26.1%. For
this same setting, the filtration ratio of the Pyramid Tech-
nique using the unbalanced space split strategy is 71.5%.

Another reason for the better performance of the Quadtree
with skewed data is that the Quadtree uses the buffer pool
more effectively. The explanation for this behavior is as
follows: When indexing skewed data, index structures such
as the R*-tree and the Pyramid-Technique build a balanced
tree structure, often distributing even highly clustered points
into multiple paths in order to maintain the height-balanced
requirements. On the other hand, the Quadtree builds an
unbalanced tree structure, which reflects the distribution
of the underlying dataset. When processing skewed queries
which follow the underlying data distribution (realistic types
of queries in real applications), the difference in these index
structures leads to very different buffer pool usage behav-
iors.

In a balanced index, non-leaf nodes close to a root node
are more likely to be cached in the buffer pool. This is
because many clustered points are spread under several non-
leaf nodes, thus different parts of the index are likely to
be traversed, accessing non-leaf nodes more often. During
query processing, fewer disk I10s are incurred for accessing
non-leaf nodes, but since many leaf nodes are not resident
in the buffer, disk IOs are frequently incurred for accessing
leaf nodes.

On the other hand, in an unbalanced index such as the
Quadtree, when processing skewed queries, the dense and
deeper index structure is traversed more frequently than
other regions of the index. As a result, non-leaf and leaf
pages in the dense region are likely to be cached in the
buffer pool. For skewed queries that are likely to traverse

288

Table 5: Speedup with 128 MB over 8MB buffer pool

Dataset R*-tree | Pyramid-T. | Quadtree | File
Uniform-8D | 2.7-2.9 1.6-1.7 2.2-3.3 | 1.4-1.5
MAPS-8D | 2.7-3.2 1.8 1.4-1.6 1.5

the dense regions repeatedly, fewer disk IOs are incurred. In
other words, the Quadtree has better spatial locality than the
balanced index structures and this results in efficient buffer
management, improving overall performance.

To validate this observation, we measured the performance
speedup of the three index structures with a large buffer
pool. For this experiment, we set the SHORE buffer pool
size to 128MB, which is large enough to cache each index en-
tirely. Then we calculated the speedup over an 8MB buffer
pool size. The result of this experiment are presented in
Table 5. These results represent the range of speedups with
all query volumes (0.01%-10%).

As shown in Table 5, in all cases, a large buffer size bene-
fits all indices, since disk IOs are eliminated. However, more
importantly, we observe that the speedups for the Quadtrees
change significantly depending on the dataset characteris-
tics, whereas the speedups for the R*-tree and Pyramid-
Technique indices almost remain constant regardless of the
dataset characteristics. Specifically, the larger buffer pool
has a relatively smaller impact on the Quadtrees with the
skewed dataset. The reason for this behavior is because for
skewed data the Quadtrees already effectively caches many
of the frequently accessed pages with a small buffer pool.
Thus, the increased buffer pool has a relatively smaller im-
pact on the number of disk accesses.

64 512 2048 T
£ = E 6 o £ 1024 s]
> > Y o g Ja——
g 8y g 1287 " g s 7
=3 o =3
3 87 T 64 S~ 3 Ve P
E 4 £ £ o567
c c 32 Y c 4
2 / 8 2
hn} 15 Packed Quadtree —8— & 8 Packed Quadtree —8— | hn} Packed Quadtree —8—
_Unpacked Quadiree —e— ! _Unpacked Quadtree —e— 64 [Unpacked Quadtree —e—
0.01 0.1 1 2 4 6 8 10 0.01 0.1 1 2 4 6 8 10 001 01 1 2 4 6 8 10
Query volume (%) Query volume (%) Query volume (%)
(a) MAPS-2D (b) MAPS-4D (c) MAPS-8D
Figure 9: Total execution time of packed and unpacked Quadtree with the MAPS Catalog dataset
128 4096 T 32768 T
n 7 2048 | @ & I
2 eal ” 2 e % 16384 f T
E E 1024 ¢ P g 8192 e
> 32} ~ ! 3 512t I = e
g) g ’ 9 4096 ¢
| o g 261 S ,
8 e g 128t / 2 2048
8 s 8 . g
s 8. x s 5 1024
a v Packed Quadtree —8— a 32¢ Packed Quadtree —=—] a 512 Packed Quadtree —&—
41) Unpacked Quadtree -—e— 16 4 Unpacked Quadtree -—e— | i) Unpacked Quadtree -—e—
0.01 0.1 1 2 4 6 8 10 0.01 0.1 1 2 4 6 8 10 001 01 1 2 4 6 8 10

Query volume (%)

(a) MAPS-2D

Query volume (%)

(b) MAPS-4D

Query volume (%)

(¢) MAPS-8D

Figure 10: Number of disk page accesses of packed and unpacked Quadtree with the MAPS Catalog dataset

Related to the results in Table 5, we note that the Quadtree
still outperform the R*-tree and the Pyramid-Technique with
a large buffer pool for all the datasets. For example, with
MAPS-8D, the Quadtree speedup over the R*-tree ranges

from 1.2-5.1 times and the Quadtree speedup over the Pyramid-

Technique ranges from 1.3-6.1.
In summary, we make the following observations for real
datasets:

1. The Quadtree outperforms the other indices for the
range of dimensions from 2 to 8. However, the relative
performance improvements are smaller as the dimen-
sionality increases and as the query volume increases.

2. The higher performance of the Quadtree is due to
the relatively poor performance of the R*-tree and
Pyramid-Technique in handling skewed data, and a
better buffering behavior of the Quadtree with skewed
data.

4.4 The effect of packing on the Quadtree

In this section, we investigate the effect of the packing
technique used for the Quadtree. To examine this effect,
we compared index sizes and query processing times for the
Quadtrees with and without using the packing technique.
The Quadtree without packing is the initial Quadtree built
using a page for a leaf node. The Quadtree with packing is
the final Quadtree generated after rewriting the initial index
using the packing technique described in Section 2.

With MAPS-4D, the Quadtree without packing uses 13,335
pages and results in 39% leaf node occupancy. The Quadtree
with packing uses 7,352 pages and has a 74% leaf node oc-
cupancy. The packing technique reduces index size by 45%

289

and improves execution times by 1.5-3.7X. We note that the
Quadtree without packing still outperforms the R*-tree and
Pyramid Technique indices.

With MAPS-8D, the Quadtree with no packing uses 69,442
pages with 14% leaf node occupancy. The Quadtree with
packing uses 16,079 pages with 74% leaf node occupancy.
The packing technique reduces an index size by 77% and im-
proves execution times by 3.3-8.7X. We note that in this case
the Quadtree performance without packing can be worse
than the R*-tree and the Pyramid-Technique.

Figures 9 and 10 compare average query execution time
and disk accesses for the packed and unpacked Quadtrees.
As seen from these figures, the packing technique is an in-
fluential factor in achieving the high Quadtree speedup over
the other index structures. Without the packing technique,
the Quadtree might not outperform the R*-tree and the
Pyramid-Technique in some cases. In addition, the effect
of the packing technique is especially evident for high di-
mensional data due to a higher reduction factor in index
size. The key to the improved performance of the packing
technique comes from the reduced disk accesses due to the
smaller index size.

4.5 Effect of query distribution

For the experiments in Section 4.3, we used queries that
followed the underlying data distribution. In this section, we
evaluate the effect of the query distribution and consider the
effect of using random queries on the real datasets. Figure 11
compares the effect of query types on the MAPS-8D dataset.
Random queries are uniformly distributed in the data space
and skewed queries are the ones that follow the distribution
of the underlying data (as in Section 4.3).

2048

2) ' - . = . File scan —=—

Q1024 + ! e scan —a—

= Pyramid T. -

213 2 * * KoK f & Quadtree —8
L]

g 256 - * e 4

£ Lo

= 128

_5 64 |

g 32 F 8 =} o) & EJ

] =]

16 ™ i

0.01 01 1 2 4 6 8 10
Query volume (%)

(a) random queries

2048)
—_ File scan —=—
g R* tree -+
E 10247] Pyramid T, ex
2 e . Quadtree @
3 512 T % * * *
=3 o i
o) ¥ - &

=)

E 6t o
= 7
Ee)
S 128t
3 o
X
Y et

=)
0.01 01 1 2 4 6 8
Query volume (%)

(b) skewed queries

10

Figure 11: Random vs. Skewed queries with MAPS-8D

As shown in this figure, with random queries, the Quadtree
speedup over the other indices is even more significant than
with skewed queries. While skewed queries traverse deep
and denser regions of an index, in most cases, many random
queries are likely to traverse sparse and low-depth regions
of the index. The traversal of those sparse and low-depth
regions costs much less and lowers the average execution
time for the Quadtree. In balanced index structures such
as the R*-tree and the Pyramid Technique, random queries
that traverse sparse regions still require accessing at least
as many nodes as the height of the index. Consequently,
the performance of these balanced index structures is worse
compared to the Quadtree.

5. CONCLUSIONS

In this paper, we have compared the performance of the
R*-tree, the Pyramid-Technique, and the Quadtree for in-
dexing low to medium dimensional datasets (datasets with
less than eight dimensions). Although the R*-tree is widely
used for indexing such datasets, our results show that the

uadtree significantly outperforms the R*-tree and the Pyramid-
Quadt ignificantly outperf the R*-t d the P id:

Technique, and that the speedup of the Quadtree over these
other indices is more significant for skewed datasets. Based
on experimental results, we conclude that the efficiency of
the Quadtree comes from: 1) the packing technique, 2)
the regular and disjoint partitioning method used by the
Quadtree, and 3) the better spatial locality leading to a
more efficient utilization of the buffer pool.

As part of our work, we also developed analytical models
for the performance of these three indices. Our analytical
results are in agreement with the empirical results, and add
confidence that the claims that we make are not due to im-
plementation differences or dataset peculiarities.

As part of future work, we plan on expanding our inves-
tigation to consider more complex operations, such as the k
nearest neighbor and the distance join operations.

6. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under grants IIS-0093059 and IIS-
0414510. Any opinions, findings, and conclusions or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the Na-
tional Science Foundation. The authors would also like to
thank Yun Chen for sharing his Quadtree implementation
and for various discussions on this topic.

290

7. REFERENCES

[1] R. Agrawal, C. Faloutsos, and A. Swami. Efficient
Similarity Search In Sequence Databases. In FODO,
pages 69-84, 1993.
N. Beckmann, H.-P. Kriegel, R. Schneider, and
B. Seeger. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles™. In
SIGMOD, pages 322—-331, 1990.
S. Berchtold, C. B6hm, and H.-P. Kriegel. The
Pyrmaid-Technique: Towards Breaking the Curse of
Dimensionality. In SIGMOD, pages 142-153, 1998.
S. Berchtold, D. A. Keim, and H.-P. Kriegel. The
X-tree: An Index Structure for High-Dimensional
Data. In VLDB, pages 28-39, 1996.
M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall,
M. L. McAuliffe, J. F. Naughton, D. T. Schuh, M. H.
Solomon, C. K. Tan, O. G. Tsatalos, S. J. White, and
M. J. Zwilling. Shoring Up Persistent Applications. In
SIGMOD, pages 383—444, 1994.
C. Faloutsos, R. Barber, M. Flickner, J. Hafner,
W. Niblack, D. Petkovic, and W. Equitz. Efficient and
Effective Querying by Image Content. J. Intell. Inf.
Syst., 3:231-262, 1994.
C. Faloutsos and I. Kamel. Beyond uniformity and
independence: Analysis of r-trees using the concept of
fractal dimension. In PODS, pages 4-13, 1994.
V. Gaede and O. Giinther. Multidimensional Access
Methods. ACM Computing Surveys, 30(2):170-231,
1997.
I. Gargantini. An effective way to represent quadtrees.
CACM, 25(12):905-910, 1982.
A. Guttman. R-trees: a Dyanmic Index Structure for
Spatial Indexing. In SIGMOD, pages 44-57, 1984.
G. R. Hjaltason and H. Samet. Speeding up
construction of pmr quadtree-based spatial indexes. In
VLDB Journal, pages 109-137, 2002.
I. Kamel and C. Faloutsos. Hilbert R-tree: An
Improved R-tree Using Fractals. In VLDB, pages
500-509, 1994.
R. Kothuri, S. Ravada, and D. Abugov. Quadtree and
R-tree Indexes in Oracle Spatial: A Comparision using
GIS Data. In SIGMOD, pages 546-556, 2002.
K.-I. Lin, H. Jagadish, and C. Faloutsos. The TV-tree:
An Index Structure for High-Dimensional Data.
VLDB Journal, 3:517-542, 1994.
Y. S. Moon, K. Y. Whang, and W. S. Han. General
Match: A Subsequence Matching Method in

[2]

[13]

[14]

[15]

18]

[19]

Time-Series Databases Based on Generalized
Windows. In SIGMOD, pages 382-393, 2002.

Y. S. Moon, K. Y. Whang, and W. K. Loh.
Duality-Based Subsequence Matching in Timeseries
Databases. In ICDE, pages 263-272, 2001.

W. Niblack, R. Barber, W. Equitz, M. D. Flickner,
E. H. Glasman, D. Petkovic, P. Yanker, C. Faloutsos,
and G. Taubin. The QBIC Project: Query Images by
Content Using Color Texture, and Shape. In SPIE,
pages 173-187, 1993.

H. Samet. The Quadtree and Related Hierarchical
Data Structures. Computing Surveys, 16(2):187-260,
1984.

N. Weskamp, D. Kuhn, E. Hiillermeier, and G. Klebe.

Efficient similarity search in protein structure
database by k-clique hashing. Bioinformatics,
20(10):1522-1526, 2004.

291

