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ABSTRACT

While it is generally accepted that data warehouses and
OLAP workloads are excellent applications for column-stores,
this paper speculates that column-stores may well be suited
for additional applications. In particular we observe that
column-stores do not see a performance degradation when
storing extremely wide tables, and column-stores handle sparse
data very well. These two properties lead us to conjecture
that column-stores may be good storage layers for Semantic
Web data, XML data, and data with GEM-style schemas.

1. INTRODUCTION

Although the idea of a column-oriented database or “column-
store” has been around for a while [12], there has been a
recent revival in column-oriented research and commercial
products [1, 8, 9, 13, 14, 16]. A column-store stores each
attribute in a database table separately, such that succes-
sive values of that attribute are stored consecutively. This is
in contrast to most common database systems (e.g., Oracle,
DB2, SQLServer, Postgres, etc.), “row-stores”, where values
of different attributes from the same tuple are stored con-
secutively (i.e., column-stores store data column-by-column,
while row-stores store data row-by-row).

The trade-offs between column-stores and row-stores are still
being explored. The following are some cited advantages of
column-stores:

e Improved bandwidth utilization [12]. In a column-
store, only those attributes that are accessed by a query
need to be read off disk (or from memory into cache).
In a row-store, surrounding attributes also need to be
read since an attribute is generally smaller than the
smallest granularity in which data can be accessed.

e Improved data compression [3]. Storing data from
the same attribute domain together increases locality
and thus data compression ratio (especially if the at-
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tribute is sorted). Bandwidth requirements are further
reduced when transferring compressed data.

e Improved code pipelining [8, 9]. Attribute data
can be iterated through directly without indirection
through a tuple interface. This results in high IPC
(instructions per cycle) efficiency, and code that can
take advantage of the super-scalar properties of mod-
ern CPUs.

e Improved cache locality [6]. A cache line also tends
to be larger than a tuple attribute, so cache lines may
contain irrelevant surrounding attributes in a row-store.
This wastes space in the cache and reduces hit rates.

On the the other hand, the following are some disadvantages
of column-stores:

e Increased disk seek time. Disk seeks between each
block read might be needed as multiple columns are
read in parallel. However, if large disk pre-fetches are
used, this cost can be kept small.

e Increased cost of inserts. Column-stores perform
poorly for insert queries since multiple distinct loca-
tions on disk have to be updated for each inserted tuple
(one for each attribute). This cost can be alleviated if
inserts are done in bulk.

e Increased tuple reconstruction costs. In order
for column-stores to offer a standards-compliant rela-
tional database interface (e.g., ODBC, JDBC, etc.),
they must at some point in a query plan stitch values
from multiple columns together into a row-store style
tuple to be output from the database. Although this
can be done in memory, the CPU cost of this operation
can be significant. In many cases, reconstruction costs
can be kept to a minimum by delaying construction to
the end of the query plan [4].

These advantages and disadvantages need to be considered
when deciding whether a row- or column-store should be
used for a particular application. Certainly it seems that
data warehouses and OLAP workloads, with their batch
writes, high bandwidth requirements, and query plans rife
with table scans are well suited for column-stores [8, 16]. In
this paper, we take the position that column-stores should
be considered for other applications as well.



In particular, we make two observations about column-stores,
derived from the first two advantages listed above, that open
up the potential for other column-store applications. These
observations are:

e Wide tables are not a problem for column-stores.
In a column-store, if a query accesses a fixed number of
attributes from a table, it does not matter if the table
is 5 columns wide or 5 million. Only those columns
that are needed by the query need to be read in and
processed. In a row-store, these extra columns cannot
so easily be ignored.

Sparse columns are not a problem for column-
stores. Since column-stores can choose a domain spe-
cific compression algorithm for each attribute, an ap-
propriate NULL suppression algorithm can be chosen
for each column, selected based on the column sparsity.

Consequently, we believe that column-stores should be con-
sidered to store data with wide, sparse schemas. In this
paper, we focus on the Semantic Web, XML, and databases
with GEM-style schemas (an extension of the relational model
to include richer semantics with respect to the notion of an
entity [19]) as applications where these advantages might be
beneficial.

In the next section, we describe in more detail why column-
stores handle wide tables well and why column-stores handle
sparse data well. Then in Section 3, we describe why this
allows columns-stores to be applied to the Semantic Web,
XML, and databases with GEM-style schemas.

2. TWO OBSERVATIONS

In this section, we describe in detail why column-stores can
store wide, sparse data well.

2.1 Wide Schemas

Agrawal et. al. [5] point out situations where it would be
desirable to have very wide schemas, but where performance
can be problematic. For example, imagine an e-commerce
marketplace for the electronics industry that consolidates
information about parts from thousands of manufacturers.
The catalog may contain two million parts classified into 500
categories with 4000 attributes per category. Storing each
category as a 4000-column wide table is a potential perfor-
mance disaster in a row-store, since a table scan for a query
that accesses only a small percentage of these attributes will
result in a significant waste of disk bandwidth.

The problem is that data is read from disk in blocks (and
from memory in cache lines) and these data blocks are gener-
ally much larger than an individual attribute, even usually
larger than a tuple. Consequently, in order to read in a
desired attribute, one must read in the surrounding unnec-
essary attributes as well, wasting bandwidth. In a column-
store, since values from the same attribute are stored to-
gether consecutively, this is not a problem.

Thus, column-stores open up the possibility for schemas that
are orders of magnitude wider than current limitations. Note
also that adding new columns to a column-store is a trivial
task.
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2.2 Sparse Attributes

In a row-oriented DBMS there are a variety of options for
handling a NULL attribute. One option is to prefix the tuple
with a bit-string that indicates which attributes are NULL.
If an attribute is NULL, the corresponding bit in the bit-
string is set, and either a “don’t care” symbol is inserted into
the tuple or the attribute is omitted all together. The former
option is a waste of space, while the latter option slows down
tuple random access; the nth attribute is no longer located
at the nth position in the tuple (which it would be if n is in
the fixed-width attribute section of the tuple); instead the
NULL bit-string has to be processed to derive where the nth
attribute is located.

There are a few other ways NULLs can be handled. In-
stead of storing a bit-string in front of the tuple, a value in
the attribute domain can be reserved to represent NULL.
However, this option always wastes space for NULLs. Alter-
natively (as is done in Oracle 10g), every attribute in a tuple
can be preceded by a length attribute. NULLs still waste a
little space (1 byte to indicate a length of 0), and tuple ran-
dom access is still slow (every attribute becomes a variable
length attribute). Another option, for very sparse data, is
an interpreted attribute layout [7] where a tuple is a set of
attribute-value pairs, and omitted attributes are assumed to
be NULL. However, this scheme reduces performance of tu-
ple random access - the nth attribute can only be found by
scanning the attribute-value list rather than jumping to it
directly. Thus, for each of the above described options for
handling NULLs, NULLs either waste space or hinder per-
formance. (Note that wasting space also has performance
consequences since table scans become slower).

In a column-oriented DBMS, NULLSs are much easier to han-
dle, and impose a significantly smaller performance over-
head. From a high level, NULLs in a column-store can be
thought of as another potential column value that can be
compressed using column-oriented compression. If a column
is sparse, these NULLs can be run-length encoded; other-
wise other encoding techniques can be used (described be-
low). Different NULL compression techniques can be used
for different columns of different sparsities.

To demonstrate the ability of column-stores to handle NULL
data, we extended C-Store, an open source column-oriented
database that we have been building for the past several
years [2], with three techniques for handling NULLs. In
each case, a page is divided into three parts: a header indi-
cating the position (the ordinal offset of a value within the
column, also sometimes called a virtual tupleID) range that
the page covers and the number of non-NULL values inside
that range; a list of the non-NULL values in that page; and
a representation of the positions (tuplelDs) for that column
where the value is not NULL. Depending on the sparsity
of the column, these positions can be represented in one of
three ways: for sparse columns these positions are just a
list (see Figure la); for columns with intermediate sparsity
these positions are represented using a bit-string with ‘1’s
located at the non-NULL positions (see Figure 1b); and for
low sparsity columns non-NULL positions are represented
using position ranges (see Figure 1c).

Thus, from a space overhead, NULLs take up minimal space.
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Figure 1: Positions represented using a list (a), a bit-string (b), and as ranges (c) for sparse columns

NULL values are omitted from the column. The cost is the
additional overhead of representing the positions of the non-
NULL values. For the position list scheme, the cost is an
extra 32 bits per non-NULL value. However, since this is
only used for sparse columns, for a column with 98% sparsity,
an average of 0.65 bits are wasted per NULL value. For the
bit-string scheme, the total space needed to represent the
positions is equal to 1 bit per value in the column (NULL or
non-NULL). Thus, for a column with 50% sparsity, this cost
is 2 bits per NULL value. For the position-range scheme,
the total space needed to represent the positions is equal
to 64 bits per non-contiguous NULL value. But since this
scheme is only used for dense columns, the total space wasted
on NULLs is small. Note that if the column is sorted (or
secondarily sorted), long runs of NULLs will appear, and
this scheme will perform particularly well.

The key difference from row-stores is that while these schemes
avoid wasting space in storing NULL data, they do not suf-
fer the tuple attribute extraction cost that similar schemes
in row-stores do. Consider the following simple example: a
predicate needs to be applied to a column that may contain
NULLs (say for the Xth column in the table). In a row-
store, for each tuple, the Xth attribute must be found. For
schemes that save space by not representing NULLs, the Xth
attribute will not be in a fixed location in the tuple, so it-
eration through the tuple header or the X-1 attributes must
occur. Further, if there is no index on that attribute, this
Xth attribute must be identified in every tuple - even for
those tuples whose value is NULL in the Xth attribute. In
contrast, for column-stores, finding the Xth attribute is triv-
ial (simply jump to the Xth column). Further, only the not-
NULL values need to be iterated through since the NULL
values are not stored. The list of positions for which the
predicate succeeded is determined by iterating through the
position representation in parallel with the non-NULL val-
ues of that column. (See [4] for a more detailed description
of how selections are performed in C-Store).

As a case in point, we show the results from a simple ex-
periment performed on a version of C-Store we extended
to handle sparse attributes. We created a table with ten
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columns and filled them with 10,000,000 values drawn ran-
domly from an integer domain. A percentage of the values in
each column were given a NULL value according to the table
sparsity (multiple tables were created with varying sparsities
ranging from 0 sparsity — no NULLs, to 99% sparsity — 99
out of every 100 values were NULL). The sparsity of each
column in the table was the same.

We applied the following query to each table of varying spar-
sity?:

SELECT count (*)

FROM T

WHERE T.1 > CONST
OR T.2 > CONST
OR T.3 > CONST
OR T.4 > CONST
OR T.5 > CONST
OR T.6 > CONST
OR T.7 > CONST
OR T.8 > CONST
OR T.9 > CONST
OR T.10 > CONST

Thus, a selective predicate is applied to each column in the
table, and the result aggregated. Figure 2(a) shows the time
needed to run this query as the column sparsity is varied.
This number is compared with a naive version of C-Store
that wastes space on NULLs by physically storing them,
and the best possible query time (i.e., if the NULLs were not
present — instead of the table being 50% sparse, it is 50%
smaller). The difference between the sparse C-Store line and
the target performance line is thus the overhead imposed by
C-Store for representing and processing the NULLs in the
column. As can be seen, this overhead is small.

(Our benchmarking system is a 3.0 GHz Pentium IV, run-
ning RedHat Linux, with 2 Gbytes of memory, 1MB L2

We chose 2147481974 to be the constant value since the
was the most selective predicate that could be applied while
making sure that each column returned at least one selected
value which was useful to cross-check query results between
C-Store and the commercial row-store we experiment with.
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varying sparsity on C-Store

cache, and 750 Gbytes of disk. The disk can read cold data
at 50-60MB/sec.)

Since the query is simple, it is disk limited, so in essence
Figure 2(a) is just showing the time needed to read the table
off disk. Figure 2(b) shows the CPU component of query
time, thus showing that the processing overhead of NULLs
is also small.

Figure 3(a) and (b) shows the graphs when the same query
is run on the same data on a popular commercial row-store
system. The time needed to run this query as the column
sparsity is varied is again compared to the best possible
query time (i.e., if the NULLs were not present — instead
of the table being 50% sparse, it is 50% smaller). Clearly,
the overhead imposed by the row-store for representing and
processing the NULLs is larger than C-Store.

The differences in the total query times between C-Store and
the commercial row-store (even for dense data) are not the
same since the column-store uses vectorized code for pred-
icate application and has a smaller per-tuple storage over-
head. For this reason, it is more interesting to compare
each system against the target time rather than against each
other.

3. THREE WIDE, SPARSE APPLICATIONS

Now that we have established that column-stores are a good
way to store wide, sparse tables, we look at three examples
where these advantages of columns-stores are very impor-
tant, such that column-store technology may be applied to
areas other than data warehouses and OLAP workloads.

3.1 RDF

RDF (Resource Description Framework) is a foundation for
processing information stored on the Web. It is the data
model behind the Semantic Web vision whose goal is to
enable integration and sharing of data across different ap-
plications and organizations. RDF describes a particular
resource (e.g., a Website, a Web page, or a real world en-
tity) using a set of RDF statements of the form <subject,
property, object>. The subject is the resource, the prop-
erty is the characteristic being described, and the object
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is the value for that characteristic: either a literal or an-
other resource. For example, an RDF triple might look like:
<http://www.example.org/index.html, http://www.example
.org/ontology/dateCreated, “12/11/06”>.

The naive way to store a set of RDF statements is in a re-
lational database with a single table including columns for
subject, property, and object. While simple, this schema
quickly hits scalability limitations, as common queries such
as those that want multiple property-object value pairs for
a given subject require a self-join on subject. One common
way to reduce the self-join problem [10, 17, 18] is to create
separate tables for subjects that tend to have common prop-
erties defined. The rows in the table are subjects, columns
are properties, and values are objects (i.e., a row in this ta-
ble is a set of object values for some predefined properties of
a particular subject). NULLs are used if a subject does not
have a property defined. These tables are called property ta-
bles or subject-property matrix materialized join views. For
example, for the raw RDF data (URI prefixes are not shown
for simplicity):

| Subject | Property | Object |

Isaac rdf:itype | student

Isaac Age 26
Rachel | rdf:type | post-doc

Isaac Year 3rd
Rachel Office 925
Rachel Age 29

The following property table can be created:

| Subject | rdf:type | Age | Year | Office |
26 3rd NULL
29 | NULL 925

student
post-doc

Isaac
Rachel

Since Semantic Web data is often semi-structured, storing
this data in a row-store can result in very sparse tables as
more subjects or properties are added. Hence, this normal-
ization technique is typically limited to resources that con-
tain a similar set of properties. Thus, many small tables are
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usually created. The problem is that this may result in union
and join clauses in queries since information about a particu-
lar subject may be located in many different property tables.
This complicates the plan generator and query optimizer and
can degrade performance. When stored in a column-store,
these additional property tables are not needed, since, as we
have discussed, there is no penalty to storing wide, sparse
tables of this sort.

Another limitation of the property table approach is that
RDF data often have multiple object values for the same
subject-property pair (e.g., in the example above, if Rachel
had two offices rather than just one). This means that prop-
erty tables can have multi-valued attributes (e.g., office).
The common implementation (such as in the Jena Semantic
Web toolkit [17]) is to store multi-valued attributes sepa-
rately from the other property tables in their own separate
table with two columns: subject, and object value (e.g., if
Rachel’s two offices were 925 and 261, then <Rachel,925>
and <Rachel,261> would be two rows in the office property
table). For data with many multi-valued properties (which
is common for Semantic Web data), this results in the cre-
ation of many of these two column tables which may have
to be joined together at query time.

The ability of column-stores to store wide, sparse tables en-
ables multi-valued attributes to be stored in the same row
as single-valued attributes. They can either be stored in an
array, or even can be stored in multiple columns. This fur-
ther improves performance by reducing the number of joins
that must be performed on the data.

Thus, if built on top of a column-store, property tables could
be made arbitrarily wide with NULLs at undefined prop-
erties and multi-valued attributes for properties that can
have multiple object values for the same subject. We have
recently begun a research project where we are building a
RDF store on top of a column-store. Our initial results, on
a 50 million triple library data benchmark, are very promis-
ing, with queries that used to take thousands of seconds on
a naive triple store, and hundreds of seconds on a schema
that includes multiple property tables, being executed in less
than a minute on a wide, sparse single property table.
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3.2 XML

There has been a body of work [11, 15] that attempts to
store XML data in standard relational DBMSs. Most tech-
niques that store XML data in relational tables store XML
elements in relations and XML attributes as attributes of
these relations. Parent/child and sibling order information
are also stored as attributes. Path expressions, which are
prevalent in XML queries, require joins between element ta-
bles where the number of joins is proportional to the size of
the path expression.

Although this can get fairly expensive, [11] shows that such
an approach (they call it the binary approach), despite the
many joins, beats an alternative scheme (they call it the
universal table approach) which fully denormalizes all of the
element tables into a single universal table (the universal ta-
ble is so large from repeated data and NULLs, that the I/O
cost of accessing it is prohibitive). [15] describes an inlin-
ing technique that reduces the number of joins required to
evaluate path expression queries by including as many de-
scendant elements of a particular element as possible in the
same relation. The feasibility of having wide, sparse schemas
in column-oriented design allows inlining to be used for el-
ements with many descendants, and could even allow for a
limited amount of recursive element expansion. Indeed, the
universal table approach can be revisited (though repeated
data is still an issue).

If no DTD is defined, the data is less structured, and the
attributes and child elements for a particular element are
less predictable. However, adding columns to a relation can
be trivially done in column-stores even if the new column
is almost entirely NULL. This allows new attributes and
children to be added without impacting storage and queries
on the other columns.

3.3 Databases With GEM style schemas

Zaniolo argues in his work on GEM [19] that “the main
limitation of the relational model is its semantic scantiness,
that often prevents relational schemas from modeling com-
pletely and expressively the natural relationships and mu-
tual constraints between entities.” He thus proposes an ex-
tension of the relational model that includes generalization,
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