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ABSTRACT
We argue that designing a system that “guarantees”
the privacy of its information may not be enough. One
must also consider the price for providing that protec-
tion: For example, is the information preserved ade-
quately? Does the system perform well? We illustrate
this point by presenting the concept of a configuration

that can capture the security, longevity and perfor-
mance aspects of managing information. Configura-
tions can be useful for describing the policies used to
safeguard information, as well as in selecting the right
mix of security, longevity and performance levels.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Admin-
istration—Security, Integrity, Protection

C.4 [Performance of Systems]: Reliability, Avail-
ability and Serviceability

General Terms
Design, Reliability, Security, Performance

Keywords
configurations, implementability, secret sharing, repli-
cation, encryption

1. INTRODUCTION
Information privacy and security are critical issues

in today’s high risk world. The news is full of stories
of credit card numbers being stolen, patient records
being misplaced, a photo agency being sued because
they lost an artist’s digital images, and governments
collecting more data than they say they are. At the
same time, there has been a lot of progress on funda-
mental techniques for sharing information while still
protecting the privacy of individuals (e.g., [1, 2, 8, 10,
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11]). For example, with k-anonymity techniques [10],
we can release some data (aggregated in some way)
so that the data of one individual is hard to identify.
Several multi-party computation techniques have also
been studied, where for instance two sites can join
two relations without making the non-joining tuples
known (e.g., [1]).

Nevertheless, we feel that many current research
and development efforts in the area of information
privacy and security are not fully considering other
important factors such as:

• Longevity. Is the information also safe from hard-
ware and software failures?

• Performance. Does the system that safeguards
our information perform adequately?

• Usability. Are the privacy and longevity models
intuitive and easy to manipulate?

To illustrate the tradeoffs between these factors,
consider the following two extreme information sys-
tems. System A simply deletes all the data it receives.
From the point of view of privacy, System A is perfect:
there is no danger that information will be leaked or
stolen. However, since it does not preserve data, it is
not a very useful system. (One could also argue that
System A’s performance is excellent, as it answers all
its queries extremely fast, always returning the null
set for an answer.)

At the other end of the spectrum, consider System
B that replicates the data it receives at many Internet
storage sites. Making many copies is clearly good for
longevity, since it would take many site failures to de-
stroy our data. However, System B is weak in terms of
privacy and security, since the more copies there are,
the higher the probability of break-in or information
leakage to an attacker.

Thus, we believe that in designing a secure infor-
mation management system, one must consider all
important factors, and ensure adequate levels along
all dimensions. Developing an algorithm or system
that makes very strong privacy or security guarantees,
but that does not provide adequate performance, data
longevity or usability is not enough.

A second weakness of many current privacy and se-
curity approaches, in our opinion, is that they view
privacy and security as all-or-nothing. For example,
a multi-party join algorithm (described briefly earlier)
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will “guarantee” that no information that is not in the
join result will be leaked to participants. No distinc-
tion is made between leaking one bit and leaking all of
the database: both cases are considered leakage and
are not permitted by the algorithm. Of course, the
“guarantee” made by the algorithm is conditioned on
certain strong assumptions, e.g., that the participants
are “honest but curious” [1]. Of course, in practice,
the assumptions may or may not hold, so there is an
inherent probability that the privacy will be preserved.
And one would expect that in the real world, there is
a different probability associated with the loss of a few
records than with the loss of the entire database.

We believe that privacy and security can be modeled
as continuous variables, capturing the fact that data
losses or leakages can be small or large, or can be
likely or unlikely. Such models may allow us to better
capture the tradeoffs between privacy and security and
the other factors we discussed earlier. For example, we
may be willing to “weaken” our security guarantees “a
bit” in order to achieve a system that performs better
or that provides higher data longevity. Of course, the
challenge is how to capture notions such as “weaken”
or “a bit” more precisely.

In summary, our position is that it is time to explore
new information models and new metrics that make it
possible to strike a good balance between the compet-
ing factors that arise when we try to safeguard data.
Current research in the area of privacy and security
has brought us excellent fundamental algorithms, but
we can learn more about how these can be used in
practice if we look at privacy and security as continu-
ous variables that can affect other continuous variables
such as performance, longevity and usability.

In the rest of this paper, we briefly summarize some
initial work we have been doing at Stanford (as part
of the PORTIA Project [3]), in order to capture the
tradeoffs between security, longevity and performance
in information systems. At the end of the paper, we
mention some open problems that we believe can help
explore these and other tradeoffs.

2. CONFIGURATIONS
Since we are interested in tradeoffs between longevity

and security, we begin by defining a pair of simple
data operators – Copy and Split – that directly im-
pact these factors. A Copy operator makes n copies
of its input, thus improving the longevity of the input
data. A Split operator divides its input data into n

“shares” so that all n shares are needed to reconstruct
the input. Thus, a Split makes data leakage less likely,
since n different shares must be obtained in order to
get at the input data.

The Copy and Split operators defined here capture
an extremely broad set of options for safeguarding
data. Copy operators could represent anything from
a simple tape backup to a complex peer-to-peer data
trading scheme [4]. Split operators capture encryption
with any number of keys, as well as XOR’ing with ran-
dom bit-streams and other more exotic schemes. The
generalization we describe in Section 2.1 is able to de-
scribe an even broader set of real-world techniques.

Figure 1: Example configuration.

A configuration is a composition of Split and Copy
operators, used to achieve different levels of longevity
and security. Figure 1 illustrates one possible config-
uration that might be used to safeguard a database.
Our database is represented by the root r, which is
initially split (say, using encryption) into shares a and
f . After splitting r, two copies of f are made, la-
belled b and e. One copy, b, is materialized and stored.
The other copy, e, is split again, this time say, by
XOR’ing with a random sequence of bits. The random
bit-sequence is stored at c, and the XOR’ed result is
stored at d. The terminal vertices a, b, c and d at
the bottom of the tree each represent a materialized
data object, say, owned by users Alice, Bob, Carol
and Dave. The non-terminals e, f and r represent
transient data elements that are not materialized. In
particular, the root r is not stored anywhere. There-
fore, there is no single materialized data object that
can be leaked that will cause the entire database r to
be leaked.

A configuration defines how a database and its as-
sociated copies and shares (e.g., ciphertext, keys, bit-
streams) are managed: a) the downward arrows tell us
how the terminal data elements are derived from the
root, and b) if we reverse all the arrows so that they
point upward, we see which terminal data elements
are needed to reconstruct the original database.

Also note that configurations are not restricted to
be trees, but can be rooted directed acyclic graphs
(DAGs). For example, consider Figure 2, where d and
e are copies of the root data r. Here, the vertex b

is shared by both d and e – it might represent a sin-
gle encryption key that is used to encrypt both d and
e. Thus, if Alice, Bob and Carol own data elements
a, b and c respectively, then Bob has to collaborate
with either Alice or Carol in order to access the de-
crypted database r. The terminal representing Bob’s
key has arrows from both Split operators, since his
key is needed to reconstruct either copy of r.

Since a configuration describes how the database is
preserved and secured, it is the key to understanding
how the two factors of interest, longevity and security,
interact (if we wished to study additional factors, we
would need to develop a model that also captured the
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Figure 2: A configuration with sharing.

other factors). Also important in understanding the
tradeoffs is the observation that not all configurations
“make sense”, as we discuss in Section 3. For example,
it is possible to compose Split and Copy operators in
such a way that we violate the semantics of splitting
(i.e., that all n shares are required to reconstruct). Or,
we might unintentionally introduce “circularity” e.g.,
the encryption key used by a Split operator somehow
depends on the value of the ciphertext it is supposed to
generate. We refer to configurations that don’t “make
sense” as unimplementable and will typically want to
avoid them in our designs.

In [7], we formalize the notions of operators, config-
urations and implementability. Here we briefly state
some of the concepts that are useful for the rest of our
discussion. A configuration Θ is comprised of a set of
terminal vertices T , and non-terminal vertices N . We
assume that the elements of T are labelled a, b, c, . . .

and so on, and that the root is labelled r. Correspond-
ing to any configuration Θ is a Boolean expression FΘ,
referred to as its access formula. FΘ is constructed
by recursively representing Copy operators as disjunc-
tions and Split operators as conjunctions. FΘ may
include parentheses (i.e., it is a particular factoriza-
tion) and is always monotone (i.e., no negation). For
example, in Figure 1, we have FΘ = a(b + cd). The
satisfying assignments of FΘ, denoted S(Θ) ⊆ 2T , tell
us which terminals an attacker has to break into in
order to reconstruct the sensitive data at the root, r.
In Figure 1, {a, b} and {a, c, d} are satisfying assign-
ments. Conversely, the falsifying assignments of FΘ,
denoted F(Θ) ⊆ 2T , are those subsets of terminals
that, if destroyed, would make our sensitive data un-
recoverable. In Figure 1, {a} and {b, d} are examples
of falsifying assignments. It can be shown that the
correspondence between a configuration and its access
formula is one-to-one. As such, we will often represent
a configuration Θ directly by its access formula FΘ.

2.1 Secret Sharing
Copy and Split are special cases of a more general

secret sharing operator. A k-of-n secret sharing op-
erator, denoted T k,n, decomposes data into n shares
such that any k ≤ n are sufficient to reconstruct the
data. The classic example of a T k,n operator would
be Shamir’s scheme [9]. A less obvious example would
be RAID, where error-correction codes are used to dis-
tribute data across an array of disks, and failures of
one or more of these disks can be tolerated without

Figure 3: An unimplementable configuration.

causing the data to be lost. A Split operator is sim-
ply T n,n, and a Copy operator is T 1,n. Although we
focus on Split and Copy operators in this paper, all of
the ideas that we discuss can be readily extended to
include the more general T k,n operator.

The behaviour of a T k,n operator is characterized by
the m-invertibility property, which is formally defined
in [7]. In short, the m-invertibility property implies
that a T k,n operator has only k−1 degrees of freedom
amongst the n shares it generates. For example, an
encryption operator with two outputs (key and cipher-
text) has just one degree of freedom, not two, since
fixing the input data and choosing a key determines
the value of the ciphertext. The reduced degrees of
freedom, in turn, causes certain configurations to not
“make sense”, as we discuss next.

3. A TAXONOMY
As suggested in Section 2, there exist configurations

that do not “make sense”. As we will describe shortly,
a configuration “not making sense” is a consequence
of the m-invertibility property.

For example, consider FΘ = ab(a+ b), illustrated in
Figure 3. The data we are safeguarding is represented
by the root r, and split between the children c and
d, say, using encryption. Now, suppose c is the en-
cryption key and d is ciphertext. Then, c’s children a

and b (i.e., copies of c) will each be materialized copies
of the key used to encrypt r. However, the vertex d

is an encrypted version of r, which is re-split into a
secondary key and ciphertext. Thus, one of d’s chil-
dren (either a or b) must be an encrypted version of
d. But both a and b have already been designated as
copies of c! We cannot, therefore, make a consistent
assignment of keys and ciphertext to the vertices in
the configuration.

The same inconsistency arises irrespective of whether
c or d is the ciphertext. We cannot even resolve this is-
sue using a different implementation of the Split oper-
ator (e.g., XOR). The problem with this configuration
is that, due to the m-invertibility of the Split opera-
tors, only one child of r and one child of d can be freely
chosen, and the other must be computed. There exists
no consistent assignment of computed and free values
to the operators in the configuration. It is in this sense
that the configuration does not “make sense”. It is not
physically realizable using Split and Copy operators.
We say that this configuration is unimplementable.
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Figure 4: The space of possible configurations.

The configuration illustrated in Figure 1, on the
other hand, does not present a similar problem. For
example, we can choose a and c as the computed chil-
dren of r and d, respectively. Alternatively, we can
choose b and c, or b and d. Any of these assignments
is consistent with the m-invertibility property. We say
that the configuration in Figure 1 is implementable.

These examples suggest that the space of all possi-
ble configurations might be partitioned according to
some notion of physical realizability. We can then im-
pose further restrictions on the semantics and struc-
ture of our configurations, to arrive at a finer-grained
classification scheme. In [7], one such taxonomy is
presented, comprised of four nested subsets: imple-

mentable, proper, simple and read-once. Proper con-
figurations are a subset of the implementable ones,
wherein no two shares generated by an operator are
constrained to be equal (since such a constraint would
violate the intended semantics of the operator). Sim-
ple and read-once configurations have further struc-
tural properties that allow the size of the generated
shares to managed effectively. Algorithms for verify-
ing membership of a configuration in a given class are
also provided in [7]. The resulting taxonomy is sum-
marized in Figure 4.

Our taxonomy of configurations is analogous to the
classification of transaction schedules, where the space
of all schedules (configurations) is divided into de-
sirable, serializable schedules (implementable config-
urations) and non-serializable ones (unimplementable
configurations). Once the schedule space is under-
stood, sub-classes can be determined (e.g., two-phase
locking) that guarantee serializability and are easier to
enforce in practice. In our case, we analogously iden-
tify sub-classes of implementable configurations (e.g.,
simple and read-once) that have more efficient mem-
bership tests. Having such efficient tests then makes
it feasible for a design tool to search for good configu-
rations that provide desired protection from data loss
and/or break-ins.

When choosing a configuration to safeguard our data,
we will always want to use atleast an implementable
configuration. It can be shown experimentally, how-

ever, that implementability is a highly selective prop-
erty, in the sense that only a small proportion of the
space of possible configurations is implementable. Thus,
it is important to check that any configuration that we
design (say, using the techniques of Section 5) is ac-
tually implementable.

4. METRICS
Now that we can describe different privacy-longevity

configurations, the next question is: how does one de-
sign systems that not only provide good privacy, but
also good longevity, performance and usability? How-
ever, it is presently unclear how we might evaluate
the effectiveness of a given configuration along such
dimensions. How might we measure privacy, longevity
and performance? How might we specify our system
requirements under such measures? Ideally, we would
see a “continuum” of good systems as we tradeoff con-
tinuously between these measures, as opposed to just
the two extremes that were described in Section 1. For
example, we might slightly weaken privacy guaran-
tees in exchange for substantially improved longevity,
or perhaps spend more on resources in exchange for
both improved privacy and longevity. We now briefly
describe some metrics over the space of configurations,
which capture these dimensions (see [6] for more de-
tail). In Section 5 we discuss how we might tradeoff
between these metrics.

4.1 Probabilities of Failure
One possible continuous measure of the privacy and

longevity provided by a configuration is failure prob-

abilities, namely the probability of break-in and the
probability of data loss. The probability of break-in,
P (Θ), is the probability that an attacker breaks into
enough terminal vertices to be able to reconstruct the
root, r. Similarly, the probability of data loss, Q(Θ),
is the probability that enough terminals are lost that
we can no longer recover the data at r.

Consider the configuration FΘ = ab + bc for exam-
ple, illustrated in Figure 2. Let us assume that each
of a, b and c is broken-into independently with proba-
bility 1

4
. An attacker wishing to reconstruct r must do

one of three things. He must either break into termi-
nals a and b only, or terminals b and c only, or all three
of a, b and c. Thus, the probability of data loss will
be the sum of probabilities of these three mutually ex-

clusively outcomes i.e., P (Θ) = 2
`

1

4

´2 3

4
+

`

1

4

´3
= 7

64
.

Similarly, an attacker must destroy any of the follow-
ing sets of terminals to cause r to be lost: {b}, {a, b},
{b, c}, {a, c} or {a, b, c}. Assuming the attacker de-
stroys each terminal independently with probability
1

4
, we sum over the probabilities of these five outcomes

to find Q(Θ) = 1

4

`

3

4

´2
+ 3

`

1

4

´2 3

4
+

`

1

4

´3
= 19

64
.

Formally, we define a pair of independent probabil-
ity spaces (ΩP , P) and (ΩQ, Q), which represent an at-
tacker’s attempts to reconstruct and destroy our data,
respectively. ΩP and ΩQ are referred to as sample

spaces. The outcomes ω ∈ ΩP are subsets of terminals
that the attacker manages to break into. Elementary
outcomes ω ∈ ΩQ are subsets of terminals that are de-
stroyed by the attacker. Thus, ΩP = ΩQ = 2T . P and
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Q are discrete probability measures over events in ΩP

and ΩQ, respectively, so that
P

ω∈ΩP
P(ω) = 1 and

P

ω∈ΩQ
Q(ω) = 1. Finally, we have P (Θ) ≡ P({ω ∈

S(Θ)}) and Q(Θ) ≡ Q({ω ∈ F(Θ)}).
The physical meaning of P and Q is as follows. P

and Q describe an experiment that lasts a fixed period
of time, say, ten years. We wish to answer questions
such as: what is the probability that our data will
still be available ten years from now? Or, how likely
is it that no break-ins occur over the next ten years?
The answers to these questions (i.e., P (Θ) and Q(Θ))
depend on the ten-year security and reliability charac-
teristics (i.e., P and Q) of the terminals across which
our data is distributed.

We will choose “good” configurations by solving the
following problem: Given T , P and Q, find the “best”
Θ. That is, given a set of physical resources, and
knowledge of their failure characteristics, what is the
configuration that best utilizes these resources?

4.2 Depth
A configuration’s depth, D(Θ) is the maximum num-

ber of vertices between the root and any of the termi-
nals. The depth is related to performance, since it is
the number of processing steps needed to compute the
terminal data elements from the original data. For ex-
ample, the configuration in Figure 1, has depth three.
We discuss performance in more detail in Section 6.

4.3 Non-Terminals
The number of non-terminal vertices, N(Θ), is a

measure of the computational resources required in
computing the terminal data elements. It is a perfor-
mance measure similar in spirit to measuring depth,
although not exactly the same. A Split operator with,
say, six children all of whom are Split or Copy oper-
ators would have a small depth (i.e., D(Θ) = 2), but
would still require seven operators total. Measuring
depth alone would not capture this.

4.4 Class
As discussed in Section 1, within the space of all

possible configurations, we can identify classes that
have desirable semantic and structural properties. We
will always require a configuration to be at least im-
plementable, but sometimes we may wish to impose a
stronger restriction (i.e., proper, simple or read-once).
We denote by C(Θ) the class of a given configuration.

4.5 Terminals
The number of terminal vertices, M(Θ), is a mea-

sure of the physical storage required to deploy the con-
figuration. When we search for good configurations,
we will always impose an upper bound on M(Θ). Re-
call that in a configuration, only the data at the ter-
minal vertices is stored physically. Thus, a bound on
M(Θ) can be thought of as a resource constraint.

4.6 Groups
Finally, we may stipulate that certain groups must

be allowed to reconstruct the data. We refer to these
as allow groups. For example, we may require termi-
nals a and b to be together sufficient to reconstruct

the data. Such a statement is equivalent to requiring
that {a, b} ∈ S(Θ). We may also stipulate that cer-
tain groups, referred to as deny groups, be denied the
ability to reconstruct the data. For example, breaking
into c and d should not be sufficient to reconstruct the
root. Such a statement is equivalent to specifying that
T \ {c, d} ∈ F(Θ) (the ‘\’ denotes set difference). As
an illustration, one possible configuration that meets
these requirements is shown in Figure 1.

5. OPTIMIZATION
We now return to the task of searching for good

configurations, and exploring the tradeoff between se-
curity and data longevity. As suggested in Section
1, it does not make sense to simply search for the
“best” configuration. The best possible (non-trivial)
configuration for privacy is simply a Split, but it is the
worst for longevity. Similarly, the best configuration
for longevity is a Copy, but it is worst for privacy.
Moreover, we can do arbitrarily well along either of
these dimensions by simply using unbounded numbers
of terminals! A better question to ask would be: sub-
ject to some minimum level of privacy, and an upper
bound on the number of terminals, which is the con-
figuration that provides us the most longevity? Using
the metrics introduced in Section 4, we can write down
the following optimization problem:

min
Θ

Q(Θ)

s.t. P (Θ) ≤ P0

{ωs
0, ω

s
1, . . . } ⊆ S(Θ)

{ωf
0
, ω

f
1
, . . . } ⊆ F(Θ)

M(Θ) ≤ M0

N(Θ) ≤ N0

D(Θ) ≤ D0

C(Θ) ∈ C0 (1)

Here, P0 is an upper bound on P (Θ) that indicates
the highest probability of break-in we are willing to
tolerate. M0, N0 and D0 are our constraints on the
various metrics introduced in Section 4. The sets {ωs

i }

and {ωf
i } are the allow and deny groups, respectively,

as described in Section 4.6. C0 is the class that we
require our configuration to fall into, as discussed in
Section 3. The set of physical terminals T and their
failure characteristics P and Q (which are needed to
compute P (Θ) and Q(Θ)) are known beforehand. In
(1), we are maximizing longevity by minimizing Q(Θ),
the probability of data loss. Note that we could have,
instead, maximized privacy (i.e., by minimizing P (Θ))
subject to some minimum longevity requirement.

Thus, we can explore the tradeoff space between
security and longevity by varying the constraints in
(1), re-solving the problem, and seeing which systems
we get. For example, Figure 5 is a plot of the Q(Θ)
(i.e., longevity) we can achieve at various P0 values
(i.e., lower bounds on privacy), for a particular sce-
nario with four terminals. This type of graph illus-
trates how we might sacrifice “a bit” of privacy for a
relatively large gain in data longevity.
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Figure 5: A privacy-longevity tradeoff curve.

In principle, this completes the task of designing
good configurations. If we could solve the optimiza-
tion problem in (1) exactly, then we would be done. Of
course, the exact solution of (1) is extremely difficult
due to the enormity of the space of possible config-
urations. Therefore, we must resort to approximate
techniques for good solutions to (1). In [6], we formu-
late the problem in (1) more rigorously, and provide
efficient techniques for its solution.

6. PERFORMANCE
In Sections 2 through 5, we illustrated how two im-

portant aspects of information systems, namely data
privacy and data longevity, can be managed jointly.
We now propose how our framework might be ex-
tended to include performance considerations. The
basic idea is that, while our choice of configuration
(i.e., composition of Split and Copy operators) is a
tradeoff between longevity and privacy, our choice of
how we implement Split operators involves a tradeoff
between performance and privacy, and our choice of
Copy operator implementations is a tradeoff between
performance and longevity.

The tradeoff between performance and privacy is
best illustrated through examples. Consider the Split
operator at vertex r in Figure 1. Here, the data at r

(of size n, say) is being split into two shares, a and
f . Suppose the Split is implemented by XOR’ing r

with a randomly generated n-bit sequence, stored at
a, sending the XOR’ed result to f . XOR’ing in this
manner provides perfect secrecy in an information-
theoretic sense. However, in spite of XOR being a
very fast operation, we now have n + n = 2n bits of
data to manage, which impacts the performance of
subsequent operations. Suppose instead that we im-
plement the Split at r using a stream cipher such as
3DES. If a is the ciphertext and f is a 128-bit key,
we now have just n + 128 bits to manage, which is
roughly half of 2n – a large savings. The price we pay
is that while some stream ciphers are fast, it is not as
fast as XOR’ing, and moreover we get only 128 bits of

Figure 6: A Split operator.

security (instead of n bits).
In both the XOR and stream cipher cases, if the

encoding is done on an entire relation, query perfor-
mance is greatly degraded since we must reconstruct
the entire relation before running any queries. One
way to alleviate this problem is to instead use a block
cipher to encrypt the fields (or rows) of a relation in-
dividually, as opposed to the entire relation as a blob.
Execution of queries over encrypted data has been
studied in the past (e.g., [5]). The disadvantage is that
some information is leaked when encryption is done at
a finer granularity. Moreover, block ciphers are typi-
cally slower than both stream ciphers and XOR’ing.

Thus, the decision of how to implement each Split
operator is a delicate balance between performance
and privacy considerations. Similar examples can be
given to show that choosing between Copy operator
implementations involves a tradeoff between perfor-
mance and longevity. For brevity, we will focus only
on Split operators here. In general, to get better per-
formance, we pay a privacy penalty.

In the remainder of this Section, we present three
small examples that raise some interesting questions
about how we might quantify the tradeoff between
performance and privacy.

6.1 Possible Metrics
Our first example is the Split operator illustrated in

Figure 6, where the data x is decomposed into shares
a and b. We denote by pa and pb the probabilities
of break-in of a and b, and assume that break-ins oc-
cur independently. In Section 4 we computed px, the
probability of break-in for x, as px = papb. Implicit
in this computation is what we might call the per-

fect split assumption. That is, if an attacker does not
break-into both terminals a and b, the probability that
he infers x is assumed to be zero.

Suppose that the Split at x is implemented using
an encryption algorithm that is known to be break-
able (e.g., DES with 56-bit keys), with the ciphertext
stored at a and the key at b. Then, even if an at-
tacker obtains only a, there is actually some non-zero
probability that he will infer x via a brute-force search
over the domain of b. Thus, we would really like to
compute the probability of break-in at x as:

px = papb

+ pa(1 − pb)P̃b

+ pb(1 − pa)P̃a

+ (1 − pa)(1 − pb)P̃ab (2)

Here, P̃a, P̃b and P̃ab are respectively the probabilities
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(a) S1 and S2 (b) S3 and S4

Figure 7: Different Split implementations.

that an attacker will be able to guess a, b and {a, b} in
spite of not being able to break into to those terminals.
In the DES example, we expect P̃a ≈ 0 and P̃ab ≈ 0,
but not P̃b. That is what makes DES “weak”.

The probabilities P̃a, P̃b and P̃ab are dependent on
the strength of the Split operator implementation se-
lected for x, the compute power available to the at-
tacker, the time frame we are looking at, and so on.
With the added terms in (2), we have effectively re-
laxed the assumption that splits are perfect. In partic-
ular, operator strength has a large impact – if we had
used 3DES with 256-bit keys, P̃b would be negligible
for any attacker and time frame of practical interest.

An interesting problem in this context is to find a
good metric for operator strength. One possible mea-
sure of strength might be the joint entropy of the free
children of x (i.e., b), as this captures the remain-
ing uncertainty after an attacker steals a. It is thus
a measure of the value of a “partial break-in”. An-
other interesting question is on the functional depen-
dency of P̃a, P̃b and P̃ab on operator strength, attacker
strength and time frame. What is the form of this de-
pendency? What other the other factors that impact
operator strength?

Consider, as a second example, the configurations
shown in Figures 7(a) and 7(b). The configurations
are the same composition of Split operators, but Fig-
ure 7(a) uses implementations S1 and S2, whereas Fig-
ure 7(b) uses implementations S3 and S4. We would
like to know the impact on performance and privacy of
the each choice. In particular, we focus on the perfor-
mance of two basic data operations – a reconstruction
and a decompostion of r.

Suppose we are trying to reconstruct r using shares
a, b and c. To do so, we must first compute d (from
a and b), and subsequently r (using d and c). As-
suming that the computation at r cannot start until
d is finished, these computations must be performed
in sequence. Thus, the total time TR spent recon-
structing r is TR = tR(d) + tR(r), where tR(x) is
the execution time of a reconstruction at vertex x.
Similarly, the time TD needed for a decomposition is
TD = tD(d) + tD(r), where tD(x) is the time spent
decomposing data at vertex x.

Clearly, tR(x) and tD(x) will depend on the oper-
ator implementation at x, as well as the sizes of the
inputs and outputs to x. What is the functional form
of this dependence? If the share d computed by S1 in

Figure 8: An insecure Split, S0.

Figure 7(a) (or S3 in Figure 7(b)) is large in size, then
the operator S2 (resp., S4) will have a larger input
to operate on, which has an impact on performance.
How do we account for this performance impact when
choosing between the configurations in Figures 7(a)
and 7(a). What are the other factors that impact op-
erator performance? Other than reconstructions and
decompositions, what other data operations should we
be considering?

Moreover, there are combinations of operator im-
plementations that should not be used together, for
practical reasons. For example, we may want to avoid
“double encryptions” i.e., if S1 is 3DES, we may not
want to use 3DES again at S2. This is conceptually
similar to the implementability issue discussed in Sec-
tion 3, where certain compositions of Split and Copy
operators did not “make sense”. How do we capture
this constraint in our optimization problem?

Our third example illustrates a privacy-performance
tradeoff that often arises in practice. As mentioned
earlier, we can encode an object either in its entirety,
or piecemeal. For instance, a relation can be en-
crypted in a single operation, or one tuple at a time.
While the latter approach can lead to better perfor-
mance, the data may be less secure, especially if the
same key is used to encrypt all the tuples.

Consider the configuration shown in Figure 8. The
data at r is Split into shares d and e, which are each
then Split again into {a, b} and {b, c} using b as a
shared free child. The interesting twist is that the
Split S0 at r is insecure e.g., it is a vertical partition-
ing of the attributes of a relation, or it is a horizontal
partitioning of the rows. There is no encoding of data
done in an insecure Split. While obeying the seman-
tics of splitting (i.e., both c and d are needed to fully
reconstruct r), there is now significant value to know-
ing just one of c or d, even without knowing the other
share. Until now, we have assumed that individual
children of a Split have zero value.

Insecure splits have clear performance benefits. Sup-
pose we want to update the value of some data in c.
We don’t need to touch a to do so. Thus, our perfor-
mance measure for an update of c does not need to
include tR(e) or tD(e). We therefore need a system-
level performance measure that account for the fact
that S0 is an insecure Split. Perhaps, in this case, we
should use a weighted sum of tR(d) and tr(e).

At the same time, we have weaker privacy as a result
of using the insecure Split. While before there was no
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value associated with having just c or d alone, there
is now significant damage done if an attacker obtains
either one of c or d. We may want to combine the
probabilities of an attacker inferring c, d and r, per-
haps using another weighted sum. What is the correct
combination to use? In general, how do we combine
performance and privacy measures in a hierarchy in-
volving multiple insecure splits? What is the correct
value to attach to a “partial leak” of data (i.e., only
one of c or d)?. How do we compare the configuration
in Figure 8 to another configuration where there is no
insecure Split e.g., if the entire relation is encrypted
as a blob? As we discussed, the performance is likely
to be worse whereas the privacy will be better.

To balance performance and privacy, we can take
an approach that is similar in spirit to Sections 4 and
5. We would first use our metrics to measure the im-
pact of different operator implementation choices on
the performance and privacy of a system. Then, since
performance and privacy are competing objectives, we
can fix a minimum privacy requirement and find the
best performing system that meets this requirement
(or vice versa). Whereas before we fixed the set of
physical resources and searched for the best configu-
ration, now we fix a configuration and a set of imple-
mentation options, and search for the best choice of
implementation for each vertex.

7. DISCUSSION
We have illustrated how two important aspects of

information, its security and its longevity, can be jointly

modeled and evaluated. We have suggested how per-
formance aspects can also be captured.

We envision that configurations could be used in a
system design tool that lets users select their strat-
egy for safeguarding information. For example, the
tool could provide a GUI where users could build and
annotate configurations, describing where their data is
stored (terminals), how it is processed (non-terminals),
and what systems and people are responsible for the
different components. The tool could check for imple-
mentability, warning the user if the configuration has
flaws, and perhaps suggesting alternatives that pro-
vide similar features but do not have problems. The
tool could also compute the performance and strength
of various proposed implementation choices for the
non-terminal vertices.

Another approach would be for the user to define
constraints, e.g., how many terminals are desired, what
groups of users require access to which information
(see Section 4), how much execution time we are al-
lowed. The design tool could then run some of the
optimization procedures described in Sections 5 and
6, and suggest one or more configurations to the user.
The users could be presented with tradeoff curves like
the one in Figure 5 that quantify the “price” that must
be paid to obtain desired levels of privacy, longevity
and performance.

Of course, the next step is to flesh out the details of
our framework to account for the performance-privacy
tradeoff, as well as usability and other issues. For
example, how do we formulate and efficiently solve

the optimization describing the privacy-performance
tradeoff? What is the equivalent formulation for the
longevity-performance tradeoff? As for modeling us-
ability, there is also a lot of work ahead. Configura-
tions, as we have presented them here, describe how
one object (file, database) is protected. They need to
be extended or re-designed to handle multiple objects,
of different granularities, and possibly forming hierar-
chies or related in other ways. Other concepts such as
roles and permissions need to be incorporated. The
framework described in Sections 4 and 5 may provide
a partial answer. For example, through the failure
distributions P and Q described in Section 4, we can
express a many-to-many relationship between data ob-
jects and users. Allow and deny groups represent an
access control list. However, our model needs to be
extended to fully and more naturally encode a richer
set of security constructs.
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