Database cracking

Stratos Idreos, Martin Kersten and Stefan Manegold
CWI Amsterdam, The Netherlands

The open problem

Dynamic environments
What kind of indices should be used, when and on which data?
Database experts or special tools monitor the system

More difficult in databases with huge datasets

Database cracking

We explore self-organization
Each query triggers physical re-organization of the database
We designed and implemented a DBMS using database cracking

We work on top of MonetDB, a column oriented database system

Cracking a database

select A>5 and A<10

Cracking a database

select A>5 and A<10

Cracking a database

select A>5 and A<10

o
I

Cracking a database

select A>5 and A<10

J\.

J \

-
Wi~

.

> <=5

> >=10

Cracking a database

select A>5 and A<10

Cracking a database

Improve data
access for
future queries

select A>5 and A<10

J\.

J \

-
Wi~

> >=10

.

Cracking a database

select A>5 and A<10

J\.

J \

i

Improve

data

access for

future queries

-
Wi~

.

select A>2 and A<15

Cracking a database

select A>5 and A<10

J\.

J \

i

Improve

data

access for

future queries

-
Wi~

.

select A>2 and A<15

Cracking a database

select A>5 and A<10

J\.

J \

i

Improve

access for

data

future queries

-
Wi~

.

select A>2 and A<15

Cracking a database

Improve data
access for
future queries

select A>2 and A<15

> <=5 4
(3
3
3

select A>5 and A<10

J\.

J \

-
Wi~

.

Cracking a database

Improve data
access for
future queries

select A>5 and A<10 select A>2 and A<15

J\.

J \

-
Wi~

.

Cracking a database

Improve data
access for
future queries

select A>2 and A<15
~
e

- > 9

select A>5 and A<10

J\.
J\

>->5

-
Wi~

- >=10

J\

- >=15

’

J \
— —
N
J\

.

Cracking a database

Improve data
access for
future queries

select A>5 and A<10 select A>2 and A<15

J\.

J \

-
Wi~

.

Cracking a database

The more we
crack the more
we learn

Improve data
access for
future queries

select A>5 and A<10 select A>2 and A<15

J\.
J\

-
Wi~

J\

J \
— —
N
J\

.

Cracking algorithms

There are two types of cracking algorithms

Split a piece in Split a piece in
two new pieces three new pieces
=
_
=
== B == 8
= =
C C
_ C

Design

The first time a range query is posed on an attribute A, a
cracking DBMS makes a copy of column A, called the
cracker column of A

A cracker column is continuously physically re-organized
based on queries that need to touch attribute such as the
result is in a contiguous space

For each cracker column, there is a cracker index

The cracker select operator

The simple select operator:
Scans the column
Return a new column that contains qualifying values

The crackers select operator:
Searches the cracker index
Physically re-organizes pieces found
Update the cracker index
Return a slice of the cracker column as result

More steps but faster because we analyze less data

Testing the select operator

=

Response time (secs)

10

100 |

- R

0

10 20 30 40 50 60 70 BO 90 100
Query sequence (x1000)

1e+06 ———

100000 ¢

-

-]

=

8
|

1000

ot touched tuples
-

—i
o
T r

1 i
1e+00

1e+01 1e+02 1e+03
Query sequence

1e+04 1e+0"

Research and opportunities for cracking

Optimization
optimal piece size / granularity / index (avl) depth

Exploit cracking for join queries, aggregate queries etc.
Concurrency issues

Cracking histograms

Distributed cracking

A priori cracking

Research and opportunities for cracking

Optimization
optimal piece size / granularity / index (avl) depth

Exploit cracking for join queries, aggregate queries etc.
Concurrency issues

Cracking histograms

Distributed cracking

A priori cracking

THANK YOU!

Cracking vs Indices and Sorting

How cracking compares to a sorting strategy?
Sort data upfront and then use binary search

For a sorting strategy we have to make an investment upfront
Sorting needs prior knowledge of query workload

Similar arguments stand for indices

Impact on query plan

select R.cfromRwhere5<R.a<10and9<R.b<20

Ra1 Rb1

algebra.select(Ra, 5, 10) algebra.select(Rb, 9, 20)

VA algebra.OlDintersect(Ra1, Rb1)

algebra.fetch(Ra2, Rc)

Impact on query plan

select R.cfrom Rwhere5<R.a<10and9<R.b<20

Ra1 Rb1

crackers.select(Ra, 5, 10) crackers.select(Rb, 9, 20)

-Vl algebra.OlDintersect(Ra1, Rb1)
algebra.fetch(Ra2, Rc)

Impact on query plan

select R.cfrom Rwhere5<R.a<10and9<R.b<20

Ra1 Rb1

crackers.select(Ra, 5, 10) crackers.select(Rb, 9, 20)

-Vl algebra.OlDintersect(Ra1, Rb1) B s Become_zs
l expensive
algebra.fetch(Ra2, Rc)

Impact on query plan

select R.cfrom Rwhere5<R.a<10and9<R.b<20

Ra1

crackers.select(Ra, 5, 10)

a:V algebra.joinselect(Ra1, Rb,9,20)

algebra.fetch(Ra2, Rc)

Scalability

10 F - e e -
8 | __---
Y
& fFasuansmrvmmnemahe s RS
E I ——
O |
a [/
a :. -
o | _.-="7" ——— 40M column with sorting |
o 40M column with cracking
s 20M column with sortin
e 20M column with cracking
10M column with sorting
Tr - 10M column with cracking
| | | | | | | | |]

0 10 20 30 40 50 60 70 80 90 100
Query sequence (x1000)

TPC-H query 6

1 1
10000 + PostgreSQL with B-Tree
I F'nstgraSﬂL

o I-_ i I.

= be——
_?-ﬂlqﬁﬁﬂi}-ﬁﬂﬁ}

o MySQL with E-Tr&e
o MySQAL

—

W
&
) 4
@
‘.
[
et
B4

=

MonetDB/SQL

- '.r"l
i

o - MonetDB/SQL with rel_ salac:t

- . 88 [——
& e-® e e g e . o -a-

Response time (milli secs)
o
=2
|
hA
L 1
[
.

“ MonetDB/X100
v Mﬂr‘IBtD EI’EUL wnh cracking

= SN AT S - A

10 | o o MﬂnBtDEﬂ{mp clustered |

0 5 10 15 20 25
Query sequence

