
Database Forensic Analysis with DBCarver

James Wagner, Alexander Rasin, Tanu Malik, Karen Heart, Hugo Jehle
School of Computing

DePaul University, Chicago, IL 60604
{jwagne32, arasin, tanu, kheart}@depaul.edu, jehlehugo@gmail.com

Jonathan Grier
Grier Forensics

Pikesville, MD 21208
jdgrier@grierforensics.com

ABSTRACT
The increasing use of databases in the storage of critical and
sensitive information in many organizations has lead to an
increase in the rate at which databases are exploited in com-
puter crimes. While there are several techniques and tools
available for database forensics, they mostly assume apriori
database preparation, such as relying on tamper-detection
software to be in place or use of detailed logging. Investiga-
tors, alternatively, need forensic tools and techniques that
work on poorly-configured databases and make no assump-
tions about the extent of damage in a database.

In this paper, we present DBCarver, a tool for reconstruct-
ing database content from a database image without using
any log or system metadata. The tool uses page carving
to reconstruct both query-able data and non-queryable data
(deleted data). We describe how the two kinds of data can
be combined to enable a variety of forensic analysis questions
hitherto unavailable to forensic investigators. We show the
generality and efficiency of our tool across several databases
through a set of robust experiments.

CCS Concepts
•Security and privacy → Information accountability
and usage control; Database activity monitoring;

Keywords
Database forensics; page carving; digital forensics; data re-
covery

1. INTRODUCTION
Cyber-crime (e.g., data exfiltration or computer fraud) is

an increasingly significant concern in today’s society. Fed-
eral regulations require companies to find evidence for the
purposes of federal investigation (e.g., Sarbanes-Oxley Act
[3]), and to disclose to customers what information was
compromised after a security breach (e.g., Health Insur-
ance Portability and Accountability Act [2]). Because most

This article is published under a Creative Commons Attribution Li-
cense(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well as allowing derivative works, provided that
you attribute the original work to the author(s) and CIDR 2017.

8th Biennial Conference on Innovative Data Systems Research (CIDR ’17)
January 8-11, 2017, Chaminade, California, USA.

Good  
•DB is OK  
•RAM 
snapshot 
available 

Bad 
• DB is 
corrupt 
• no RAM 
snapshot 

deleted rows 
for table 
Customer 

all transactions 

Forensic File 
Carving Tools 

all transactions 

deleted rows 
for table 
Customer 

3rd-party DB 
Recovery Tools 

Forensic DB 
Carving Tool 

NO  
(Can’t extract 
DB files) 

Maybe  
(if tool can 
recover logs) 

YES 

YES 

YES  
(Readable 
parts of data) 

YES  
(Readable 
parts of data) 
 

NO  
(Can’t extract 
DB files) 

NO  
(Can’t extract 
DB files) 

NO  
(Can’t extract 
DB files) 

NO 
(No deleted 
row recovery) 

Maybe 
(No deleted 
row recovery) 

DBMS 

YES 

Maybe 
(rarely 

available) 

RAM (cached) 
DB content 

NO 

NO 
(Database 
is dead) 

NO  
(Can’t carve 
DB RAM) 

NO 
(Database 
is dead) 

YES NO 
(Can't handle 
DB RAM) 

Maybe 
(Based on 
corruption) 

Scenario Query 

Figure 1: State-of-the-art tools for database forensic
analysis.

cyber-crime involves databases in some manner, investiga-
tors must have the capacity to examine and interpret the
contents of database management systems (DBMSes). Many
databases incorporate sophisticated security and logging com-
ponents. However, investigators often do their work in field
conditions – the database may not provide the necessary log-
ging granularity (unavailable or disabled by default). More-
over, the storage image (disk and/or memory) itself might
be corrupt or contain multiple (unknown) DBMSes.

Where built-in database logging is unable to address inves-
tigator needs, additional forensic tools are necessary. Digi-
tal forensics has addressed such field conditions especially in
the context of file systems and memory content. A particu-
larly important and well-recognized technique is file carving,
which extracts, somewhat reliably, files from a disk image,
even if the file was deleted or corrupted. There are, how-
ever, no corresponding carving tools or techniques available
for database analysis.

In this paper, we focus on the need for database carv-
ing techniques (the database equivalent of file carving) for
database forensic investigations. Databases use an internal
storage model that handles data (e.g., tables), auxiliary data
(e.g., indexes) and metadata (e.g., transaction logs). All
relational databases store structures in pages of fixed size
through a similar storage model (similar across relational
databases and thus generalizable). File carvers are unable
to recover or interpret contents of database files because file
carvers are built for certain file types (e.g., JPEG) and do
not understand the inherent complexity of database stor-
age. Database carving can leverage storage principles that



are typically shared among DBMSes to generally define and
reconstruct pages; hence, page carving can be accomplished
without having to reverse-engineer DBMS software. Fur-
thermore, while forensic memory analysis is distinct from
file carving, buffer cache (RAM) is also an integral part
of DBMS storage management. Unlike file carving tools,
database carving must also support RAM carving for com-
pleteness. In practice, a DBMS does not provide users with
ready access to all of its internal storage, such as deleted
rows or in-memory content. In forensic investigations the
database itself could be damaged and be unable to provide
any useful information. Essentially, database carving tar-
gets the reconstruction of the data that was maintained by
the database rather than attempting to recover the original
database itself.

We further motivate DBCarver by an overview of what cur-
rent tools can provide for forensic analysis in a database. Be-
cause investigators may have to deal with a corrupt database
image, we consider two scenarios: “good” (database is ok)
and “bad” (database is damaged). As basic examples of
forensic questions that can be asked, we use three simple
queries (“find all transactions”, “find all deleted rows” and
“find contents of memory”). Figure 1 summarizes what the
DBMS itself, 3rd party tools, file carving and database carv-
ing tools can answer under different circumstances.

1.1 Our Contributions
In this paper, we present a guide for using database carv-

ing for forensic analysis based on the digital investigation
process described by the National Institute of Justice (NIJ)
[1] and Carrier 2005[6]. We describe a database forensic
procedure that conforms to the rules of digital forensics:

• We describe how “page-carving” in DBCarver can be
used to reconstruct active and deleted database con-
tent. (Section 3)

• We describe SQL analysis on reconstructed active and
deleted data from disk-image and memory snapshots
to answer forensic questions regarding the evidence
(Section 4).

• We evaluate the resource-consumption in DBCarver,
the amount of meaningful data it can reconstruct from
a corrupted database, and the quality of the recon-
structed data (Section 5).

Section 2 summarizes related work in database forensics, and
we conclude in Section 6, also describing future work.

2. RELATED WORK
A compromised database is one in which some of the meta-

data/data or DBMS software is modified by the attacker to
give erroneous results while the database is still operational.
Pavlou and Snodgrass [10] have proposed methods for detec-
tion of database tampering and data hiding by using cryp-
tographically strong one-way hashing functions. Similarly
Stahlberg et. al [14] have investigated a threat model and
methods for ensuring privacy of data. However, very little
work is done in the context of a damaged/destroyed database
and collection of forensic evidence by reconstruction of data
using database artifacts.

Adedayo 2012 [4] introduced an algorithm for record re-
construction using relational algebra logs and inverse rela-
tional algebra. Their heuristic algorithms assume not only

the presence of audit logs but also requires other database
logs to be configured with special settings that might be
difficult to enforce in all situations. While this work is use-
ful and complementary, in this paper we propose methods
for database reconstruction for forensic analysis without any
assumptions about available logging, especially audit logs.

In fact, our method is more similar to file carving [7, 13],
which reconstructs files in the absence of file metadata and
accompanying operating system and file system software.
We assume the same forensic requirements as in file carv-
ing, namely absence of system catalog metadata and un-
availability of DBMS software, and describe how carving
can be achieved generally within the context of relational
databases. In our previous paper, [15] we have described
how long forensic evidence may reside within a database,
even after being deleted. In this paper, we delve deeper into
the process of page carving and describe a database agnostic
mechanism to carve database storage at the page level, as
well as show how forensic analysis can be conducted by an
investigator.

Database carving can provide useful data for provenance
auditing [8], and creation of virtualized database packages
[11], which use provenance-mechanisms underneath and are
useful for sharing and establishing reproducibility of database
applications [12]. In particular, provenance of transactional
or deleted data is still a work-in-progress in that provenance
systems must support a multi-version semi-ring model [5],
which is currently known for simple delete operations and
not for delete operations with nested subqueries. Our tech-
nique can reconstruct deleted data, regardless of the queries
that deleted the data.

3. PAGE CARVING IN DBCARVER

3.1 Page Carving Requirements
We assume a forensic framework for examination of digi-

tal evidence as established by the National Institute of Jus-
tice [1] and also described in detail by Carrier in Founda-
tions of Digital Investigations [6]. This framework identifies
three primary tasks that are typically performed by a foren-
sic investigator in case of a suspicious incident, namely (i)
evidence acquisition, (ii) evidence reconstruction, and (iii)
evidence analysis. In acquisition, the primary task is to pre-
serve all forms of digital evidence. In this paper, we assume
evidence acquisition corresponds to preserving disk images
of involved systems. A forensic investigator, depending on
the investigation, may also preserve memory by taking snap-
shots of the process memory. Snapshots of the database pro-
cess memory can be especially useful for forensic analysis
because dirty data can be examined for malicious activity.

Once potential evidence is acquired and preserved, the in-
vestigator must reconstruct data from the preserved disk im-
age to determine and analyze potential evidence. To do so,
the investigator must follow, as specified in [1, 6], two strict
requirements. First, forensic reconstruction or analysis must
not write to the acquired disk image as it may potentially
change embedded evidence. In the case of database foren-
sics, this implies that a disk image must not be restarted
within the context of the original operating or database sys-
tem because this action might compromise the image. Sec-
ond, reconstruction must not rely on global system metadata
as system metadata may, too, have been compromised or
damaged during the incident. In the case of database foren-



sics, this implies not relying on any file inodes or system
catalogs for reconstruction. Because most OS and DBMSes
need system metadata when restarting from a disk image,
the lack of metadata prevents the use of such systems. Thus,
for all practical purposes forensic reconstruction and anal-
ysis as specified in [1, 6] assumes the lack of availability of
system software in which the data was originally resident
and any global system metadata.

3.2 DBCarver Overview
The DBCarver tool reconstructs data from a relational

database that is resident on a disk image for the purpose
of a forensic investigation. It reconstructs by interpreting,
aka “carving”, each individual page, while satisfying recon-
struction requirements. Carving each page independently is
a practical approach because pages are the smallest unit of
persistent storage. Figure 2 summarizes the overall archi-
tecture of DBCarver. DBCarver consists of two main compo-
nents: the parameter detector(A) and the carver(F).

Parameter 
Detector 

Database  

Management 

System 

DB Carver 

Iteratively load 
synthetic data 

Capture DB  storage 

 
 
 
 
 
 

DB config. files 
 

 
 

Generate DB 
config. file 

 

DBMS 
disk image 

 

DBMS RAM 
image 

A 
B 

C 

D 

E 

F 

G 
H 

Updated, Deleted rows 

Cached index/data pages (RAM) 

Catalog, logs, etc 

Unallocated (free) pages 

Disk 
and 
RAM 

Figure 2: Architecture of DBCarver.

The parameter detector calibrates DBCarver for the iden-
tification and reconstruction of different database pages. To
do this, the parameter detector loads synthetic data(B) into
a working version of the particular DBMS(D), and it cap-
tures underlying storage(C). The parameter detector then
learns the layout of the database pages and describes this
layout with a set of parameters, that are written to a configu-
ration file(E). A configuration file only needs to be generated
once for each specific DBMS version, and it is likely that a
configuration file will work for multiple DBMS versions as
page layout rarely changed between versions.

The carver(F) then uses these configuration files(E) to
identify and reconstruct pages from any type of file(G) passed
to it, such as disk images, RAM snapshots, or individual
files. The carver searches the input files for database page
headers. For each page header found the carver reconstructs
the page, and outputs the records(H), along with additional
metadata(H) from the pages. This output includes records
from tables, value-pointer pairs from indexes, system tables,
and deleted data. DBCarver has been tested against ten dif-
ferent databases along with several versions for each: DB2,
SQL Server, Oracle, PostgreSQL, MySQL, SQLite, Apache
Derby, Firebird, Maria DB, and Greenplum.

3.3 Parameter Collector
The parameter detector runs against a DBMS on a trusted

machine, and is not intended to operate on a suspect ma-
chine. It deconstructs storage, and describes database page

structure with a set of parameters that are used later by the
carver for page reconstruction. In this section, we discuss
how the parameter detector operates, and describe some of
the more significant parameters created by DBCarver – we
do not describe the entire set of parameters due to space
limitations.

With the exception of modest user intervention, the pa-
rameter collector has been automated. Prior to running the
parameter collector, the user is required to provide a config-
uration file containing several database settings: page size,
a directory where database file(s) are to be stored, database
connection information, and user credentials with sufficient
privileges to create tables/load data. The user may also be
required to create a new wrapper class for the DBMS, which
must accept user credentials, database connection informa-
tion, and a SQL file as arguments, and runs the SQL file
commands against the database. Additionally, the user may
be required to change the SQL schema file for the synthetic
tables. This last requirement may occur because there are
inconsistencies in data type definitions across DBMSes.

In order to learn details about database storage by the
DBMS, the parameter collector automatically loads our own
set of synthetically generated data and SSBM [9] data and
performs snapshots as the database is being populated. Dur-
ing this process, we perform individual INSERT commands
rather than bulk load tools. We observed that bulk load
tools do not always preserve an insertion order, which is an
assumption made by the parameter collector when learning
storage layout. Once snapshots are acquired, the parameter
collector deconstructs the database storage and outputs the
parameters to a file.

For all page types and all RDBMSes, we observed three
common page components that we used to categorize the
parameters: the page header, the row directory, and the
row data. The page header stores characteristics shared by
all pages. The row directory maintains pointers to records
within the page. The row data contains the raw data itself
along with additional metadata.

Page Header.
The page header primarily contains metadata that pro-

vides general page information and details about a page’s
relationship with a database. Figure 3 displays two exam-
ple page headers from different databases containing four
types of metadata: general page identifier (A), unique page
identifier (B), object identifier (C), and record count (D).
The general page identifier is a sequence of (typically 2 to
4) bytes shared by all database pages, and it is used for
database page identification by the carver. The unique page
identifier is typically a 32-bit or 64-bit number that is unique
for each page within a file or across the entire database. The
object identifier is usually a 32-bit number that is unique for
each object (e.g., table or index) across the database. The
record count is a 16-bit number that represents the number
of active records within the page, and it is updated when a
record in the page is modified.

The page header parameters are determined by compar-
ing many pages (on the order of 105) belonging to various
objects, objects types, and database files. Table 1 lists and
describes the parameters the parameter collector returned
in order to determine how this page header metadata were
stored. The general page identifiers, (162, 0, 0) and
(32, 8, 32), for each example were recorded along with their



10

82

Row Directory
& Row Data

A

B

C

D

(A) General Page 
Identifier

(B) Unique Page 
Identifier

(C) Object 
Identifier

(D) Record Count

5
P
o
si
ti
o
n 10

18

30

162 0

123 34

126 00 0

0

32

10

82

Row Directory
& Row Data

A

B

D

5

16

20

8 32

123 34

0

0

#1 #2

Figure 3: Two example page headers belonging to
different databases.

positions from the top of the page (or the general page
identifier position), 5 and 16. Both examples stored a
unique page identifier. The unique page identifier size,
4 bytes, and the unique page identifier positions, 10
and 5, were recorded. Example #1 in Figure 3 contains an
object identifier, but example #2 in Figure 3 does not. In
example Figure 3-#1, the object identifier size, 4 bytes,
and the object identifier position, 18, were recorded. A
NULL value was record for both of these parameters in ex-
ample Figure 3-#2. Both examples contain a record count.
The record count size, 2 bytes, and the record count
positions, 30 and 20, were recorded for each example.

Parameter
Figure 3 Value

3-#1 3-#2

General Page Identifier (162, 0, 0) (32, 8, 32)

General Page Identifier Position 5 16

Unique Page Identifier Position 10 5

Unique Page Identifier Size 4 bytes

Object Identifier Position 18 NULL

Object Identifier Size 4 bytes NULL

Record Count Position 30 20

Record Count Size 2 bytes

Table 1: Page header parameters used to recon-
struct Figure 3.

Row Directory.
The row directory maintains a set of addresses referencing

the records within a page. The row directory can be posi-
tioned either between the page header and the row data or
at the end of the page following both the page header and
the row data. A row directory may store an address for each
record (dense) or an address per multiple records (sparse).
Furthermore, the row directory addresses may be used to
mark row status (deleted or active). Figure 4 displays two
example row directories for different databases. Both exam-
ples store an address as a 16-bit, little endian number (B
& C). The decoding constants Cx (D) and Cy (E) are used
when the explicit addresses are not stored. These values are
the same for all addresses and all pages for a DBMS. Exam-
ple 4-#1 was positioned between the page header and the
row data. The first address (A) began at position 50 and
addresses are appended from top-to-bottom (F). Example 4-
#2 was positioned after the page header and the row data.
The first address (A) began at position 8186 and addresses
are appended from bottom-to-top (G).

(A) Address1 (2 bytes)
(B) Xn (1 byte)
(C) Yn (1 byte)

(D) Cx from Table 2, 
applies to Xn

(E) Cy from Table 2, 
applies to Yn

(F) Top-to-Bottom 

insertion
(G) Bottom-to-Top 

insertion

162

Row Data

A
50

P
o
si
ti
o
n 52

54

216

Page Header

Row Addressn = Xn + (Yn – Cy) * 256 + Cx

67

245

31

31

231 30

0

197

8182

8184

8186

Page Header 
& Row Data

33

102

128

129

8 159

128

8192

8026

F

G

A
B C

ED
E

CB

D

#1 #2

Figure 4: Two example row directories belonging to
different databases.

The row directory parameters were determined by search-
ing within a page for a set of candidate addresses and val-
idating this set with many pages. While the row directory
is similar for an object type (e.g., table, index, system ta-
ble), differences may exist across object types; consequently,
this process is repeated for different object types. Table 2
lists and describes the parameters the parameter detector
used to deconstruct each row directory example. In both
examples, the position of the first address was recorded as
the Row Directory Position, 50 and 8186. The Address
Size in both examples was 2 bytes, and both examples used
Little Endian. Example #1 in Figure 4 appends addresses
from Top-to-Bottom, and example #2 in Figure 4 instead
appends rows from Bottom-to-Top. Figure 4-#2 required
decoding constants to calculate the explicit addresses. In
the Figure 4-#2 parameter file, -2 was recorded for Cx and
128 was recorded for Cy. Figure 4-#1 stored the explicit
addresses; hence, 0 was recorded for both decoding constant
parameters.

Row Data.
The row data stores the actual raw data itself along with

metadata that describes the raw data. The layout of the row
data is similar across objects of a similar type. For example,
the row data for table pages contains data inserted by the
user, but the row data for index pages contains value-pointer
pairs. Furthermore, the metadata in the row data may de-
scribe the status of raw data (active or deleted). Figure 5
visualizes three example row data for different databases.
Example #1 in Figure 5 used a row delimiter (A) in order
to separate rows. This position is typically where a row
directory points within a row. Examples #1, #2 and #3
in Figure 5 all store a column count (B), which is an ex-
plicit numbers of columns stored in each row. Example #2
in Figure 5 uses a row identifier (E), which is a segment
of an internal database pseudocolumn. This pseudocolumn
is referred to as ‘ROWID’ in Oracle and ‘CTID’ in Post-
greSQL. Examples #1 and #2 in Figure 5 store the column
sizes. Figure 5-#1 stores the column sizes within the raw
data (C), and Figure 5-#2 stores the column sizes in the
row header (F) before the raw data began. Alternatively,
Figure 5-#3 used a column directory (G) to store column
addresses rather than column sizes. Figures 5-#1 and 5-#2
use column sizes and, thus, store raw numbers with strings
(D); Figure 5-#3 uses a column directory and, therefore,
stores raw numbers separately from raw strings (H) in the
column directory.

The row data parameters were determined by locating



Parameter Description
Figure 4 Value

4-#1 4-#2

Row Directory Position The position of the first address. 50 8186

Little Endian Little endian is used to store addresses. True

Top-to-Bottom Insertion Addresses are appended in ascending order. True False

Address Size The number of bytes used to store each address. 2 bytes

Cx A decoding constant for Xn when the explicit address is not stored. 0 -2

Cy A decoding constant for Yn when the explicit address is not stored. 0 128

Table 2: Row directory parameters used to reconstruct Figure 4.

1

A

B

C

(A)  Row Delimiter
(B)  Column Count
(C)  Column sizes stored 
with raw data
(D)  Numbers stored with strings

3

Jane
101

Texas

2
3

Joe
202

Illinois

44

Header &
Row Directory

3
Jane
101

Texas

44

3
Joe
202

Illinois

3
4
8

4
4
5

3

Jane
Texas

3

Joe
Illinois

3 4 8

4 4 5

5

5

202
8

101
9

E

F

G H

B

B

D

Raw Data Metadata

R
o

w
 1

R
o

w
 2

Header &
Row Directory

Header &
Row Directory

(E)  Row Identifier
(F)  Column sizes stored in row header
(G)  Column directory
(H)  Numbers stored separately from strings

HG

B

D

E

F
B

D

DC

A

B

#1 #2 #3

Figure 5: Three example row data layouts.

known synthetic data and comparing the metadata for many
rows (on the order of 106) for dozens of objects. These pa-
rameters were then confirmed using the SSBM data. This
process was repeated for each object type. Table 3 lists and
describes the detected parameters that were used to char-
acterize each row data layout. Example 5-#1 in Table 3
was the only one that uses a row delimiter, thus the row
delimiter parameter value 44 was recorded. Only example
5-#2 stored a row identifier, consequently the row identi-
fier position within the row, 0, was recorded. Examples
5-#1, 5-#2, and 5-#3 in Table 3 all stored a column count;
accordingly, their column count positions (1, 4, and 0)
were stored. The column sizes in raw data Boolean pa-
rameter signaled that the column sizes should be read in
the raw data, such as in example 5-#1. The position of
the column sizes in the row header in example 5-#2 was
recorded with column sizes position, 5. Finally, the col-
umn directory in example 5-#3 was recorded using column
directory position, 1.

3.4 Carver
The carver is the read-only component of DBCarver that

accepts any type of storage from a suspect machine and any
number of parameter files generated by the parameter col-
lector as input, parses the storage contents for the relevant
databases, and returns all discovered database content. The

Parameter
Figure 5 Value

5-#1 5-#2 5-#3

Row Delimiter 44 NULL

Row Identifier Position NULL 0 NULL

Column Count Position 1 4 0

Column Sizes in Raw Data True False

Column Sizes Position NULL 5 NULL

Column Directory Position NULL 1

Table 3: Row data parameters used to reconstruct
Figure 5.

carver is a command line tool that requires two arguments:
the name of a directory that contains the input image files
and the name of a directory where the output should be
written. No other user intervention is necessary. Figure 6
summarizes the database content that DBCarver can carve
and make available for forensic investigation. When the in-
put is a disk image, the page carving process from DBCarver

results in two kinds of information: (i) the original database
content, which is queryable by the user, reconstructed as
database tables, indexes, materialized views, system cata-
logs, and log files; (ii) the non-queryable data that is em-
bedded with the reconstructed data objects, such as data
that was deleted from a table or materialized view or sys-
tem catalog or unallocated pages, i.e. zombie data. The
latter data can be extracted by DBCarver only, it cannot
queried from the database and log files. When the input is a
RAM snapshot, the result is database buffer cache pages (as
distinguished from other memory pages), which may corre-
spond to intermediate results or log buffer pages.

The carver begins by searching the input files for the gen-
eral page identifier from Table 1. When a general page
identifier is found, the carver reconstructs each of the three
page components: page header, row directory, and row data.
Because the general page identifier is typically a sequence
of a few bytes, false positives are likely to occur. The carver
verifies each page component using a number of assump-
tions, which eliminates false positives. Some of these as-
sumptions include: the identifiers in the page header must
be greater than 0, the row directory must have at least on
address, and the row data must contain at least one row.

Page Header.
The parameter values in Table 1 were used to reconstruct

the page header metadata in both Figure 3 examples. Table
4 summarizes the reconstructed metadata. In example 3.1,
the carver moved to position 10 and read four bytes to re-



Data: Tables, rows 

  Auxiliary Data: Indexes, MVs  

Metadata: 
 System tables (catalog) 

Zombie Data:  
Unallocated storage 

Physical 
layer 
(files) 

Semantic 
(values) 

 
Database  

Buffer  
Cache 

 

 
Database files 

 

 
  RAM   
  Snapshots 

 

 
Buffer 
Logs 

 

Metadata: logs 

Figure 6: Forensically relevant content in a
database: with the exception of indices, every cate-
gory can include both active and deleted values.

construct the unique page identifier as a 32-bit little endian
number, 58395140. The carver then read four bytes at posi-
tion 18 to reconstruct the the object identifier, 126. Finally,
the carver moved to position 30 to reconstruct the record
count, 82. This process was repeated for example 3.2 except
an object identifier was not able to be reconstructed because
the object identifier position and object identifier size
were NULL.

Meta Data
Figure 3 Value

3.1 3.2

Unique Page Identifier 58395140/(4, 10, 123, 3)

Object Identifier 126 NULL

Record Count 82

Table 4: Reconstructed page header meta data val-
ues from Figure 3.

Row Directory.
The parameter values in Table 2 were used to reconstruct

the row directory in both Figure 4 examples. Table 5 sum-
marizes the reconstructed row directory addresses. The parser
used row directory position to move to the beginning of
the row directory. Each address was reconstructed using the
equation: RowAddressn = Xn +(Yn−Cy)∗256+Cx, where
Cx and Cy are decoding constants stored as parameters,
and Xn and Yn are the least-significant and most-significant
bytes of the 16-bit number. After the first address has been
reconstructed, the parser moves on the remaining address
using Address Size and Top-to-Bottom Insertion. The
carver makes some assumptions to validate an address, such
as that the address cannot be larger than the page size and
an address must be located somewhere within the row data
of the page.

Row Data.
The parameter values in Table 3 were used to reconstruct

the row data in the three examples from Figure 5. Table 6
summarizes the reconstructed row data and row meta data.
The carver reconstructed the column count by moving to
the column count position within the row and reading the
respective byte. The carver reconstructed the row identifier,

Address
Figure 4 Value

4.1 4.2

Address1 8098 100

Address2 8003 195

Address3 7911 287

Addressn 245 7942

Table 5: Reconstructed row directory address from
Figure 4.

for example 5.2, by moving to the column count position
within the row and reading the value. Finally, the carver
reconstructed each column of raw data by first determining
the column size using either the column sizes in raw data
or the column sizes position and then reading column
data at the column directory position.

Data/Meta Data
Figure 5 Value

5.1 5.2 5.3

Column Count 3

Row1 Row Identifier NULL 1 NULL

Row1 Raw Data Jane, 101, Texas

Row2 Row Identifier NULL 2 NULL

Row2 Raw Data Joe, 202, Illinois

Table 6: Reconstructed data and meta data from
Figure 5.

Meta-Columns.
While the reconstructed data can tell us what was present

in database tables, page carving must explicitly expose the
internal data and metadata in order to enable forensic queries
about that data. Table 7 summarizes a few internal columns
that are a part of each reconstructed table and materialized
view and that enable detailed forensic analysis. In order to
enable such questions, we add a few meta-columns to all
reconstructed tables.

Meta-Column Description

Object Identifier A unique identifier for each object
across the database

Page Identifier A unique identifier for each page for
joining DB and RAM pages

Row Offset Unique identifier of a row within a
page.

Row Status Distinguishes active rows from deleted
rows.

Table 7: Metadata used to describe the recon-
structed data.

4. DATABASE FORENSICS ANALYSIS
After data has been extracted from the storage, it must

be analyzed to determine its significance. By connecting re-
constructed metadata and data, investigators can ask sim-
ple questions that validate whether system metadata is con-
sistent with the data (i.e., no column type or number of
columns were altered). More interesting forensic analysis
can be performed using recovered deleted data and by com-
bining both active, deleted, and memory data. We present



several types of scenarios that a forensic investigator may
wish to explore and present queries that can be answered
with the help of carved data. We term the scenarios “meta-
queries”’ because such queries are not executed on the orig-
inal active database but on the reconstructed data.

Scenario 1: Reconstruction of Deleted Data.
An analyst may need to determine what values were po-

tentially deleted in a database. In particular, identifying
deleted rows would be of interest if we assume that the au-
dit logs are missing. For example, a logged query,

DELETE FROM Customer

WHERE Name = ReturnNameFunction(),
does not reveal anything about the specific records that
were deleted. With database carving analysis however, that
records that were deleted could be identified readily by run-
ning the following query:

SELECT * FROM CarvCustomer

WHERE RowStatus = ‘DELETED’.
Notably, database carving can only determine whether rows
were deleted and not the reasons for or mechanism by which
the deletion occurred.

Scenario 2: Detecting Updated Data.
Similar to the deleted values, we may want to find all

of the most recent updates, carved from a database RAM
snapshot. For example, consider the problem of searching
for all recent product price changes in RAM. In order to
form this query, we would need to join disk and memory
storage, returning the rows for which price is different:

SELECT *

FROM CarvRAMProduct AS Mem, CarvDiskProduct AS Disk

WHERE Mem.PID = Disk.PID

AND Mem.Price <> Disk.Price.

Scenario 3: Tampering of Database Schema.
If we suspect that someone may have tampered with the

database by making changes to a database schema (e.g,.
remove a constraint, drop a table) we can query the carved
system tables to find schema changes. For example:

SELECT * FROM CarvSysConstraints

WHERE RowStatus = ‘DELETED’.

Scenario 4: Identifying Missing Records in a Corrupted
Database.

Forensic analysis may be performed in the face of database
damage or corruption. For example, the perpetrator may
delete database files to impede the investigation. If the files
in question were not yet overwritten, then DBCarver will suc-
cessfully reconstruct all of the database content. Once the
database file is partially overwritten though, we can carve all
surviving pages and explore auxiliary structures to identify
missing records. For example, when searching for customer
records of a partially overwritten table, we could use the
query:

SELECT * FROM CarvCustomer,
to find remaining customer records and the following query
to determine how many customers are missing from the out-
put of the first query:

SELECT COUNT(SSN) FROM CarvCustIndex

WHERE SSN NOT IN (SELECT SSN FROM CarvCustomer),
(because UNIQUE constraint will automatically create an in-
dex).

5. EXPERIMENTS
Our current implementation of DBCarver applies to ten

different RDBMSes under both Windows and Linux OS.
We present experiments using four representative databases
(Oracle, PostgreSQL, MySQL, and SQL Server). In this
section, we used data from the SSBM [9] benchmark.

Our experiments were carried out using an Intel X3470
2.93 GHz processor with 8GB of RAM; Windows exper-
iments run Windows Server 2008 R2 Enterprise SP1 and
Linux experiments use CentOS 6.5. Windows operating sys-
tem RAM images were generated using Windows Memory
Reader. Linux memory images were generated by reading
the process’ memory under /proc/$pid/mem. DBCarver read
either the database files or the raw hard drive image because
the file system structure is not needed.

5.1 Experiment 1. System Table Carving
The objective of this experiment is to demonstrate the

reconstruction of system tables with DBCarver. In Part A,
we retrieve the set of column names that belong to tables in
a PostgreSQL DBMS, using them to reconstruct the schema.
In Part B, we associate the name of a view with its SQL text
in an Oracle DBMS.

Part A.
For a PostgreSQL database, we created the CUSTOMER

table (8 columns) and the SUPPLIER table (7 columns)
from the SSBM benchmark. We then passed all of database
system files related to this instance to DBCarver.

Our analysis focuses on two tables used by PostgreSQL.
Specifically, PostgreSQL stores information about each ob-
ject in the PG CLASS table and information about each
column in the PG ATTRIBUTE table. From the DBCarver

output, we performed a grep search to locate the records for
the CUSTOMER and the SUPPLIER tables in the recon-
structed PG CLASS table. In order to abbreviate the out-
put, we reported only the Object Name and Object Identifier
for each tuple: (‘customer’, 16680) and (‘supplier’, 16683).
In the reconstructed PG ATTRIBUTE table, we found 14
records with the Table Object Identifier of ‘16680’ and 13
records with the Table Object Identifier of ‘16683’. We then
used the Object Identifier column from both PG CLASS and
PG ATTRIBUTE to reconstruct the schema. For both the
CUSTOMER and the SUPPLIER tables, 6 records from
PG ATTRIBUTE were observed to have been created by
the system (i.e., they were not created by us). This means
we connected 6 system-related pseudo-columns for each ta-
ble in addition to the columns we declared. We also note
that the Object Identifier we used to join the two system
tables corresponds to the database file name for each table.
This identifier is not stored in the page header for Post-
greSQL. Alternatively, a database like Oracle or DB2 does
not use a file-per-object storage architecture and stores the
Object Identifier in the page header.

Part B.
For an Oracle database, we initially started with the CUS-

TOMER table, and we created the view MyQuery,
CREATE View MyQuery AS

SELECT C_Name, C_Address

FROM CUSTOMER.
Next, we passed the default system database file, ‘SYS-
TEM01.DBF’, used by Oracle to DBCarver.



Oracle stores information about each object in the obj$ ta-
ble and information about views in the view$ table. In the
obj$ table reconstructed by DBCarver, we found a record
with an Object Name value ‘MYQUERY’, Object Identifier
value ‘109661’, and Object Type of ‘view’. Again, in or-
der to abbreviate the output, we reported only the Object
Name and Object Identifier for this record: (109661, ‘MY-
QUERY’). In the view$ table reconstructed by DBCarver,
we found a record with the Object Identifier value ‘109661’
along with the following SQL text:

SELECT C_Name, C_Address

FROM CUSTOMER.
We then joined both tables using the Object Identifier at-
tribute in order to associate ‘MYQUERY’ with the SQL
text.

5.2 Experiment 2. Baseline Carving Perfor-
mance

The objective of this experiment is to demonstrate that
the runtime for DBCarver is linearly proportional to the num-
ber of pages in a database file. To show this, we evaluate
the performance of DBCarver against Oracle database files.

We loaded the five tables from the SSBM benchmark (Scale
4) into an Oracle database. Each table was loaded into a
separate file. Finally, we passed all five files to DBCarver.

Table 8 summarizes the file sizes, pages, and rows re-
turned by DBCarver, in addition to the DBCarver runtimes.
DBCarver carved the Oracle database files at a rate of 1.3
MB/s.

Table
DB File
(MB) Pages Rows

Time
(MB/s)

DWDate 1 32 2556 1.7

Supplier 1 94 8K 1.4

Customer 15 1611 120K 1.3

Part 63 7223 600K 1.3

Lineorder 2443 289K 24M 1.3

Table 8: Cost to carve data files using DBCarver.

5.3 Experiment 3. Selective Carving Perfor-
mance

The objective of this experiment is to demonstrate that
the runtime for DBCarver is dependent on the quantity of
reconstructed data, not the file size. To show this, we evalu-
ate the performance of DBCarver against a RAM image. In
Part A, we evaluate the performance when DBCarver returns
all active and deleted records. In Part B, we evaluate the
performance when DBCarver returns only deleted records.

Part A.
We captured an 8GB RAM image containing an Oracle

buffer cache. The Oracle database used 8kB pages. We then
passed the 8GB RAM image to DBCarver, and configured the
output to include all active and deleted records.
DBCarver returned roughly 65,000 pages (500MB) from

the 8GB image at an average rate of 14.3 MB/s. Given
that Experiment 2 demonstrated that database files are carved
at the rate of 1.3 Mb/s, the increase in carving rate for RAM
images indicates that the carving cost is dependent on out-
put size (the database pages) rather than the input size.

Part B.
We passed the same 8GB RAM image from Part A to

DBCarver. However, this time we configured the output to
include only the deleted records.
DBCarver was still accessed 65,000 page headers and row

directories but did not reconstruct active records. 1956
deleted records were reconstructed at an average rate of 34.1
MB/s. Therefore, if the investigator knows what he or she
needs (e.g., specific rows or particular schema) carving per-
formance can be greatly optimized.

5.4 Experiment 4. Evidence Source Corrup-
tion

The objective of this experiment is to investigate the ac-
curacy of DBCarver against corrupted data sources. We sim-
ulate corruption by performing random overwrites of a disk
image containing SQL Server database files.

We initially loaded the five table from the SSBM bench-
mark (Scale 1) into an SQL Server database. Next, we cre-
ated an image of persistent storage. We then simulated cor-
ruption by randomly overwriting 1kB segments in the image.
We applied four levels of corruption: 1%, 2%, 5%, and 10%
worth of image overwrites, where each level was indepen-
dent of others. Finally, we passed each damaged image to
DBCarver.

Table 9 summarizes the data reconstructed by DBCarver

for each level of corruption. The JOIN results represent all
complete records that could be reconstructed with full de-
normalization. We have two explanations of why an overall
percentage of rows reconstructed was slightly lower than the
percent damaged. First, when the page header or row di-
rectory is damaged, the page cannot be carved. Therefore,
DBCarvercannot reconstruct the remaining page contents.
Second, if a row directory address is damaged, DBCarver

cannot reconstruct that row.

5.5 Experiment 5. Database Storage Conver-
gence

The objective of this experiment is to trace the storage
changes step-by-step within an Oracle DBMS. In Part A,
we follow the side-effects of a DELETE command, which is
summarized in Table 10. In Part B, we follow the side-
effects of an UPDATE command, which is summarized in Table
11. For each command, we describe the changes related to
the table, index, and materialized view(MV) in both the
database files and the buffer cache.

Part A.

• T0: We initially created an EMPLOYEE table, which
included an SSN column. We also created a primary
key index on the SSN column and included this column
in an MV.

• T1: Next, we issued a DELETE command:
DELETE FROM Employee WHERE SSN = ’222’.
In order to delete this record, the DBMS accessed data
that caused the system to cache the table page and the
index page(s) used in lookup. The record was marked
deleted (denoted by 7) in the buffer cache table page,
but ‘222’ cannot be marked deleted in the index page.
The record was not marked as deleted in the database
file on disk because the page had not yet been flushed
from memory.



File Percent Damage

Table 0% 1% 2% 5% 10%

DWDate – # of reconstructed rows (%) 2556 (100%) 2459 (96%) 2384 (93%) 2130 (83%) 2147 (84%)

Supplier – # of reconstructed rows (%) 2000 (100%) 1987 (99%) 2000 (100%) 1740 (87%) 1680 (84%)

Customer – # of reconstructed rows (%) 120K (100%) 118K (98%) 115K (96%) 108K (90%) 96K (80%)

Part – # of reconstructed rows (%) 200K (100%) 195K (97%) 189K (94%) 174K (87%) 146K (73%)

Lineorder – # of reconstructed rows (%) 6M (100%) 5.8M (97%) 5.7M (95%) 5.2M (87%) 4.5M (75%)

Full JOIN – # of reconstructed rows (%) 6M (100%) 5.3M (88%) 4.9M (81%) 2.9M (49%) 1.9M (31%)

Table 9: Data reconstructed from a corrupted file.

• T2: We then refreshed the MV. This caused the MV
page to be cached, and the record with SSN value ‘222’
was marked deleted in the buffer cache MV page. The
record for the MV had not been yet been marked as
deleted in the database file.

• T3: We then flushed the buffer cache with the follow-
ing privileged command:
ALTER SYSTEM FLUSH BUFFER CACHE.
This command forced the modified pages to be writ-
ten to the database files. All pages in the buffer cache
became unallocated space but were not immediately
overwritten, thereby permitting them to be carved.
DBCarver reconstructed the deleted ‘222’ record from
the table page and the MV page, and the value from
the index page.

• T4: Next, we issued many queries to fill the buffer
cache. All of the free-listed pages were overwritten
and could no longer be reconstructed from memory.
‘222’ was no longer found in memory.

• T5: Finally, we issued explicit rebuild commands for
the table, index, and MV. This action caused the deleted
record to be overwritten in the table and MV, and the
value to be overwritten in the index. Such a rebuild
can also be caused by a sufficiently high volume of
modifications.

Hard Drive Buffer Cache (RAM)

Table Index MV Table Index MV

T0 222 222 222

T1 222 222 222 7222 222

T2 222 222 222 7222 222 7222

T3 7222 222 7222 7222 222 7222

T4 7222 222 7222

T5

Table 10: A timeline for the DELETE convergence.

Part B.
• T0: We continued with the setup from Part A. Times

T1 through T3 are split into two options: Tn-A rep-
resents an update-in-place and Tn-B corresponds to
DELETE+INSERT alternative. The latter is a possibility
because some databases (e.g,. PostgreSQL) avoid in-
place updates in general and most databases cannot
update in-place when new value is larger than the old
value.

• T1: First, we issued an UPDATE command:
UPDATE Employee SET SSN = ’JAY’ WHERE SSN = ’888’.
The update required both the table and index pages to
be read into the buffer cache. In the T1-A buffer cache,
‘888’ was overwritten by ‘JAY’ in the table page, and
the index stores both ‘888’ (without deletion mark)
and ‘JAY’. Alternatively, at T1-B, the table page was
cached with ‘888’ marked as deleted while a new row
with ‘JAY’ was inserted into another table page in
memory. The index at time T1-B still maintains both
values, the same as at T1-A. No changes occurred on
disk at this point.

• T2: Next, we refreshed the MV. At T2-A, ‘888’ was
overwritten by ‘JAY’ in the buffer cache MV page. At
T1-B, the MV page was cached with ‘888’ marked as
deleted while a new row with ‘JAY’ was inserted into
another MV page in memory.

• T3: We then issued the privileged flush buffer cache
command. In both T3-A and T3-B, the cached page
versions are written to disk, overwriting the old page
versions.

• T4:Finally, T4 represents the final convergence state to
which T3-A and T3-B arrive after all three structures
have been rebuilt. Achieving final convergence requires
explicit rebuild commands or a long duration of normal
operations.

Hard Drive Buffer Cache (RAM)

Table Index MV Table Index MV

T0 888 888 888

T1-A 888 888 888 JAY
888
JAY

T2-A 888 888 888 JAY
888
JAY JAY

T3-A JAY
888
JAY JAY

T1-B 888 888 888
7888
JAY

888
JAY

T2-B 888 888 888
7888
JAY

888
JAY

7888
JAY

T3-B
7888
JAY

888
JAY

7888
JAY

T4 JAY JAY JAY

Table 11: A timeline for the UPDATE convergence.



5.6 Experiment 6. Connecting Multiple Foren-
sic Evidence

The objective of this experiment is to use analytic queries
to connect and query two sources of forensic evidence. We
connect a RAM and a disk image from the same machine.

We started with the CUSTOMER table from the SSBM
benchmark and a MySQL database. Next, we issued a
DELETE command to simulate malicious activity:

DELETE FROM Customer WHERE C_Nation = ’Canada’.
In order to investigate database activity, we collected a RAM
image and a disk image, and we passed each image to DB-

Carver. DBCarver returned a CUSTOMER table from each
image. We named the two tables CustomerDisk and Cus-
tomerRAM and loaded the reconstructed rows into a clean
database. Along with columns belonging to the original ta-
ble CUSTOMER table, we included our meta-columns: ob-
ject identifier, page identifier, row offset, and row status.

Because we suspected a malicious delete, we had two foren-
sic questions: 1) what records recently deleted, and 2) what
values were the likely target of the deletion. The following
query returned 4854 rows where the row status was ‘active’
on disk but ‘deleted’ in memory (or recently modified):

SELECT *

FROM CustomerDisk AS Disk, CustomerRAM AS RAM

WHERE Disk.ObjectIdentifier = RAM.ObjectIdentifier

AND Disk.PageIdentifier = RAM.PageIdentifier

AND Disk.RowOffset = RAM.RowOffset

AND Disk.RowStatus = ’ACTIVE’

AND RAM.RowStatus = ’DELETED’.
Next, we were able to issue queries to search for similari-
ties between the deleted records. For example, the following
query told us that all of the recently modified records had
the C Nation value ‘Canada’ in common:

SELECT *

FROM CustomerRAM

GROUP BY C_Nation

HAVING COUNT(*) = (Count of recently modified rows).

6. CONCLUSION AND FUTURE WORK
In this work, we have presented and evaluated DBCarver,

a novel forensic tool that permits reconstruction of database
storage. The advantage of our carving approach is that it
generalizes to many relational databases and does not rely on
DBMS. Reconstructed database content can then be queried
to help with forensic analysis of the database. Our analysis
can be applied even if the database logs are missing or the
database itself is corrupt.

We intend to investigate how database carving can aug-
ment and generalize provenance auditing solutions. Database
carving will contribute to reproducibility of database appli-
cations and performing comparative studies across different
database engines. Database storage analysis can provide
new ways for monitoring user access and detecting log tam-
pering. Finally, we plan to combine database carving and
other database forensic and provenance techniques to de-
velop comprehensive forensic analysis that can answer evi-
dential queries while preserving the evidence from a read-
only data source.

Acknowledgments
This work was partially funded by the US National Science
Foundation Grant CNF-1656268.

7. REFERENCES
[1] Forensic examination of digital evidence: A guide for

law enforcement.
https://www.ncjrs.gov/pdffiles1/nij/199408.pdf.

[2] A. Act. Health insurance portability and
accountability act of 1996. Public law, 104:191, 1996.

[3] S.-O. Act. Sarbanes-oxley act. Washington DC, 2002.

[4] O. M. Adedayo and M. S. Olivier. On the
completeness of reconstructed data for database
forensics. In International Conference on Digital
Forensics and Cyber Crime, pages 220–238. Springer,
2012.

[5] B. Arab, D. Gawlick, V. Krishnaswamy,
V. Radhakrishnan, and B. Glavic. Reenactment for
read-committed snapshot isolation. In Proceedings of
the 25th ACM International Conference on
Information and Knowledge Management (CIKM),
2016.

[6] B. Carrier. File system forensic analysis.
Addison-Wesley Professional, 2005.

[7] S. L. Garfinkel. Carving contiguous and fragmented
files with fast object validation. digital investigation,
4:2–12, 2007.

[8] B. Glavic.
Perm: Efficient Provenance Support for Relational Databases.
PhD thesis, University of Zurich, 2010.

[9] P. O.Neil, E. O.Neil, X. Chen, and S. Revilak. The
star schema benchmark and augmented fact table
indexing. In Performance evaluation and
benchmarking, pages 237–252. Springer, 2009.

[10] K. E. Pavlou and R. T. Snodgrass. Forensic analysis of
database tampering. ACM Transactions on Database
Systems (TODS), 33(4):30, 2008.

[11] Q. Pham, T. Malik, B. Glavic, and I. Foster. Ldv:
Light-weight database virtualization. In 2015 IEEE
31st International Conference on Data Engineering,
pages 1179–1190. IEEE, 2015.

[12] Q. Pham, S. Thaler, T. Malik, I. Foster, and
B. Glavic. Sharing and reproducing database
applications. Proceedings of the VLDB Endowment,
8(12):1988–1991, 2015.

[13] G. G. Richard III and V. Roussev. Scalpel: A frugal,
high performance file carver. In DFRWS, 2005.

[14] P. Stahlberg, G. Miklau, and B. N. Levine. Threats to
privacy in the forensic analysis of database systems. In
Proceedings of the 2007 ACM SIGMOD international
conference on Management of data, pages 91–102.
ACM, 2007.

[15] J. Wagner, A. Rasin, and J. Grier. Database image
content explorer: Carving data that does not officially
exist. Digital Investigation, 18:S97–S107, 2016.


