Serverless Computing: One Step Forward, Two Steps Back

Joseph M. Hellerstein, Jose Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith, Vikram Sreekanti,

Alexey Tumanov and Chenggang Wu
UC Berkeley
{hellerstein,jmfaleiro,jegonzal,jssmith,vikrams,atumanov,cgwu}@berkeley.edu

ABSTRACT

Serverless computing offers the potential to program the cloud in
an autoscaling, pay-as-you go manner. In this paper we address
critical gaps in first-generation serverless computing, which place
its autoscaling potential at odds with dominant trends in modern
computing: notably data-centric and distributed computing, but
also open source and custom hardware. Put together, these gaps
make current serverless offerings a bad fit for cloud innovation
and particularly bad for data systems innovation. In addition to
pinpointing some of the main shortfalls of current serverless ar-
chitectures, we raise a set of challenges we believe must be met
to unlock the radical potential that the cloud—with its exabytes of
storage and millions of cores—should offer to innovative developers.

1 INTRODUCTION

Amazon Web Services recently celebrated its 12th anniversary,
marking over a decade of public cloud availability. While the cloud
began as a place to timeshare machines, it was clear from the begin-
ning that it presented a radical new computing platform: the biggest
assemblage of data capacity and distributed computing power ever
available to the general public, managed as a service.

Despite that potential, we have yet to harness cloud resources
in radical ways. The cloud today is largely used as an outsourcing
platform for standard enterprise data services. For this to change,
creative developers need programming frameworks that enable
them to leverage the cloud’s power.

New computing platforms have typically fostered innovation in
programming languages and environments. Yet a decade later, it
is difficult to identify the new programming environments for the
cloud. And whether cause or effect, the results are clearly visible
in practice: the majority of cloud services are simply multi-tenant,
easier-to-administer clones of legacy enterprise data services like
object storage, databases, queueing systems, and web/app servers.
Multitenancy and administrative simplicity are admirable and desir-
able goals, and some of the new services have interesting internals
in their own right. But this is, at best, only a hint of the potential
offered by millions of cores and exabytes of data.

Recently, public cloud vendors have begun offering new pro-
gramming interfaces under the banner of serverless computing, and
interest is growing. Google search trends show that queries for the
term “serverless” recently matched the historic peak of popularity
of the phrase “Map Reduce” or “MapReduce” (Figure 1). There has
also been a significant uptick in attention to the topic more recently
from the research community [13, 6, 27, 14]. Serverless computing

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well as allowing derivative works, provided that you attribute
the original work to the author(s) and CIDR 2019.

offers the attractive notion of a platform in the cloud where devel-
opers simply upload their code, and the platform executes it on
their behalf as needed at any scale. Developers need not concern
themselves with provisioning or operating servers, and they pay
only for the compute resources used when their code is invoked.

The notion of serverless computing is vague enough to allow
optimists to project any number of possible broad interpretations
on what it might mean. Our goal here is not to quibble about the
terminology. Concretely, each of the cloud vendors has already
launched serverless computing infrastructure and is spending a
significant marketing budget promoting it. In this paper, we assess
the field based on the serverless computing services that vendors
are actually offering today and see why they are a disappointment
when viewed in light of the cloud’s potential.

1.1 “Serverless” goes FaaS

To begin, we provide a quick introduction to Functions-as-a-Service
(FaaS), the commonly used and more descriptive name for the core
of serverless offerings from the public cloud providers. Because
AWS was the first public cloud—and remains the largest—we focus
our discussion on the AWS FaaS framework, Lambda; offerings
from Azure and GCP differ in detail but not in spirit.

The idea behind FaaS$ is simple and straight out of a programming
textbook. Traditional programming is based on writing functions,
which are mappings from inputs to outputs. Programs consist of
compositions of these functions. Hence, one simple way to program
the cloud is to allow developers to register functions in the cloud,
and compose those functions into programs.

Typical FaaS offerings today support a variety of languages (e.g.,
Python, Java, Javascript, Go), allow programmers to register func-
tions with the cloud provider, and enable users to declare events
that trigger each function. The Faa$ infrastructure monitors the
triggering events, allocates a runtime for the function, executes it,
and persists the results. The user is billed only for the computing
resources used during function invocation.

A FaaS$ offering by itself is of little value, since each function
execution is isolated and ephemeral. Building applications on FaaS
requires data management in both persistent and temporary storage,
in addition to mechanisms to trigger and scale function execution.
As a result, cloud providers are quick to emphasize that serverless
is not only FaaS. It is FaaS supported by a “standard library”: the
various multitenanted, autoscaling services provided by the ven-
dor!. In the case of AWS, this includes S3 (large object storage),
DynamoDB (key-value storage), SQS (queuing services), SNS (noti-
fication services), and more. This entire infrastructure is managed
and operated by AWS; developers simply register FaaS code that

This might be better termed a “proprietary library”, but the analogy to C’s stdlib is
apropos: not officially part of the programming model, but integral in practice.

CIDR’19, January 2019, Asilomar, CA, USA

Google Trends: Serverless vs MapReduce
1/2004 - 12/2018

100
90
80
70
60
50
40
30
20
10

B .*W

01/2004 05/2007 09/2010 01/2014 05/2017

% of Peak Popularity

—SErVEr|ESS "map reduce" + mapreduce

Figure 1: Google Trends for “Serverless” and “Map Reduce”
from 2004 to time of publication.

uses these services and receive “pay-as-you-go” bills that scale up
and down according to their storage and compute usage.

1.2 Forward, but also Backward

We emphasize that serverless computing provides a programming
model that is not simply elastic, in the sense that humans or scripts
can add and remove resources as needed; it is autoscaling. The
workload automatically drives the allocation and deallocation of
resources. As modern applications increase in dynamics and com-
plexity, the task of allocating VMs dynamically, monitoring services,
and responding to workload changes becomes increasingly onerous,
requiring constant human observation or bespoke scripts developed
for individual applications. By providing autoscaling, today’s FaaS
offerings take a big step forward for cloud programming, offering a
practically manageable, seemingly unlimited compute platform?.

Unfortunately, as we will see, today’s FaaS offerings also slide
two major steps backward. First, they painfully ignore the impor-
tance of efficient data processing. Second, they stymie the devel-
opment of distributed systems. This is curious since data-driven,
distributed computing is at the heart of most innovation in modern
computing. In the rest of the paper, we highlight the simple cases
where Faa$S currently offers some benefits. We then elaborate on
the shortcomings of the existing FaaS platforms alluded to above,
and present straightforward use cases for which FaaS is incapable
of providing an efficient way to get things done. Finally, we out-
line challenges in moving forward towards a fully-realized cloud
programming infrastructure.

2 SERVERLESS IS MORE? THE EASY CASES

AWS Lambda has been adopted by several applications looking to
simplify their cloud deployments. Many of these use cases have been
documented by Amazon [16]. This section provides an overview of
the design patterns employed by these documented applications.

2In many blog posts ostensibly about serverless computing, Faa$ is combined with
“non-serverless” services: i.e., services that do not autoscale, like AWS Elasticache.
Design patterns that use non-serverless services are out of scope of our discussion;
one might even argue they are anti-patterns for serverless development since they do
not autoscale.

Hellerstein et al.

The use cases listed can be broadly divided into three categories
based on the nature of interaction between function invocations.
Embarrassingly parallel functions. In some applications, each
function invocation is an independent task and never needs to
communicate with other functions. These uses of Lambda func-
tions are inherently limited in their scope and complexity. Concrete
examples include functions that resize the canonical versions of
images for use on a variety of end-user devices (Seattle Times),
perform object recognition in images (V!Studios), and run integer
programming-based optimizations (Financial Engines) [16]. The
PyWren [13] and ExCamera [6] research projects have shown that
AWS Lambda can be made (with some effort) to perform a wider va-
riety of such “map” functions, including some simple featurization
and linear algebra workloads. Such applications can directly exploit
Lambda’s auto-scaling features to scale up or down on demand
because independent requests never need to communicate with
each other and require only small granules of computation.
Orchestration functions. A second class of use cases leverages
serverless functions simply to orchestrate calls to proprietary au-
toscaling services, such as large-scale analytics. For instance, Ama-
zon provides a reference application architecture that uses Lambda
functions to orchestrate analytics queries that are executed by AWS
Athena, an autoscaling query service that works with data in S3
[24]. Another example uses Lambda functions to preprocess event
streams before funneling them to Athena via S3 [21]. In both ap-
plications the “heavy lifting” of the computation over data is done
by Athena, not by Lambda functions. This enables efficient data
manipulation at scale, by pushing computation into an existing
autoscaling service.

Our experience developing Google Cloud Dataprep by Trifacta is

exemplary of this design pattern as well [10]. The basic architecture
of Dataprep involves (1) web client software synthesizing programs
in the domain-specific language (DSL) of Google Cloud Dataflow,
(2) stateless autoscaling services in the Google Cloud that handle
client requests and pass the DSL statements along to Dataflow, and
(3) the autoscaling Dataflow service executing the DSL at scale.
Although the middle tier here is not implemented over Google’s
FaaS offering, similar architectures could use FaaS.
Function Composition. The third category consists of collections
of functions that are composed to build applications and thus need
to pass along outputs and inputs. Examples of such applications
include workflows of functions chained together via data depen-
dencies. These functions generally manipulate state in some way,
and are designed as event-driven workflows of Lambda functions,
stitched together via queueing systems (such as SQS) or object stores
(such as S3). For instance, Autodesk’s account creation platform
makes several function invocations in the critical path of creating
a single user account [16]. Each invocation handles a small portion
of the account creation logic, such as email notification and valida-
tion. The authors of that case study reported average end-to-end
sign-up times of ten minutes; as we will see in the next section, the
overheads of Lambda task handling and state management explain
some of this latency.

In short, current Faa$ solutions are attractive for simple work-
loads of independent tasks—be they embarrassingly parallel tasks
embedded in Lambda functions, or jobs to be run by the proprietary

Serverless Computing: One Step Forward, Two Steps Back

cloud services. Use cases that involve stateful tasks have surpris-
ingly high latency: 10 minutes is a long turnaround time for a cloud
vendor to publicize, even for a sign-up workflow. These realities
limit the attractive use cases for Faa$ today, discouraging new third-
party programs that go beyond the proprietary service offerings
from the vendors.

3 WHY SERVERLESS TODAY IS TOO LESS

The cloud offers three key features: unlimited data storage, unlim-
ited distributed computing power, and the ability to harness these
only as needed—paying only for the resources you consume, rather
than buying the resources you might need at peak.

Serverless computing takes one step forward and two steps back
from this vision. It realizes the potential of pay-as-you-go, fully-
managed execution of end-user code via autoscaling. Unfortunately,
as we will see in this section, current FaaS offerings fatally restrict
the ability to work efficiently with data or distributed computing
resources. As a result, serverless computing today is at best a simple
and powerful way to run embarrassingly parallel computations or
harness proprietary services. At worst, it can be viewed as a cynical
effort to lock users into those services and lock out innovation.

The list of limitations in today’s FaaS offerings is remarkable.
Our running example, AWS Lambda, has the following constraints
that are typical of the other vendors as well®:

(1) Limited Lifetimes. After 15 minutes, function invocations are
shut down by the Lambda infrastructure. Lambda may keep the
function’s state cached in the hosting VM to support “warm
start”, but there is no way to ensure that subsequent invocations
are run on the same VM. Hence functions must be written
assuming that state will not be recoverable across invocations.
1/0 Bottlenecks. Lambdas connect to cloud services—notably,
shared storage—across a network interface. In practice, this
typically means moving data across nodes or racks. With FaaS,
things appear even worse than the network topology would
suggest. Recent studies show that a single Lambda function
can achieve on average 538Mbps network bandwidth; numbers
from Google and Azure were in the same ballpark [27]. This is
an order of magnitude slower than a single modern SSD. Worse,
AWS appears to attempt to pack Lambda functions from the
same user together on a single VM, so the limited bandwidth
is shared by multiple functions. The result is that as compute
power scales up, per-function bandwidth shrinks proportion-
ately. With 20 Lambda functions, average network bandwidth
was 28.7Mbps—2.5 orders of magnitude slower than a single
SSD [27]%.
(3) Communication Through Slow Storage. While Lambda
functions can initiate outbound network connections, they
themselves are not directly network-addressable in any way

—
Y
~

30ur discussion in this paper represents the state of AWS Lambda as of Fall 2018. Some
new details were announced at the AWS re:Invent conference in late November 2018.
We have only had time before publication deadline to comment on them briefly where
they may affect our reported results. These announcements do not seem to address
our main concerns in a substantive way.

4 AWS announced the availability of 100Gbps networking on 11/26/2018. This moves
the needle but leaves the problem unsolved: once you hit the cap, you are constrained.
Even with 100Gbps/64 cores, under load you get ~200MBps per core, still an order of
magnitude slower than a single SSD.

CIDR’19, January 2019, Asilomar, CA, USA

while running. As a result, two Lambda functions can only com-
municate through an autoscaling intermediary service; today,
this means a storage system like S3 that is radically slower and
more expensive than point-to-point networking. As a corol-
lary, a client of Lambda cannot address the particular function
instance that handled the client’s previous request: there is
no “stickiness” for client connections. Hence maintaining state
across client calls requires writing the state out to slow storage,
and reading it back on every subsequent call.

(4) No Specialized Hardware. FaaS offerings today only allow
users to provision a timeslice of a CPU hyperthread and some
amount of RAM; in the case of AWS Lambda, one determines
the other. There is no API or mechanism to access specialized
hardware. However, as explained by Patterson and Hennessy in
their recent Turing Lecture [20], hardware specialization will
only accelerate in the coming years.

These constraints, combined with some significant shortcomings
in the standard library of Faa$ offerings, substantially limit the
scope of feasible serverless applications. A number of corollaries
follow directly.

FaaS is a Data-Shipping Architecture. This is perhaps the
biggest architectural shortcoming of FaaS platforms and their APIs.
Serverless functions are run on isolated VMs, separate from data. In
addition, serverless functions are short-lived and non-addressable,
so their capacity to cache state internally to service repeated re-
quests is limited. Hence Faa$ routinely “ships data to code” rather
than “shipping code to data” This is a recurring architectural anti-
pattern among system designers, which database aficionados seem
to need to point out each generation. Memory hierarchy realities—
across various storage layers and network delays—make this a bad
design decision for reasons of latency, bandwidth, and cost.

Faa$ Stymies Distributed Computing. Because there is no net-
work addressability of serverless functions, two functions can work
together serverlessly only by passing data through slow and expen-
sive storage. This stymies basic distributed computing. That field
is founded on protocols performing fine-grained communication
between agents, including basics like leader election, membership,
data consistency, and transaction commit. Many distributed and
parallel applications—especially in scientific computing—also rely
on fine-grained communication.

One might argue that FaaS encourages a new, event-driven dis-
tributed programming model based on global state. But it is well-
known that there is a duality between processes passing messages,
and event-driven functions on shared data [17]. For FaaS, event
handling still requires passing pieces of the global state from slow
storage into and out of stateless functions, incurring time and cost.
Meanwhile, the current serverless storage offerings offer weak con-
sistency across replicas. Hence in the event-driven pattern, agree-
ment across ephemeral functions would still need to be “bolted on”
as a protocol of additional I/Os akin to classical consensus.

In short, with all communication transiting through storage,
there is no real way for thousands (much less millions) of cores in
the cloud to work together efficiently using current Faa$S platforms
other than via largely uncoordinated (embarrassing) parallelism.

CIDR’19, January 2019, Asilomar, CA, USA

FaaS stymies hardware-accelerated software innovation.
Many of the main Big Data use cases today leverage custom hard-
ware. The most prominent example is the pervasive use of GPUs in
deep learning, but there is ongoing innovation in the use of acceler-
ators for database processing as well. Current FaaS offerings all run
on a uniform and fairly mundane virtual machine platform. Not
only do these VMs not offer custom processors, the current FaaS of-
ferings do not even support main-memory databases that maintain
large RAM-based data structures—the largest Lambda instance only
allows for 3GB of RAM. The lack of access to such hardware—along
with appropriate pricing models—significantly limits the utility of
FaaS offerings as a platform for software innovation.

FaaS$ discourages Open Source service innovation. Most pop-
ular open source software cannot not run at scale in current server-
less offerings. Arguably this is inherent: that software was not
designed for serverless execution, and expects human operation.
But given the FaaS limitations on data processing and distributed
computing, one should not expect new scalable open source soft-
ware to emerge. In particular, open-source data systems—an area of
rapid growth and maturity in recent years—would be impossible to
build on current Faa$S offerings. Current serverless infrastructure,
intentionally or otherwise, locks users into either using proprietary
provider services or maintaining their own servers.

3.1 Case Studies

To evaluate the severity of these problems, we document three case
studies from Big Data and distributed computing settings.

Model Training. Our first case study explores AWS Lambda’s
performance for a common data-intensive application: machine
learning model training. As we will see, it suffers dramatically from
the data-shipping architecture of Lambda.

Using public Amazon product review data [2], we configured Ten-
sorFlow to train a neural network that predicts average customer
ratings. Each product review is featurized with a bag-of-words
model, resulting in 6,787 features and 90GB total of training data.
The model is a multi-layer perceptron with two hidden layers, each
with 10 neurons and a Relu activation function. Each Lambda is
allocated the maximum lifetime (15 min) and 640MB RAM and runs
as many training iterations as possible. Our training program uses
the AdamOptimizer with a learning rate of 0.001 and a batch size
of 100MB.

Each iteration in Lambda took 3.08 seconds: 2.49 to fetch a
100MB batch from S3 and 0.59 seconds to run the AdamOptimizer. A
Lambda function times out of its 15-minute limit after 294 iterations
of this algorithm. We trained the model over 10 full passes of the
training data, which translates to 31 sequential lambda executions,
each of which runs for 15 minutes, or 465 minutes total latency. This
costs $0.29.

For comparison, we trained the same model on an m4.large
EC2 instance, which has 8GB of RAM and 2vCPUs. In this setting,
each iteration is significantly faster (0.14 seconds): 0.04 seconds to
fetch data from an EBS volume and 0.1 seconds to run the optimizer.
The same training process takes about 1300 seconds (just under
22 minutes), which translates to a cost of $0.04. Lambda’s limited
resources and data-shipping architecture mean that running this

Hellerstein et al.

algorithm on Lambda is 21X slower and 7.3X more expensive than
running on EC2.

Low-Latency Prediction Serving via Batching. Our next case
study focuses on the downstream use of a trained model: making
live predictions. We have been working for some time on low-
latency prediction serving in Clipper [5]. At first glance, prediction
serving appears to be well-suited to FaaS. Each function is indepen-
dent, and multiple copies can be deployed to scale the number of
predictions made with a certain model.

In practice, prediction serving relies on access to specialized
hardware like GPUs, which are not available through AWS Lambda.
Setting that issue aside, we wanted to understand if the key perfor-
mance optimizations of a system like Clipper could be achieved in
a FaaS$ setting. One optimization in Clipper is to process inputs in
batches; in the traditional case this provides pipeline parallelism
across the handling of input requests (performed by a CPU) with the
multi-input vector processing of prediction (performed by a GPU).
We were curious to see whether Lambda could provide similar
benefits for pipelining batch accumulation with prediction.

To that end, we exercised Lambda’s favored service for batching
inputs: AWS Simple Queueing Service (SQS). We wrote a simple
application on Lambda that pipelines batching work done by SQS
with a trivial classifier running in Lambda functions. Specifically,
our application accepts batches of text documents, uses a model to
classify each word in the document as “dirty” or not, and writes the
document out to a storage service with the dirty words replaced
by punctuation marks. Our model in this experiment is a simple
blacklist of dirty words. SQS only allows batches of 10 messages at
a time, so we limited all experiments here to 10-message batches.

The average latency over 1,000 batch invocations for the Lambda
application was 559ms per batch if the model was retrieved on
every invocation and results written back to S3. As an optimization,
we allowed the model to be compiled into the function itself and
results were placed back into an SQS queue; in this implementa-
tion the average batch latency was 447ms. For comparison, we ran
two experiments using m5. large EC2 instances. The first replaced
Lambda’s role in the application with an EC2 machine to receive
SQS message batches—this showed a latency of 13ms per batch av-
eraged over 1,000 batches—27x faster than our “optimized” Lambda
implementation. The second experiment used ZeroMQ to replace
SQS’s role in the application, and receive messages directly on the
EC2 machine. This “serverful” version had a per batch latency of
2.8ms—127x faster than the optimized Lambda implementation.

Pricing adds insult to the injury of performance in these services.
If we wanted to scale this application to 1 million messages a second,
the SQS request rate alone would cost $1,584 per hour. Note that this
does not account for the Lambda execution costs. The EC2 instance
on the other hand has a throughput of about 3,500 requests per
second, so 1 million messages per second would require 290 EC2
instances, with a total cost of $27.84 per hour—a 57X cost savings.

Distributed Computing. Lambda forbids direct network connec-
tivity between functions, so we are forced to try alternative so-
lutions to achieve distributed computation. As we will see, the
available solutions are untenably slow.

Serverless Computing: One Step Forward, Two Steps Back

CIDR’19, January 2019, Asilomar, CA, USA

Func. Invoc. | Lambda I/O | LambdaI/O | EC21/O EC21/0 EC2 NW
(1KB) (S3) (DynamoDB) (S3) (DynamoDB) (OMQ)
Latency 303ms 108ms 11ms 106ms 11ms 290us
Compared to best 1,045% 372X 37.9% 365X 37.9% 1x

Table 1: Latencies. We compare the latency of “communicating” 1KB in various ways. To model pure functional event-driven communication, we show the
cost of invoking a no-op Lambda function on a 1KB argument, averaged over 1,000 calls. We then show the cost of two explicit 1KB I/Os (write+read) from
Python Lambda function and an EC2 instance to S3 and DynamoDB, averaged across 5k trials. Finally we show the cost of direct messaging by measuring a

1KB network message roundtrip, measured using python and the ZeroMQ message library running across two EC2 instances, averaged across 10k trials.

As discussed in the previous section, there are two classical dual
patterns to implement concurrent communicating systems: event-
driven execution over shared state (the natural FaaS approach),
or message-passing across long-running agents with distributed
state [17]. In the Lambda environment, both design patterns share
the property that functions can only pass data to each other through
shared storage: S3 or DynamoDB. In the event-driven pattern, data
is read from and written to storage at the beginning and end of
the function. In the message-passing pattern, messages are sent by
writing to storage and read from storage via periodic polling.

We begin with a simple question: Is cloud storage a reasonable
communication medium? To assess this, we measured “send/receive”
(write+read) latency for communicating 1KB between Python func-
tions. The Lambda results were inordinately slow, as shown in Ta-
ble 1. They come in two forms. First we measure the pure functional,
event-driven programming cost of a 1KB object being handled by
a Lambda function invocation—this incurs both I/O and function
overheads and is exorbitantly expensive’. Next we measure the cost
of explicit I/O from Lambda, namely an average write+read from
a long-running function—this is still over an order of magnitude
slower than one would like. We see that latencies from EC2 are
almost identical, so the overhead is in the storage service costs, not
in Lambda. Finally we show the latency of (acked) messaging using
Python functions directly addressing each other via ZeroMQ. This
last cost is close to typical intra-rack datacenter network measure-
ments; studies from even a few years ago report average inter-rack
measurements around 1.26ms [8] In sum, communicating via cloud
storage is not a reasonable replacement for directly-addressed net-
working, even with direct I/O—it is at leaste one order of magnitude
too slow. “Pure” functional FaaS programming style exacerbates
that expense to an inordinate degree, and should be avoided at all
costs.

To put this into perspective, we constructed a distributed sys-
tems case study in the style of communicating agents. As noted
in the previous section, regardless of which design pattern you
choose, distributed agreement on state (even “global” state in AWS’
loosely-consistent storage) requires some kind of protocol. There
is a broad literature of distributed protocols, but most require at
least agreeing on a leader or the membership of the system at any
time. To model this, we implemented one of the simplest of these
protocols in Python: Garcia-Molina’s bully leader election [7]. Us-
ing Lambda, all communication between our functions was done
in blackboard fashion via DynamoDB. With each Lambda polling
four times a second, we found that each round of leader election

0On 11/26/2018 AWS announced Firecracker, a microVM framework that supports
125ms startup time for vanilla VMs. This would have at best modest effects on our
results in Table 1; it is still orders of magnitude slower than traditional network
messaging.

took 16.7 seconds. Recall that Lambda functions are killed after 15
minutes. Hence in the (unachievable) best-case scenario—when
each leader is elected immediately after it joins the system—the
system will spend 1.9% of its aggregate time simply in the leader
election protocol. Even if you think this is tolerable, note that using
DynamoDB as a fine-grained communication medium is incredibly
expensive: Supporting a cluster of 1,000 nodes costs at minimum
$450 per hour®.

3.2 Can Limitations Set Us Free?

The limitations documented above render today’s FaaS frameworks
untenable for building sophisticated new backend functionality.
Still, limitations on developers are not necessarily a bad thing. Some-
times it is important for a new platform to reflect its “physics” in
ways that encourage developers to write programs well-suited to
the platform. In particular, FaaS limitations favor operational flexi-
bility over developer control, a theme we generally agree is critical
to the scale and elasticity of the cloud—and a major design shift
from the traditional data systems ethos. Are some of the limitations
of Faa$ actually healthy for the future of distributed programming?

Sometimes, starting with a limited model ensures that simple
tasks remain simple. As a general design pattern, stateless code
has many virtues: it is generally easy to write and debug, and by
nature can be trivially and dynamically replicated and restarted for
purposes of scaling and fault tolerance. If we view serverless as a
DSL and runtime for the simple tasks it excels at, its limitations can
help ensure good software hygiene.

Another benefit of constraints is that they can lead to deeper
innovation. As one prominent example, the inability for Faa$S func-
tions to communicate can force us to think more deeply about
precisely why and when we should use coordination protocols
from distributed systems, and when we can run coordination-free.
Today’s FaaS frameworks offer few guarantees regarding sequen-
tial execution across functions. Developers are forced to compose
larger programs out of asynchronous tasks, with no guarantees
like sequential consistency or serializability to reason about the
semantics of global state mutation across tasks. These limitations
can be challenging for developers used to writing sequential pro-
grams or transactions. But the result may be both healthy and
manageable: this kind of “disorderly” loosely-consistent model has
been at the heart of a number of more general-purpose proposals
for scalable, available program design in recent years, including
from our group [9, 1, 23, 15]. A hallmark of the recent work in

®In “election mode”—when leader election is happening—each node does about 10
reads every time it polls the storage medium, which happens 4 times a second. In non-
election mode, each node does 2 reads per polling cycle. Our cost estimate represents
the best case scenario, in which each leader is elected immediately after joining the
cluster—in practice, costs might be much higher.

CIDR’19, January 2019, Asilomar, CA, USA

this area is that it offers programming constructs that are richer
than black-box function composition; in principle, though, the ideas
could be layered on top of FaaS. As another example, today’s FaaS
frameworks offer no guarantees of physical hardware locality: de-
velopers cannot control where a function will run, or if its physical
address will even remain constant. Again, this may be a manageable
constraint: virtual addressing of dynamically shifting agents was a
hallmark of prior work in the peer-to-peer research that presaged
cloud services [22, 25].

Another benefit of simplicity is that it can foster platform devel-
opment and community. There is a constructive analogy here to
MapReduce. While not a success in its own right, MapReduce was
simple for developers to start with; as a result it helped change the
mindset of the developer community and eventually led to the rein-
vigoration of SQL and relational algebra (in the form of “dataframe”
libraries) as popular, scalable interfaces for programming sophisti-
cated analytics. Perhaps today’s FaaS offerings will similarly lead
to the reinvigoration of prior ideas for distributed programming at
scale. A notable difference is that SQL and relational algebra were
well established, whereas the natural end-state for asynchronous
distributed programming over data in the cloud remains a matter
of research and debate.

Many of the constraints of current FaaS offerings can also be
overcome, we believe, maintaining autoscaling while unlocking
the performance potential of data and distributed computing. In
the next section we outline what we see as the key challenges and
opportunities for moving forward on all three fronts.

3.3 Early Objections

In this paper we purposely focused on the limitations of public FaaS
APIs, and argued that they are disappointingly far from ready for
general-purpose, data-rich programming. While many of our early
readers concurred with the challenges we have raised, we have also
heard objections. We try to address the most common ones here.

“You keep using that word. I do not think it means what you think it
means.”

Some of our colleagues working at the cloud platforms have argued
that our view of the term “serverless” is too narrow: behind the
curtain of a cloud provider, they are building “serverless” solutions
for customers that are autoscaling and management-free. We under-
stand that use of the term—we talk about Google Cloud Dataprep
similarly. Perhaps this confusion is a reason why “serverless” is
not a useful adjective for rallying the technical community around
cloud innovation. Simply put, the delivery of a particular special-
purpose autoscaling backend service does not solve the problem of
enabling general-purpose cloud programming. Moreover, the work
required to deliver these “serverless” backend offerings is done
largely with old-fashioned “node-at-a-time” programming and is
a traditional and expensive endeavor. Indeed, anyone can do this
kind of work in the public cloud without “serverless” offerings, by
using orchestration platforms like Kubernetes’. Our goal here is
to spark deeper discussion on the grand challenge of cloud-scale

"By the same token, the peer-to-peer architectures of the turn of the century were
also “serverless”.

Hellerstein et al.

programming—one that we believe the public-facing Faa$S offerings
are trying (and presently failing) to provide.

“Just wait for the next network announcement!”
Some readers of early drafts commented that datacenter networks
are getting faster, and cloud providers are passing those innovations
on to customers. Moreover, it is now conventional wisdom that
scaling needs to be achieved by separating compute and data tiers.
We have no argument with these points, but they do not address
the key problems we raise here beyond matters of tuning. Datacen-
ter networks will surely improve, yet inevitably will continue to
play a limiting role in a larger memory hierarchy. Any reasonable
system design will need the ability to selectively co-locate code
and data on the same side of a network boundary, whether that is
done via caching/prefetching data near computation or pushing
computation closer to data. Neither feature is provided in a mean-
ingful way by today’s FaaS offerings. Improvements in network
speeds are unlikely architectural game-changers; they can shift the
parameters of using certain optimizations, but rarely justify the
absence of those optimization opportunities. Meanwhile, separat-
ing compute and storage tiers in a logical design should not prevent
co-location in a physical deployment; one can scale compute and
storage independently for flexibility and colocate them as needed
for performance. This is the heart of architectural indirections like
“data independence”—they increase flexibility rather than limit it.
At a narrower technical level, current networking progress does
not seem radical. Ultra low-latency networks like Inifiniband are
limited in scope; they require an interconnect that supports switch-
ing, which naturally incurs latency. The limit in scope then typically
translates into a need for hierarchical routing to scale horizontally,
which gives heterogenity of latency. Meanwhile, other technologies
will improve alongside networks, including direct-attached storage
like HBM and NVRAM.

“The main point is simple economics: Serverless is inevitable.”
Some have viewed this paper as a negative take on serverless com-
puting, and from that perspective see the paper on the wrong side
of history. After all, various industry-watchers have described the
economic inevitability of serverless computing. To quote one such:
I didn’t have to worry about building a platform and the con-
cept of a server, capacity planning and all that “yak shaving” was
far from my mind... However, these changes are not really the
exciting parts. The killer, the gotcha is the billing by the function...
This is like manna from heaven for someone trying to build a
business. Certainly I have the investment in developing the code
but with application being a variable operational cost then I can
make a money printing machine which grows with users...
[E]xpect to see the whole world being overtaken by serverless

by 2025 [28].

It is not our intent to pour cold water on this vision. To reiterate,
we see autoscaling (and hence pay per use) as a big step forward, but
disappointingly limited to applications that can work over today’s
hobbled provider infrastructure. We acknowledge that there is an
enormous market of such “narrow” applications, many of which
consist of little more than business logic over a database. Disrupting
these applications by changing their economics will shift significant

Serverless Computing: One Step Forward, Two Steps Back

spending from traditional enterprise vendors to new, more efficient
cloud-based vendors.

However, this business motion will not accelerate the sea
change in computing that the cloud offers. Specifically, it will not
encourage—and may even deter—third-party and open source de-
velopment of new stateful services, which are the core of modern
computing. Meanwhile, with innovation deterred, the cloud ven-
dors increase market dominance for their proprietary solutions.
This line of reasoning may suggest that serverless computing could
produce a local minimum: yet another setting in which the compute
and storage potential of the cloud is lost in the noise of refactoring
low-tech and often legacy use cases.

The goal of our discussion here—and, we hope, the goal of our
intended audience—is to push the core technology down the playing
field, rather than bet on it from the sidelines. To that end, we hope
this paper shifts the discussion from “What is serverless?” or “Will
serverless win?” to a rethinking of how we design infrastructure
and programming models to spark real innovation in data-rich,
cloud-scale systems. We see the future of cloud programming as far,
far brighter than the promise of today’s serverless FaaS offerings.
Getting to that future requires revisiting the designs and limitations
of what is being called “serverless computing” today.

4 STEPPING FORWARD TO THE FUTURE

We firmly believe that cloud programmers—whether they are writ-
ing simple applications or complex systems—need to be able to
harness the compute power and storage capacity of the cloud in an
autoscaling, cost-efficient manner. Achieving these goals requires a
programmable framework that goes beyond Faa$, to dynamically
manage the allocation of resources in order to meet user-specified
performance goals for both compute and for data.

Here we identify some key challenges that remain in achieving
a truly programmable environment for the cloud.
Fluid Code and Data Placement. To achieve good performance,
the infrastructure should be able and willing to physically colocate
certain code and data. This is often best achieved by shipping code to
data, rather than the current FaaS approach of pulling data to code.
At the same time, elasticity requires that code and data be logically
separated, to allow infrastructure to adapt placement: sometimes
data needs to be replicated or repartitioned to match code needs.
In essence, this is the traditional challenge of data independence,
but at extreme and varying scale, with multi-tenanted usage and
fine-grained adaptivity in time. High-level, data-centric DSLs—e.g.,
SQL+UDFs, MapReduce, TensorFlow—can make this more tractable,
by exposing at a high level how data flows through computation.
The more declarative the language, the more logical separation (and
optimization search space) is offered to the infrastructure.
Heterogeneous Hardware Support. Cloud providers can attract
a critical mass of workloads that make specialized hardware cost-
effective. Cloud programmers should be able to take advantage of
such resources. Ideally, application developers could specify applica-
tions using high-level DSLs, and the cloud providers would compile
those applications to the most cost-effective hardware that meets
user specified SLOs. Alternatively, for certain designs it may be use-
ful to allow developers to target code to specific hardware features
by specification, to foster innovative hardware/software co-design.

CIDR’19, January 2019, Asilomar, CA, USA

One can have philosophical debates about whether such co-design
is appropriate, or whether “hardware independence” is a paramount
concern in the cloud. In either case, recognizing hardware affinity
does not mean that we advocate tight binding of hardware to ser-
vices; the platform should make dynamic physical decisions about
allocation of code to distinguished resources, based on logical per-
formance requirement specs either provided by programmers or
extracted from code. These specs can then be leveraged for the
more general, heterogeneity-aware resource space-time division
multiplexing [26].

Long-Running, Addressable Virtual Agents. Affinities be-
tween code, data and/or hardware tend to recur over time. If the
platform pays a cost to create an affinity (e.g. moving data), it
should recoup that cost across multiple requests. This motivates
the ability for programmers to establish software agents—call them
functions, actors, services, etc.—that persist over time in the cloud,
with known identities. Such agents should be addressable with
performance comparable to standard networks. However, elasticity
requirements dictate that these agents be virtual and dynamically
remapped across physical resources. Hence we need virtual alter-
natives to traditional operating system constructs like “threads”
and “ports”: nameable endpoints in the network. Various ideas
from the literature have provided aspects of this idea: actors [11],
tuplespaces [4] pub/sub [19] and DHTs [22] are all examples. Cho-
sen solutions need to incur minimal overhead on raw network
performance.

Disorderly programming. As discussed above, the requirements
of distributed computing and elastic resizing require changes in pro-
gramming. The sequential metaphor of procedural programming
will not scale to the cloud. Developers need languages that encour-
age code that works correctly in small, granular units—of both data
and computation—that can be easily moved around across time
and space. There are examples of these patterns in the literature—
particularly in asynchronous flow-based metaphors like Functional
Reactive Programming [12] and Declarative Languages for Net-
working [18] and Distributed Computing [1]. A particular chal-
lenge in distributed computing is to couple these programming
metaphors with reasoning about semantics of distributed data con-
sistency; earlier work offers some answers [9, 1, 23, 3, 15] but more
work is needed to enable full-service applications.

Flexible Programming, Common IR. Ideally, a variety of new
programming languages and DSLs will be explored in this domain.
Still, it is burdensome for each language stack to implement a full
set of the relevant optimizations (e.g., fluid code & data, disorderly
constructs). As a result, it would be highly beneficial to develop a
common internal Intermediate Representation (IR) for cloud execu-
tion that can serve as a compilation target from many languages.
This IR must support pluggable code from a variety of languages,
as is done by UDFs in declarative languages, or functions in FaaS.
Service-level objectives & guarantees: Today, none of the major
Faa$ offerings has APIs for service-level objectives. Price is simply
a function of the “size” (RAM, number of cores) and running time
used. To support practical use, FaaS offerings should enable up-
front SLOs that are priced accordingly, with appropriate penalties
for mis-estimation. Achieving predictable SLOs requires a smooth
“cost surface” in optimization—non-linearities are the bane of SLOs.

CIDR’19, January 2019, Asilomar, CA, USA

This reinforces our discussion above regarding small granules of
code and data with fluid placement and disorderly execution.
Security concerns: Cloud programming brings up both opportu-
nities and challenges related to security. Cloud-managed software
infrastructure shifts the onus of security onto a small number of
well-incentivized operations staff at the cloud provider. This—along
with appropriate customer specifications of policy—should in prin-
ciple mitigate many security issues that commonly occur today
due to misconfiguration or mismanagement. Furthermore, if cloud
programming is achieved via higher-level abstractions, it will offer
the opportunity for program analysis and constraint enforcement
that could improve security. However, some of our desired architec-
tural improvements for performance in this paper make achieving
security more difficult for the responsible parties. For example,
allowing code to move fluidly toward shared data storage is po-
tentially tricky: it exacerbates security management challenges
related to multitenancy and the potential for rogue code to gather
signals across customers. But there are new research opportunities
for innovation in this space. Technologies like hardware enclaves
can help protect running code, and there has been initial work
on data processing in those settings (e.g., [29]). Meanwhile, it is
important for researchers and developers to think not only about
preventative technologies, but also ways to guarantee auditing and
post-hoc security analysis, as well as technologies that enable more
fine-grained and easy-to-use end-user control over policy.

Taken together, these challenges seem both interesting and sur-
mountable. The Faa$S platforms from cloud providers are not fully
open source, but the systems issues delineated above can be ex-
plored in new systems by third parties using cloud features like
container orchestration. The program analysis and scheduling is-
sues are likely to open up significant opportunities for more formal
research, especially for data-centric programs. Finally, language
design issues remain a fascinating challenge, bridging program
analysis power to programmer productivity and design tastes. In
sum, we are optimistic that research can open the cloud’s full poten-
tial to programmers. Whether we call the new results “serverless
computing” or something else, the future is fluid.

REFERENCES

[1] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Marczak.
“Consistency Analysis in Bloom: a CALM and Collected Ap-
proach”. In: CIDR. 2011, pp. 249-260.

(2] Amazon product data. http://jmcauley.ucsd.edu/data/
amazon/, retrieved 8/22/18.

[3] T.J. Ameloot, F. Neven, and J. Van den Bussche. “Relational
transducers for declarative networking”. In: Journal of the
ACM (JACM) 60.2 (2013), p. 15.

[4] N. Carriero and D. Gelernter. “Linda in context”. In: Commu-
nications of the ACM 32.4 (1989), pp. 444—-458.

(5] D.Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonza-
lez, and L. Stoica. “Clipper: A Low-Latency Online Prediction
Serving System”. In: NSDI. Boston, MA: USENIX Association,
2017, pp. 613-627.

[6] S. Fouladi, R. S. Wahby, B. Shacklett, K. V. Balasubrama-
niam, W. Zeng, R. Bhalerao, A. Sivaraman, G. Porter, and K.

(20]

Hellerstein et al.

Winstein. “Encoding, Fast and Slow: Low-Latency Video Pro-
cessing Using Thousands of Tiny Threads”. In: NSDI. Boston,
MA: USENIX Association, 2017, pp. 363-376.

H. Garcia-Molina. “Elections in a distributed computing sys-
tem”. In: IEEE transactions on Computers 1 (1982), pp. 48—
59.

C. Guo et al. “Pingmesh: A large-scale system for data center
network latency measurement and analysis”. In: ACM SIG-
COMM Computer Communication Review. Vol. 45. 4. ACM.
2015, pp. 139-152.

P. Helland and D. Campbell. “Building on Quicksand”. In:
CoRR abs/0909.1788 (2009). arXiv: 0909.1788.

J. M. Hellerstein, J. Heer, and S. Kandel. “Self-Service Data
Preparation: Research to Practice”. In: IEEE Data Eng. Bull.
41.2 (2018), pp. 23-34.

C. Hewitt. “Viewing control structures as patterns of passing
messages”. In: Artificial intelligence 8.3 (1977), pp. 323-364.
P. Hudak. “Functional reactive programming”. In: European
Symposium on Programming. Springer. 1999, pp. 1-1.

E. Jonas, S. Venkataraman, 1. Stoica, and B. Recht. “Occupy
the Cloud: Distributed Computing for the 99%”. In: CoRR
abs/1702.04024 (2017). arXiv: 1702.04024.

A.Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi,]. Pfefferle, and
A. Trivedi. “Understanding Ephemeral Storage for Serverless
Analytics”. In: USENIX ATC. Boston, MA: USENIX Associa-
tion, 2018, pp. 789-794.

L. Kuper and R. R. Newton. “LVars: lattice-based data struc-
tures for deterministic parallelism”. In: Proceedings of the
2nd ACM SIGPLAN workshop on Functional high-performance
computing. ACM. 2013, pp. 71-84.

AWS Lambda Customer Case Studies. https://aws.amazon.
com/lambda/resources/customer- case- studies/, retrieved
8/24/2018.

H. C. Lauer and R. M. Needham. “On the duality of operat-
ing system structures”. In: ACM SIGOPS Operating Systems
Review 13.2 (1979), pp. 3-19.

B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M. Heller-
stein, P. Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica.
“Declarative networking: language, execution and optimiza-
tion”. In: ACM SIGMOD. 2006, pp. 97-108.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. “The Information
Bus: an architecture for extensible distributed systems”. In:
ACM SIGOPS Operating Systems Review. Vol. 27. 5. ACM.
1994, pp. 58—68.

D. Patterson and J. L. Hennessy. “A New Golden Age for Com-
puter Architecture: Domain-Specific Hardware/Software Co-
Design, Enhanced Security, Open Instruction Sets, and Agile
Chip Development”. 2018.

U. Ratan. Build a Schema-On-Read Analytics Pipeline Using
Amazon Athena. https://goo.gl/FhAqzh, retrieved 8/24/18.
S.Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. Vol. 31. 4. ACM, 2001.
M. Shapiro, N. Preguica, C. Baquero, and M. Zawirski.
“Conflict-free replicated data types”. In: Symposium on Self-
Stabilizing Systems. Springer. 2011, pp. 386—400.

R. Srinivasan and S. Sriparasa. Build a Serverless Architec-
ture to Analyze Amazon CloudFront Access Logs Using AWS

http://jmcauley.ucsd.edu/data/amazon/
http://jmcauley.ucsd.edu/data/amazon/
http://arxiv.org/abs/0909.1788
http://arxiv.org/abs/1702.04024
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://aws.amazon.com/lambda/resources/customer-case-studies/
https://goo.gl/FhAqzh

Serverless Computing: One Step Forward, Two Steps Back CIDR’19, January 2019, Asilomar, CA, USA

Lambda, Amazon Athena, and Amazon Kinesis Analytics.
https://goo.gl/bhjcEV, retrieved 8/24/18.

[25] L Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana. “In-
ternet indirection infrastructure”. In: ACM SIGCOMM Com-
puter Communication Review. Vol. 32. 4. ACM. 2002, pp. 73—
86.

[26] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-
Balter, and G. R. Ganger. “TetriSched: global rescheduling
with adaptive plan-ahead in dynamic heterogeneous clus-
ters”. In: EuroSys ’16. ACM, Apr. 2016.

[27] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift. “Peek-
ing Behind the Curtains of Serverless Platforms”. In: USENIX
ATC. Boston, MA: USENIX Association, 2018, pp. 133-146.

[28] S.Wardley. Why the fuss about serverless? https://hackernoon.
com/why - the-fuss-about- serverless-4370b1596da0. Re-
trieved December 4, 2018. Nov. 2016.

[29] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gon-
zalez, and . Stoica. “Opaque: An Oblivious and Encrypted
Distributed Analytics Platform.” In: NSDI. 2017, pp. 283-298.

https://goo.gl/bhjcEV
https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0.
https://hackernoon.com/why-the-fuss-about-serverless-4370b1596da0.

	Abstract
	1 Introduction
	1.1 ``Serverless'' goes FaaS
	1.2 Forward, but also Backward

	2 Serverless is More? The easy cases
	3 Why Serverless Today is Too Less
	3.1 Case Studies
	3.2 Can Limitations Set Us Free?
	3.3 Early Objections

	4 Stepping Forward to the Future

