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ABSTRACT

The end of Moore’s law will push database system design-
ers to be more judicious with computation as the growth in
data outpaces the availability of computational resources.
Eagerness, or aggressively consuming resources to immedi-
ately and quickly complete the task at hand, is one source of
wasted resources in modern data systems where the systems
expend unnecessary resources waiting on queries, data, or
both. Intelligently deferring a task to a later point in time
can increase result reuse, reduce work that might later be
invalidated, or avoid unnecessary work altogether. We pro-
pose a research prototype system, CrocodileDB, which is a
resource-efficient database system that automatically opti-
mizes deferment based on user-specification and workload
prediction. CrocodileDB integrates new ways of specifying
timing information, new query execution policies, new task
schedulers, and new data loading schemes.

1. INTRODUCTION
Reducing the consumption of resources in data systems

will be crucial as Moore’s law comes to an end [14]. This
trend will push system designers to be more judicious with
computation due to the ever-growing imbalance of data com-
pared to available computation. Furthermore, the growing
adoption of IoT and autonomous vehicles will also push
systems to conserve computation as battery-backed hard-
ware will need to trade-off performance for battery life [1].
The consolidation of commercial services, along with pay-
per-use serverless architectures, and zero-carbon temporary
compute resources, demands that new systems can utilize
constrained and dynamic physical resources [24, 46].

Today’s database systems are designed to be eager, where
they consume resources “right away” to quickly complete a
task at hand. In a traditional RDBMS, the system waits
until a query arrives, and then immediately does the nec-
essary work to fully answer the query. Likewise, streaming
systems and modern incremental view maintenance (IVM)
systems wait for new data to arrive, and then immediately
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maintain results for standing queries, derived views, and any
intermediate states used to facilitate the update process [15].
Eagerness has its pitfalls: in a traditional DBMS, any work
is simply redone if an identical or similar query arrives in
the near future, and in a standing query system, the system
holds on to all of the operator state regardless of whether
new data actually arrives. Eagerness without regard to the
arrival frequency and pattern of data and queries can lead
to a significant amount of wasted systems resources.

While the eager design paradigm is beneficial for appli-
cations on dedicated hardware whose primary concern is
low latency, we believe that modern Cloud and IoT trends
encourage rethinking this approach. We consider scenarios
where data is not static, but is not frequent enough to call
for a streaming solution. Here, we envision an application
with either a low, bursty, or periodic data ingest, or an ap-
plication that may not need a frequent refresh on standing
queries or views with dynamic data. Consider the following
examples: an analyst or system who only needs to see up-
dated results every 30 minutes; standing queries that are for
monitoring purposes and only want to see updated results
when they change beyond a given threshold (i.e. average
latency > 200 ms); or extract, transform, and load tasks
scheduled at night, with changes from this new data not be
needed until the markets open.

Modern systems, however, do not allow the application to
specify this slack [7] nor do they optimize query execution
or maintain views with this information in mind. To make
this concrete, consider the example above where a user re-
quires an up-to-date query result only every 30 minutes. A
streaming system will hold on to all the resources needed to
maintain the result for the entire 30 minutes, while a batch
system will incur a high latency because it would recom-
pute the result from scratch each interval. Ideally, a system
should be able to find a middle ground by partially com-
puting the query every so often in the 30 minute window–
optimized by a planner that is given a resource utilization
constraint and answers the query with the lowest apparent
latency to the user. Similarly, in the ETL example, if the
system has prior knowledge about the ETL schedule and
knows that its data is static during those intervals, it can
change its query processing to aggressively share computa-
tion by persisting common subqueries since it knows they
will not require maintenance until the next ETL cycle.

While the case for avoiding eager computation (or shar-
ing computation) has been explored in shared query execu-
tion [30, 47, 42, 40, 44, 22, 36, 20], materialized view main-
tenance [15], in data loading for Hadoop-style systems [2],



and for databases that support web-services [19, 20, 13],
“laziness” in data processing has not seen widespread adop-
tion. One main reason is that the aforementioned concerns
have slowly emerged in the last decade. Second, it is hard
for applications to specify timing in SQL and current trig-
gers [7]. Third, asynchronous, or lazy, systems can be harder
to develop and debug. It is important to note that our no-
tion of “laziness” is on of temporal deferment and this is
different from the concept of lazy evaluation in data flow
systems, where a chain of operations is not started until a
certain operation is triggered to fold in operations and avoid
data movement. The goal of our work is less about single
query optimization but more about reducing global resource
utilization by manipulating when queries and subqueries are
executed and how their execution artifacts can be shared.

Therefore, it is our position that it is critical for a new
class of systems that consider timing information of both
how data arrives and how data is used in order to (a) in-
telligently persist the results of work to save on future com-
putation and (b) intelligently defer query execution, view
maintenance, and data loading when possible to save on
computation and memory usage. Such systems should be
able to collect or predict future data arrival patterns and
allow for users to specify timing preferences or update poli-
cies for standing queries/views. The data arrival patterns
should be exploited for determining how queries and views
updates are scheduled and should be able to assess the cost
of such updates. This opens up several interesting optimiza-
tion questions, such as given a query and some model of fu-
ture data, when is it the ideal time to begin processing the
query, which is largely influenced by how incremental can
the query incorporate new data. Additionally, such models
can determine what results, both as sub-query results and
intermediate state, should be persisted to improve future
queries or updates. For long-standing queries, it may be
beneficial to actively update the results intermittently and
avoid wasting resources. For standing queries and views, it
also is important to asses how new data will impact existing
result. Understanding this without parsing all of the new
tuples requires new client/server interfaces and the use of
machine learning models.

To address these issues we propose CrocodileDB1, a re-
source efficient database system that integrates timing in-
formation, policies, schedulers, data loading, view selection,
and query execution. This system calls for several new
system policies, planner components, execution strategies,
client interfaces, and data storage strategies. Section 2 out-
lines the high-level architecture of CrocodileDB and intro-
duces major components. Section 3 discusses related work
relevant to our system. Section 4 details key components,
previews initial results, and discusses relevant related work
for specific components.

2. SYSTEM OVERVIEW
Figure 1 outlines the key components of CrocodileDB that

we describe in this section. Several of these components are
further detailed in Section 4. We are currently building our
prototype using a modified version of SparkSQL, but none
of these components are predicated on Spark specific con-
cepts. The figure’s top tier highlights policy and planning

1Crocodiles frequently lay still to conserve energy and move
quickly at the last possible moment.
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Figure 1: CrocodileDB overview.

components, the middle tier shows view and query execution
components, and the bottom tier shows the physical data or-
ganization. For exposition, assume there is a database with
new records coming in at fixed intervals, with occasional
deletes and updates to existing records, and several teams
of data scientists register long-standing queries that have
results updated (or refreshed) every 30 minutes and many
materialized views are created that are updated every 30
minutes or when the view result has an aggregated record
whose answer changes by more than 10%. Data is organized
into (a) raw data that has been received by clients, but has
not been processed and remains in “wire format”; (b) delta
logs, which are the parsed data from the client that specifies
either the new records or updates/deletes to existing records;
(c) base tables that have records previously integrated from
prior delta logs (stored in Parquet for our prototype); and
(d) materialized views and pre-generated results (stored in
Parquet). The execution layer contains five modules, in ad-
dition to standard query execution components.
IAE: Incremental Aware Execution (IAE) analyzes queries
to understand how amenable they are for incremental com-
putation and uses cost models of “incrementability” to con-
trol scheduling of queries and control flow of complex long-
standing queries. In our motivating example, IAE would
determine when a query refresh should begin based on how
incremental the work is. For example, queries that are
amenable to incremental computation can begin early, oth-
erwise, it might be beneficial to defer. IAE relies on the
Query Registration and SLO policies to determine when to
schedule the query. In addition, a Delta Prediction compo-
nent informs IAE where data changes are likely to occur.
IAE can reduce CPU cycles and memory consumption, by
avoiding potentially unnecessary work.
IQP: Intermittent Query Processing (IQP) allows for long-
standing queries to be refreshed intermittently, with mini-
mizing resource utilization (e.g. memory) in-between execu-
tion intervals. In our example, after each refresh, the user
is given new tuples or changes from prior results, and until
the next execution IQP selectively persists state (i.e. hash
tables or materialized operators) from query execution to en-
able low-latency refreshes. IQP relies on the delta prediction
component for understanding how the base data will change,
the resource allocation component to provide resources to
maintain the query while inactive to determine the ideal
states to keep given the allocated resources and delta pre-
diction. IQP can reduce memory required for maintaining
standing queries and can reduce CPU cycles for integrat-
ing new data, by selectively maintaining state from query
execution.



View Impact: As CrocodileDB allows for view mainte-
nance to be deferred until a result changes by a threshold
according to registered queries and SLO policies, the view
impact monitors new raw data and delta logs to determine
which existing views could be invalidated. This relies on a
formal reasoning framework to see how a set of tuples with
bounded values will change results: producing a certificate of
optimality or unboundedness. This calculation is performed
without fully integrating the new or updated records into the
base tables and subsequently, the materialized views. View
Impact can reduce CPU cycles and memory consumption,
by avoiding updating standing queries or views if the change
is within the user’s accepted bounds.
DQM: Given that resources, such as memory and computa-
tion, are being freed from lazy execution a natural question
to explore is how can the free memory be used to accel-
erate query processing through opportunistic view creation
as a side-effect of query execution. Deep Q-Materialization
(DQM) explores how to take extra memory given by the re-
source allocation and knowledge of where data is likely to
change from the delta predictor, to determine which views
would benefit query latency overall for the system’s work-
load. DQM can reduce CPU cycles, by using excess memory
to cache frequent sub-results.
Data Loader: To aid components that need to understand
data before it is fully loaded, such as IAE and View Impact,
CrocodileDB relies on a Data Loader component to quickly
parse, analyze, potentially defer the loading of new data be-
fore it goes through an expensive data loading process [18,
5]. To improve the ability to understand new data and par-
tially load new data [2], the data loader extends the client
interface to specify how data should be organized [41] and
pushes limited query predicates to the client (i.e. indicate
the max value from a block of records). The Data Loader
can reduce CPU cycles and memory usage, by avoiding po-
tentially expensive parsing and validation through partial
deferred loading.
Language Extensions: To exploit timing information for
lazy execution, CrocodileDB will need to extend SQL to
allow users to specify when and how results should be up-
dated [7]. This could be given as the following for material-
ized views:

CREATE MATERIALIZED VIEW view1 AS

SELECT ...

REFRESH WHEN [interval] or [condition]

or for intermittent queries as:

INTERMITTENT [how]

SELECT ...

INTERVAL [when] TERMINATE ON [condition]

3. RELATED WORK
Data analytics systems can be characterized by two ar-

chitectural extremes. On one side, they are optimized for
ingesting data as efficiently as possible and executing an-
alytics in a batch-oriented way [2, 17] (i.e., optimized for
write-throughput). On the other extreme, they can main-
tain complex intermediate states to be able to answer stand-
ing queries or queries on materialized views as efficiently as
possible in a streaming setting [29, 21, 28, 11, 38] (i.e.,
optimized for read-latency). The primary knob for systems

designers to span the middle ground between these extremes
is varying the amount of materialization [8, 15, 20].

This simplified trade-off space assumes that the user de-
sires results that are exact (fresh) as of the point at which
they issued the query. If no assumptions are made about
when queries can be issued, the system has to ensure that
all derived states are consistent and ready to be read at all
times [15]. In many applications, this notion of freshness is
unnecessary–a user might only care if their answer is con-
sistent with respect to a snapshot that is no more than 30
minutes old. If the execution engine knew this information
upfront it could significantly optimize the maintenance of a
desired standing query or a materialized view. The “slack”
time specified by the user could increase result reuse [20],
reduce work that might later be invalidated (e.g., maintain-
ing non-monotonic queries) [15], or avoid unnecessary work
altogether (e.g., a later task deletes all the records) [13].

Such optimizations are only possible if we decouple timing
from query processing and data ingest and allow the user to
specify softer timing constraints. Timing in data systems,
namely, when analytics or update tasks are launched, is
taken as given—governed by the arrival of queries (e.g., tra-
ditional relational databases), data (e.g., continuous query
systems [6]), or both (e.g., PSoup [12]). To the best of our
knowledge, this is an architectural insight not considered
thoroughly in prior work. While laziness has been consid-
ered before, lazy view maintenance [50] is a form of deferred
materialized view maintenance [16] that defers updates un-
til the data is queried. Similarly, related insights are found
in the query scheduling literature [9] and in the systems
scheduling community [48]. We build CrocodileDB with
timeliness as a first-class citizen. We study how known tim-
ing semantics can be exploited at operator-level, view level,
and workload-level to reduce wasted work.

Deferred execution enables opportunities of other query
optimization approaches, including but not limited to shared
query execution. Concurrently executed queries could share
a part of their executions, for example, table scans and joins.
Although sharing execution may compromise some queries’
performance, it reduces overall execution time (or memory
consumption). Existing literature of shared execution exam-
ines the query to be executed by two queries, and find iden-
tical or overlapping workloads to be shared. CrocodileDB
is different from shared query execution in that it system-
atically combines the knowledge about new data, query se-
mantics, and users’ expectation together to reduce overall
query processing cost. A seminal work of shared query ex-
ecution is QPipe [22]. It defines several query evaluation
stages, where each stage corresponds to a type of operator
(e.g. Join and Aggregate) and is assigned a dedicated pool
of threads. A new query is decomposed into the predefined
stages and routed among stages based on its query plan.
Each stage exploits the opportunities of sharing work of con-
currently running operators such as reusing a hash table for
a hash join operator. SharedDB and BatchDB [36, 20] de-
lay query execution, batch several queries, and build a single
query execution plan to maximally share the work of batched
queries. Several other works consider specific operators or
applications such as sharing scan [42, 40, 44] and joins [35]
in main-memory databases, and sharing the query execution
for star schema in data warehouses [10]. This idea of shared
query execution is also widely used in continuous query pro-
cessing [30, 47] and adaptive query processing [34].



4. CrocodileDB COMPONENTS
In this Section we outline key components for CrocodileDB.

Preliminary reports on IQP and DQM are available for the
interested reader [45, 33].

4.1 Intermittent Query Processing
Query evaluation generates intermediate states, such as

hash tables or materialized relations. A critical question is
whether a database should keep these states if the underly-
ing data will change. Conventional databases optimized for
faster data ingestion tend to keep and maintain all states
to quickly update a result. Those optimized for lower re-
source consumption (and less frequent result refreshes) dis-
card all states after execution. Either way, if the data does
not change in the frequency that the database expects, the
system could either waste resources (e.g. memory for keep-
ing states) or time (e.g. rebuilding states). We propose a
new paradigm Intermittent Query Processing (IQP), where
predictable data arrival are exploited for opportunities with
database engine designs.

The core of our IQP prototype is Delta-oriented interme-
diate state selection (DISS) that selectively keeps a subset
of intermediate states within a memory budget for acceler-
ating data ingestion and query result refreshment based on
a predictive model of future data [45]. DISS considers three
types of intermediate states according to the query plan that
initially processes the data: 1) states that are generated and
materialized (temporarily) in the query plan; 2) states that
are generated, but not materialized in the query plan (e.g.
output tuples for pipeline operators); 3) states that are not
generated by the query plan. All intermediate states incur
a space (memory) cost for materialization, and the latter
two types of states incur an additional computation cost of
materializing or generating them. We build a dynamic pro-
gramming algorithm to holistically consider which states to
keep/materialize/build. Its optimization goal is to minimize
the (expected) time of incorporating new data plus the time
of materializing new states under a given memory budget.

We implement an initial DISS prototype on PostgreSQL,
and compare it with two approaches: ReBatch that does
not keep intermediate state and recompute all the time,
and DBToaster that eagerly maintain intermediate states.
We port DBToaster’s plan on PostgreSQL and denote it as
DBT-PG. We use the join ordering benchmark (JOB) [32].
that includes 21 IMDB tables (4.3 GB data in total) and
33 queries that involve from 4-way to 16-way join. Our ex-
periments assume that 99% of data is present in the first
execution and 1% of data is the “delta”. If a query cannot
finish within 500s, we mark it as DNF. Here, we assume the
memory budget is sufficient for all systems.

Figure 2 shows the total processing time, and that DISS
is faster than ReBatch and DBT-PG. We also report the
memory consumption ratio between DBT-PG and DISS in
Figure 3. It shows that DISS consumes much less memory
than DBT-PG. For future work on IQP, we plan to explore
how to shrink memory budgets over time as the predicted
delta size shrinks, how to allocate memory resources across
multiple queries, and how to re-optimize a query plan (i.e.
different join orders) for quickly processing deltas.

4.2 Incremental Aware Execution
For CrocodileDB to efficiently defer execution of queries,

it is critical to understand how incrementable a query is. As

certain queries are more amenable to incremental compu-
tation, the system could efficiently start refreshing a result
before it is needed [49]. For example consider the following
two queries (1) select sum(val) where val > 10, and (2)
select sum(val) where val > avg(val). The first query
is highly incrementable, and as soon as new records are re-
ceived they can be integrated to the result without much
maintenance. However, for the second query if new records
are expected, working on the query early may result in
wasted work as new records can change avg(val), invali-
dating prior records in the result or requiring new tuples
to be added. We informally define incrementability as how
much of the work that could currently be done, will likely
contribute to the final result. To demonstrate how incre-
mentability impacts performance consider the results in Fig-
ure 4. We divide a TPC-H dataset into a different number
of batches, incrementally execute them, and report the ra-
tio between the total execution time of different number of
batches and the time of executing the full dataset as one
batch. Here we use a modified version of Spark that elim-
inates the start-up costs of each incremental execution. As
Figure 4 shows, if the ratio is close to 1, it means the query
is incrementable, and we prefer to execute this query more
eagerly. Otherwise, increasing the number of executions in-
troduces a much higher total execution time (e.g. Q15).

This component will build a cost model to understand how
incremental a query actually is [3, 23]. Here, given a query,
it will capture what the trade-offs are for batch computation
and incremental computation. With this understanding, we
will then explore how to integrate the delta predictions to
augment this incremental model. This will allow the system
to make decisions about how to process a delta (e.g. delay
until the batch is complete, one tuple at a time, or start
at some point in the interval). This requires understanding
how inserts, updates, and deletes to base tables will impact a
query’s execution. This opens interesting questions on how
to optimize queries that are not amenable for incremental
execution. We plan to also explore how to improve query
execution by exploiting knowledge of how amenable it is for
incremental execution [49].

4.3 View Impact: Accuracy-based Specs
CrocodileDB decouples the scheduling of update and query

tasks from data arrivals or query arrival. So far, we have
discussed this tolerance in terms of temporal conditions,
e.g., a query result based on a snapshot that is no more
than 30 minutes old. An intriguing extension is to consider
accuracy-based specifications, where updates are processed
only if they significantly impact a standing query.

CrocodileDB contains a framework to estimate how aggre-
gates queries could change given buffered delta data. This
estimation is only useful if computing change estimate is
significantly cheaper than actually running the query it-
self. While sampling has been previously used to estimate
changes in materialized views [31], we believe that the prob-
abilistic nature of sampling guarantees makes it challenging
to operationalize. For nightly updates to a database, a sam-
pled estimate would expect to exceed a 3 standard deviation
confidence interval once a year. We would like hard guar-
antees based on coarse-grained statistics collected from the
delta data.

We propose an axiomatic method for summarizing rela-
tional data called a Predicate Constraint (pc). A pc models
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Figure 4: Evaluating the impact of incrementability
on selected TPC-H queries on a modified Spark.

“what” happens at “‘where”. Each pc contains two parts: a
predicate and a constraint. The predicate specifies a subdo-
main of data. It models “where”. The constraint bounds a
summarization of the change that may happen in this subdo-
main, or in other words, it models “what”. This summariza-
tion may specify how many tuples will change at most, and
the magnitude of the change on attributes. We generate sets
of such constraints to summarize a delta table. If a potential
change, for example a missing tuple, satisfies multiple pred-
icates, it is under multiple corresponding constraints. We
estimate the potential impact on the query result when the
change of data conforms to a set of pcs.

It is important to note, that our objective is not to build
the most expressive language to represent uncertain data but
rather one that we can pragmatically use to bound error
in aggregate queries. pcs are more expressive in terms of
representing the multiplicity of tuples than classical missing-
data representations (c-tables [25] and m-tables [43]), but
less expressive in terms of representing possible values that
unprocessed data could take.

We estimate the impact by annotating each relation with
a set of pcs, and propagate the set through relational opera-
tors. Once the base tables are evaluated to the final relation,
we use its associated pc set to derive an estimation of the
impact. The end-user may manually specify pcs using do-
main knowledge. Or, the system could also automatically
generate pcs by analyzing the delta data.

4.4 DQM: Opportunistic Caching
If a system has knowledge about future updates and knows

that its data is static during those intervals, it can change
its query processing to share computation by persisting com-
mon subqueries since it knows they will not require main-
tenance until the next ETL cycle. Materialized views have
the potential to greatly increase the performance of queries
but it is often challenging to decide when and what view
to materialize especially under constraints like limited stor-
age. In CrocodileDB, we use deep reinforcement learning to
learn adaptive view materialization and eviction policies in
an opportunistic manner [33]. This means that intermediate
results are cached as an artifact of execution. Opportunism
couples view creation with query execution, where it might
be beneficial to force a sub-optimal query plan that gener-
ates an intermediate result that is useful for future query
processing—and this is what makes this optimizer different
from standard view recommendation [27, 26, 4].
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Figure 5: We compare DQM to different base-
lines on 3 workloads. Even including learning time,
DQM outperforms or performs competitively with
the best baselines on different workloads.

The system is fully adaptive and learns an effective view
selection policy with an asynchronous RL algorithm that
runs paired counter-factual experiments during system idle
times. The optimizer contains four major components: 1)
a view candidate miner that analyzes the past queries and
generate possible view candidates for selection, 2) a rein-
forcement learning model that factors in the current system



Relevant Attrs Full (s) Partial (s) Part+Split (s)
2/9 91.697 44.323 24.836
3/9 94.444 49.302 31.302
6/9 94.784 55.155 46.132

Table 1: Ingesting JSON data is expensive due to
parsing and the client can reorder fields or provide
splitting hints to make parsing more efficient. We
consider 3 data loading scenarios with a varied num-
ber of relevant attributes and how different client
optimizations can improve loading.

state, the past queries, the feedback of previous decisions
and learns to decide which view to be materialized at the
current time-step, 3) a credit-based eviction policy that de-
cides which view should be evicted when there is no storage
for new views and 4) a query re-writer that re-writes query
with materialized views.

We evaluate the optimizer, which we call DQM, with
workloads of different characteristics generated based on the
Join Order Benchmark (JOB), TPC-DS and CUBELOAD,
which simulates real-life usage of OLAP systems. We gen-
erated a query workload from the templates in these bench-
marks by perturbing the templates with different filters and
skewing their frequencies. We also compare DQM with the
two state-of-the-art baselines: HAWC [39] and RECYCLER
[37]. Figure 5 shows the improvement of each baseline over
the cost of original workloads without using views. Over-
all, from a performance perspective, our experiment results
show that DQM outperforms or performs competitively with
the best baselines on different workloads even with learning
overhead included. The micro-benchmark experiment re-
sults also suggest DQM is adaptive, robust and effective in
different situations. In our future work, we plan to further
improve DQM to work in a more complicated environment,
for example, a system with multiple users.

4.5 Data Loading
Data loading is an expensive process due to parsing, vali-

dations, integrity checking, and data structure maintenance.
To minimize this cost, prior projects explored hardware ac-
celerators [18], minimizing data loading [2], and working di-
rectly on the raw data [5]. By borrowing from ideas in client
interface redesign [41], CrocodileDB will explore adaptive
transport formats to make partial data loading faster, where
prior work relied on required attribute splitting for an entire
record [2].

These projects influence CrocodileDB to include a light-
weight and just-in-time data loading. Table 1 (Full) illus-
trates query plus loading times for loading JSON data into
a Parquet file and then querying it. Table 1 (Partial) show
that if the CrocodileDB knows that only certain attributes
will be read, it can greatly save on parsing (∼ 50%). Queries
on a database, in general, have to wait until all the tuples
are loaded for their results to be complete. If we had tim-
ing requirements on different queries, we could opt to load
attributes relevant to one query first and defer the others
to a later point in time. Furthermore, there are opportu-
nities to further optimize loading if the client can do some
processing work. We see that with the client information
we can greatly reduce the time of parsing JSON if the client
can reorder fields or provide information about splitting at-
tributes.

5. CONCLUSION
We introduce CrocodileDB as a new system to exploit

timing information to trade-off resource consumption and
latency when possible. CrocodileDB proposes new execution
and view maintenance policies that rely on policy and plan-
ner components to make informed decisions. The trade-offs
in this system open up several exciting research directions.
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