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ABSTRACT
Benefiting from the fine-grained parallelism and energy ef-
ficiency, heterogeneous computing platforms featuring FP-
GAs are becoming more and more common in data centers.
The hash join is one of the most costly operators in database
systems and accelerating the hash join as a whole task on
discrete FPGA platforms has been explored for a long time.
Recently, the emerging coupled CPU-FPGA architectures
enable flexibility for efficient task placement between the
CPU and the FPGA by omitting the high synchronization
overhead introduced by CPU to device data copy and high
latency of on-board PCIe bus. However, the opportunities it
brings to hash joins are still under-explored. In this paper,
we explore the hash join acceleration on such a platform with
the OpenCL high-level synthesis design methodology. We
quantitatively analyze the performance of different workload
placements between CPU and FPGA with a roofline model
and propose the best design on current hardware. We also
point out that the current major obstacle for accelerating
hash joins on the FPGA is the memory bandwidth. Accord-
ingly, we forecast the required architectural features for the
future CPU-FPGA platforms for database applications.

1. INTRODUCTION
With the failure in continuing Dennard scaling and the

possibility of dark silicon, heterogeneous computing featur-
ing multiple architectures has attracted much attention. Ben-
efiting from fine-grained parallelism and better energy ef-
ficiency, FPGAs are now actively involved in accelerating
data-intensive and compute-intensive applications in data
centers (such as [4, 18, 19, 22]). However, the widely used
CPU-FPGA platforms are usually discrete, in which an FPGA
board with private memory resource is attached via PCIe
bus as a peripheral of the CPU, as shown in Figure 1a.
With this architecture, the CPU has to copy the data to
FPGA’s private memory first through PCIe bus before any
computation on the FPGA can begin and copy the results
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Figure 1: Different architectures for CPU-FPGA platforms.

back after the computation is completed. Hence, any perfor-
mance improvement is usually constrained by data transfer
and/or synchronization overhead.

To mitigate the overhead of data transmission and lower
the communication latency, tightly coupled CPU-FPGA ar-
chitectures have been proposed to enable the memory co-
herency between CPU and FPGA. For example, Intel started
the Hardware Accelerator Research Program (HARP) [15]
that provides an experimental system with a Xeon CPU in-
tegrated in-package with an FPGA, as shown in Figure 1b.
Since memory coherence eliminates data copying to device
memory via PCI-e, the coupled CPU-FPGA has enabled
flexibility of efficient task placements between the CPU and
the FPGA [8,12].

Database systems play a very important role in data cen-
ter services in current big data era. Meanwhile, the hash join
is a key operator in databases and constitutes a significant
portion of the execution time of a query [5]. Accelerating
hash joins on CPU-FPGA platforms has attracted a lot of
attention [10, 11]. However, most of the studies are either
conducted on discrete platforms or lack of the exploration of
the task placement between the CPU and FPGA. In this pa-
per, we explore the implementation of hash joins on HARP
with OpenCL as the programming language.

There are a number of technical challenges. First, given
the complexity of hash joins and heterogeneity of coupled
CPU-FPGA architecture, there is no systematic approach
to analyze the performance behavior of different hash join
implementations (such as simple hash join and partitioned
hash join) and to find the best solution. Second, we choose
OpenCL for its programmability, but the previous studies
also identify the challenges in building efficient FPGA de-
signs with the OpenCL [3,17,24]. Thus, how to fully utilize
the FPGA with OpenCL tool and identify the bottlenecks
of the design are also challenging. Third, the coupled CPU-
FPGA architectures are emerging and still evolving. It is
desirable to develop insights on how future hardware can



better support hash joins and database systems.
We have addressed the above-mentioned technical chal-

lenges in this paper. Our first contribution is that, instead
of empirically allocating the tasks and construct the hard-
ware acceleration system, we explore the task placement
strategies among the CPU and FPGA to find the best hash
join implementation on current HARP architecture using a
roofline model. More specifically, we propose a bandwidth-
optimal implementation of the join phase on FPGA for par-
titioned hash join, which is able to achieve near 100% mem-
ory bandwidth utilization with OpenCL design. That en-
ables the efficient implementation of a new co-processing
scheme (partition phase on the CPU and the join phase
on the FPGA), which is comparable to or even outper-
forms the state-of-the-art implementation (partition phase
on the FPGA and join phase on the CPU) [16]. The other
enhancement is to combine with the previous bandwidth-
optimal partition scheme on FPGA [16], and thus we will
have bandwidth-optimal partitioned hash join that totally
executes on FPGA (“FPGA-only”).

The other contribution of this paper is that the analysis
of the critical parameters of the system characteristics to
the performance gives insights to the architectural improve-
ments for future hardware. We give a number of impor-
tant guidelines on hardware-software co-design for database
systems on the future coupled CPU-FPGA architectures.
While the “FPGA-only” solution is not as competitive as
other implementations on the current architecture, it can
outperform others on future platform with higher memory
bandwidth.

The rest of the paper is organized as follows. In Section 2,
we present the background and our motivation, following the
analysis of hash joins on HARP through a roofline model in
Section 3. The detailed design of hash join on HARP is
proposed in Section 4, while the experimental results are
presented in Section 5. We analyze the performance on the
future CPU-FPGA architecture in Section 6 based on the
expected hardware trends. We conclude this paper in Sec-
tion 7.

2. BACKGROUND AND MOTIVATIONS
In this section, we describe the architectural features of

the HARP system and briefly introduce widely used hash
joins including simple hash join and partitioned hash join.
Moreover, we explore the possible workload placement strate-
gies between the CPU and FPGA.

2.1 Architectural Features of HARP
Intel brings FPGA one step close to CPU by proposing

HARP research platform. In the first version of the platform
(HARP v1), the CPU was connected with an Intel Stratix
V FPGA over the QPI interface. In the second version of
the platform (HARP v2), the FPGA has been upgraded to
a larger one, Intel Arria 10 and the CPU is the Intel E5-
2600 v4. In addition to the QPI interface, HARP v2 also
supports the PCIe interface for higher memory bandwidth,
as shown in Figure 1b. This study focuses on HARP v2.

One of the most important features of HARP is the mem-
ory coherency mechanism. To support that, the CPU and
FPGA are connected to the same memory controller (shown
in Figure 1b), thus they share the memory bandwidth. We
benchmark the peak memory bandwidth with the sequential
read operation, as shown in Table 1. Another important fea-

ture is that the QPI bus of HARP owns a 64KB cache for
fine-grained interaction between CPU and FPGA. However,
it has a long hit time for FPGA [7, 8] – 70ns (around 14
FPGA cycles) for read hit and 60ns (around 12 FPGA cy-
cles) for write hit. Moreover, the QPI bus has much smaller
latency compared to PCIe bus when accessing the global
memory, but it is still longer than accessing on-chip BRAMs
which provide high throughput and low latency.

Table 1: Peak memory bandwidth of HARP.

Mode CPU only FPGA only CPU+FPGA
Bandwidth 68 GB/s 17 GB/s 68 GB/s

FPGAs are traditionally programmed with Register Trans-
fer Level language (RTL) which describes the hardware struc-
tures to be implemented. RTL programming is time-consuming,
error-prone and requires an in-depth understanding of un-
derlying hardware, leading to a tedious design process [3,13].
To ease the use of FPGAs, high-level behavioral synthe-
sis (HLS)-based FPGA development decouples the low-level
hardware details and provides easier programmability on
FPGAs. Still, it often requires careful design and optimiza-
tions for HLS in order to implement efficient designs [23].
Intel supports OpenCL as the high-level programming lan-
guage for its FPGAs [13] and provides a specific version of
OpenCL SDK for the development on HARP system. How-
ever, with the OpenCL on hand, programmers do not have
the control granularity to explicitly choose between QPI bus
and PCIe bus as the communication interface on HARP,
which leads to long latency of global memory access. Specif-
ically, for hash joins, the key challenge is to address poor
random memory accesses as well as the potential read/write
conflicts (details can be found in Section 4).

Based on these architectural features and limitations of
the OpenCL tool, we make the following implications. First,
running the two devices concurrently by data division with-
out additional optimizations such as data compression may
not yield performance benefits if the application is already
memory bandwidth bounded. Second, the fine-grained co-
processing with OpenCL on the current HARP platform is
nearly impossible, and the communication between the CPU
and FPGA is still costly [8] as it is hard for the hardware
accelerators to use such a small build-in cache [8]. In this
paper, we shall consider the coarse-grained task placement
for hash joins on HARP.

2.2 Hash Joins
As in the previous studies [1,20], the design of hash joins

can be broadly categorized into two classes [20]:
Simple Hash Join (SHJ): SHJ is a hardware-oblivious

algorithm where multiple threads build and probe a global
hash table in memory simultaneously. The build and probe
of the hash tables in SHJ involve costly random memory
accesses [1]. Moreover, the lock overhead among multiple
threads is usually non-negligible.

Partitioned Hash Join (PHJ): The two big relations
are firstly partitioned into small chunks that can fit into
the cache. The corresponding partitions of the two input
relations operate the simple hash join independently. By
doing so, random memory accesses are significantly reduced
as build and probe are operating on the data stored in the
cache [1].



There have been a few studies on accelerating hash joins
with FPGA. Halstead et al. show there is an 11.3x speedup
over software version when hash joins are done in BRAMs
of FPGA [11]. They further present the FPGA-based multi-
threading in-memory hash joins [10], but the performance is
limited by the atomic operation introduced by multi-thread
synchronization. Those studies focus on FPGA only. Kara
et al. argue the partition phase is costly, thus, they offload
partition phase to FPGA on HARP v1 [16]. In comparison,
this study performs a more systematic exploration of phase
placements of hash joins and analyzes their performance on
future architectures.

2.3 Possibilities of Phase Placement
We divide SHJ into a build phase (SHJ-B) and probe

phase (SHJ-P). Since these two phases operate on a hash
table located in global memory, and they can run either on
the CPU side or the FPGA side. Similarly, PHJ is divided
into partition phase (PHJ-P) and join phase (PHJ-J). We
do not further separate PHJ-J since the build and probe of
PHJ-J are in-cache operations, which indicates placing them
into different devices will negate the benefit of caching the
data. Each of these phases can be executed on the CPU
alone, the FPGA alone, or both of them, simultaneously.
Thus, we have 32(SHJ) + 32(PHJ) = 18(Total) possible
placement solutions. The key question is: which one is the
best solution? In the following section, we quantitatively an-
alyze the best task allocation for each phase and construct
the best hash join design on current HARP architecture.

3. ANALYSIS WITH ROOFLINE MODEL
The CPU and the FPGA have many different architec-

tural features. The CPU utilizes the build-in hardware units
by flexible instructions while the FPGA customizes hard-
ware unit for each operator. However, both the CPU and
the FPGA are essentially computing devices with different
communication and computation capacities. We shall con-
sider the placement of hash join phases on either CPU or
FPGA based on communication and computation perspec-
tives as they give the upper bounds of the performance on
targeted devices.

The roofline model relating on-chip processing performance
to off-chip memory traffic has been an effective and intuitive
way of performance modelling on CPUs and other architec-
tures [9, 25]. It gives an upper bound on attainable per-
formance depending on the program’s operational intensity
(OI), defined as the operations per byte of memory traffic
for a targeted platform. In this section, we illustrate the
roofline model for HARP platform to analyze the placement
for each phase and find the best solution for hash join on
HARP.

3.1 Roofline Model for HARP
By following [25], both rooflines for CPU and FPGA con-

sist of two lines calculated by Equation 1: a horizontal line
showing the peak performance of CPU or FPGA; a diago-
nal line bounding the attainable performance with the peak
memory bandwidth of CPU or FPGA.

Perfroof = min(PeakPerf,PeakBw×OI) (1)

Figure 2 shows a log-log scaled roofline model for HARP
platform which uses billions of integer operations per second
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Figure 2: Roofline model for HARP.

(GINTOPS) as the metric of performance. The blue line is
the roofline of the CPU side obtained from the Intel Advisor,
and the brown line is the roofline of FPGA side in which
the peak performance of the FPGA is calculated based on
the number of DSPs. Note that the peak performance of
FPGA can be even higher as the integer operations can also
be done by its logic resources. The ridge point (where the
diagonal and horizontal lines meet) of FPGA is higher and
located more on the right than CPU’s. The reason is that the
FPGA has higher computational capacity but lower memory
bandwidth than CPU (as shown in Table 1).

3.2 Performance Estimation
We profile the OI, and the performance of each phase

of the state-of-the-art CPU solution for hash joins [1] and
present them together with the roofline model as vertical
grey dashed lines and colored dots in Figure 2, respectively.
The corresponding performance of FPGA also lies on some-
where of dashed lines as the OI is usually fixed for a pro-
gram. The dataset used for profiling includes the build re-
lation R with 128 million tuples and the probe relation S
with 128 million tuples (named Workload A in our exper-
imental setup). All the 28 threads for the CPU are used,
and the radix bits are tuned to yield the optimal CPU per-
formance. More details about experimental setup are given
in Section 5. We can make the following observations from
the current status of the Figure 2. First, these phases are
memory bounded because the dashed lines are on the left
of the ridge point [25]. Therefore, splitting the input to
CPU and FPGA so that they run concurrently does not
help. Second, the performances of SHJ-P, PHJ-P and PHJ-
J are beyond the performance bound of the FPGA, which
means that assigning these three phases to CPU can achieve
better performance. Third, the SHJ-B phase is still below
the roofline of the FPGA, and far away from the attainable
performance on the CPU. There are basically two reasons
leading to this. The first one is the memory access pattern
as the peak memory bandwidth cannot be reached if the
irregular memory access dominates most of the time. The
second is that the computation is not well optimized [25].
But, two reasons leading to the gap to bound are of big dif-
ferences in terms of performance predicting for FPGA. If it
is caused by the memory access pattern, then the FPGA
side will suffer the same problem as both CPU and FPGA
use the same off-chip memory. Things might be changed for
the second reason since computation may be optimized well
using FPGA.
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To understand whether SHJ-B on the FPGA can outper-
form that on the CPU, we calculate the ideal attainable
performance of SHJ-B on FPGA. We first profile the bottle-
neck of SHJ-B using the Intel VTune, as shown in Figure 3.
Clearly, the gap is mainly caused by memory access pat-
tern because the memory bound dominates most while the
memory bandwidth is under utilized. This responds to the
massive amount of random memory accesses of SHJ-B. Tak-
ing the performance behavior of the CPU as the reference,
with the assumption that computation on the FPGA can be
fully hidden by the memory access latency, we can get the
ideal FPGA performance by following equations.

FPGAPerf = (1−MBPFPGA)× FPGAPerfroof (2)

MBPFPGA =
CPUPerfroof − CPUPerf

CPUPerfroof
×MBPCPU (3)

Equation 3 maps the performance gap caused by memory
access pattern from CPU to FPGA as they share the same
off-chip memory. Equation 2 calculates the ideal perfor-
mance on FPGA by considering the performance stalled by
memory. ‘MBPFPGA’ stands for the memory bound per-
centage for FPGA (the value is obtained by memory bound
dividing total bound in Figure 3). ‘FPGAPerf’ means the
ideal performance of FPGA and ‘FPGAPerfroof’ indicates
the performance bound of FPGA which is from the roofline.
Similar terms are applied to CPU.

The calculated performance of SHJ-B on FPGA is marked
with × in Figure 2, which is also worse than that on the
CPU. Therefore, FPGA performs worse than CPU for each
phase in SHJ and PHJ, and the main obstacle is obviously
the memory bandwidth. Specifically, for SHJ, both SHJ-B
and SHJ-P on CPU is the best solution; however, it cannot
outperform both PHJ-P and PHJ-J on CPU [1]. For PHJ,
the roofline model analysis indicates both PHJ-P and PHJ-
J have better performance on CPU than on FPGA. Our
analysis is also consistent with Kara et al.’s work [16]. Even
with a design of the PHJ-P that fully utilizes the memory
bandwidth of the FPGA side, the performance on FPGA is
only comparable to a 10-core CPU on HARP v1 [16].

3.3 Opportunities
The previous analysis clearly indicates that both SHJ and

PHJ are executed efficiently on the CPU for current HARP
hardware. However, whether the system efficiency could be
improved by utilizing the FPGA still remains to be explored,
and more advanced task placement needs to be considered.

We have identified one potential opportunity for an im-
proved way of phase placement of PHJ. From our model, we
observe that there is still some gap between the performance
of PHJ-P and the roofline of the CPU (Figure 2). This is
because the large partition fan-out of PHJ-P causes a lot of
random memory accesses. Ideally, if a scheme allows bigger
partitions (thus a smaller partition fan-out), the execution

time of PHJ-P can be significantly reduced benefiting from
the less random memory accesses, and more cache hits, as
also observed in the previous studies [1, 2]. This is possible
for FPGA to benefit it because the on-chip memory size is
much bigger than L1 or L2 cache of CPU. For example, Xil-
inx UltraScale+ devices [26] can have 62.5MB on-chip mem-
ory and Intel S10 devices [14] have up to 28.6MB. Thus, if we
offload PHJ-J to FPGA, the bigger on-chip memory allows
a bigger partition size and also the on-chip memory allows
high-bandwidth parallel reads to process PHJ-J in parallel.

In summary, assigning PHJ-J to the FPGA with PHJ-P
on the CPU may be beneficial to the performance of hash
join on HARP, in the hope that PHJ-J can fully take advan-
tage of the on-chip memory features of FPGA, and reducing
the execution time of PHJ-P on CPU. In the next section,
we describe our implementation of PHJ-J on FPGA which
operates the partitions generated by PHJ-P [1].

4. DESIGN OF THE JOIN PHASE ON FPGA
In this section, we present the implementation of the join

phase on FPGA for partitioned hash joins. Our design fol-
lows three major principles. First, we use lock-free schemes
for avoiding read/write conflicts, as any locks may break
the pipeline of the data processing and cause severe pipeline
stalls [10]. Second, the join phase is fully pipelined on
FPGA. We balance the stages of the pipeline since the sys-
tem throughput is determined by the bottleneck stage and
increasing parallelism of non-bottleneck stages will not help
to improve the overall performance but lead to a bad timing
result for the final implementation due to the over-utilization
of hardware resources. Third, the number of datapath is
tuned to fully utilize the memory bandwidth of the plat-
form.

4.1 System Overview
The system consists of tFetcher, Shuffle, Dispatcher and

Build and Probe modules, which are connected by chan-
nels [13] equivalent of First In First Out (FIFO) buffers.
The system overview is shown in Figure 4, assuming to join
the partitions from relations R and S. The R-fetchers con-
structed with M tFetchers first sequentially read M tuples
of an R partition from the memory and then pass them
to the Shuffle for assignment to their designated datapaths
(each datapath consisting of the Builder, the hTable and the
Prober modules), based on the key of the tuple. After the
build stage, M tuples of the corresponding S partition are
read and passed to the Prober module in corresponding dat-
apaths by S-fetchers and Dispatcher respectively for probe.
Same as R-fetchers, the S-fetchers is also constructed with
tFethers. The number of tuples read per cycle (M) and the
number of datapath (N) are well tuned to guarantee a bal-
anced pipeline and fully utilize the memory bandwidth of
the target platform where we call it a bandwidth-optimal
design. On-chip memory, which is BRAM in the current
architecture, providing high throughput and low latency for
data access is very crucial for our design. In the build phase,
the available BRAMs are fully utilized for building the hash
table. In the probe phase, the input tuples are matched with
entries in BRAMs to determine matched tuples. Our imple-
mentation maximizes parallelism by dividing the available
BRAMs into N regions. Each region is owned by a datap-
ath that can read or write independently to build and write
multiple tuples per cycle.
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Tuples with the same key from partitions of R and S need
to go to the same datapath for build and probe, respectively.
However, dispatching multiple unordered tuples to their cor-
responding datapaths according to their keys in one clock cy-
cle at run-time is challenging, especially for OpenCL based
designs since the access pattern is uncertain at compiling
time, and it requires synchronization among datapaths [17].
To avoid locks and achieve a high throughput, we use a shuf-
fle solution for graph processing in [3] and map it to the join
phase to resolve the run-time dependency among datapaths,
by that each datapath can run independently and efficiently.
In the meanwhile, the probe phase only reads data from the
hash tables, and will not have write conflicts.

4.2 Implementation Details
We use the radix hash function as an example of the pre-

sentation. Other hash functions are also applicable, with-
out influencing the performance as they just increase the
pipeline depth from a micro-architectural point of view.

4.2.1 Shuffle
The Shuffle stage assigns M tuples of R partitions to

the corresponding datapaths for building in parallel without
locking or stalling the pipeline. The destination datapath
of a tuple is calculated by the log2 N bits of the key with
the offset of r which is the radix bits used in partition phase
on CPU to determine the fan-out. The tuple will go to the
datapath with the id of ((Key >> r) (mod N)).

With M tuples fetched from memory in one cycle, the PE
selection first calculates the id of destination datapath for
each tuple using the function mentioned above and attaches
them to the tuples, then the Data Duplication module dupli-
cates the M tuples with datapath ids for N datapaths. For

each datapath, the Validation module compares the current
datapath id with datapath id of coming tuples and gener-
ates a M -bits MASK code in which the ‘1’ indicates the tu-
ple belongs to current datapath and ‘0’ indicates vice versa.
The Decoder module will decode the number and position
of valid tuples in current set of tuples according to the M -
bits MASK code. Given the information from the Decoder,
the Filter module passes wanted tuples to the Builder mod-
ule, without wasting clock cycles in reading unwanted tuples
(which do not belong to the datapath).

4.2.2 Dispatcher
The Dispatcher is a cross-bar like architecture which as-

signs the M tuples of S partitions to their corresponding
datapaths for probe phase in one cycle. In order to achieve
high throughput, there are M instances processing in par-
allel in the Dispatcher with each having N private FIFOs.
Each instance firstly reads a tuple from the corresponding
tFetcher; thus, M tuples can be read in per cycle. Then
each instance assigns the tuple to the private FIFO with the
id of ((Key >> r) (mod N)), where r is the same as used in
the partition phase to identify the same partitions, and N
is the number of probe datapath.

4.2.3 Builder
The Builder is used to update the local hTable which is

pre-allocated by equally dividing the total BRAM to dat-
apaths. By that the datapaths can build and probe the
hTable independently and in parallel improving the paral-
lelism. The hTable for one datapath is further divided into
B buckets that each of them can accommodate four tuples.
Besides, each bucket holds a local counter to record the cur-
rent index of the tuples. The upcoming tuple belongs to
this bucket will be written to the next index which equals
to the local counter plus one. The fetched tuple from the
Shuffle of its datapath will be updated to the bucket with
the id of ((Key >> r >> log2 N) (mod B)). Since the counter
stored in BRAMs introduces a read after write hazard when
executing the self-add operation, updating one tuple into
hTable takes two cycles for one datapath. This hazard can
be resolved by adopting the scoreboard technique of pro-
cessor design, but it is out of the main focus of this study.
Overall, to achieve a balanced pipeline, we configure the
number of datapath N to be 2M so that M tuples can be
consumed in one cycle. In the meanwhile, the M is set
to width memory interface/tuple size to fully utilize the
memory bandwidth of the architecture.

4.2.4 Prober
The Prober looks up the local hTable for tuples of S par-

titions to count the number of matched tuples. The Prober
first gathers all the tuples belong to it from all the instances
in the Dispatcher module. To achieve that in one clock cy-
cle, each Prober reads M tuples from FIFOs of M instances
in parallel. The ith Prober will read ith private FIFO of
each instance in the Dispatcher. Then it calculates the ids
of corresponding buckets in parallel with the hash function
((Key >> r >> log2 N) (mod B)). The keys in M buckets
are read in parallel benefiting from the high throughput of
BRAMs and then used to verify the matches by comparing
them to the keys of S tuples in parallel accordingly.

4.2.5 Channels



The implementation is divided into different modules, and
data transferred between modules are through OpenCL chan-
nels [13], instead of writing and reading the data to and from
global memory. This is essential, as read/write operations
from main memory result in high data access latency. In
addition to eliminating the data transfer overhead from ex-
ternal memory, channels between the Data Duplication and
the Validation modules also allow us to handle the distri-
bution skew in input tuples. As input tuples are randomly
coming, this results in temporal unbalance between datap-
aths. One datapath may have many tuples to process for
a set of tuples while the others starve. Channels working
as FIFOs are used to mitigate this temporal mismatch by
temporally buffering current set of tuples for this datapath,
thus, the other datapaths can keep on processing the next
set of tuples.

4.3 Discussion
To handle data skew in R partitions, we use the bucket

overflow handling mechanism of the simple hash join in [1]
that offloads the overflowed tuples to a table in global mem-
ory.

As for balancing pipeline, we identify the external memory
interface is the main bottleneck of the system throughput. It
only allows reading 512 bits at every clock cycle for current
HARP. We implement N parallel datapaths depending on
tuple size to match the throughput of the memory interface
and fully utilize the memory capability of the FPGA side. In
other words, the design is bandwidth-optimal with suitable
values for M and N .

We can combine this bandwidth-optimal join with the pre-
vious bandwidth-optimal partition scheme on FPGA [16].
The result is a bandwidth-optimal partitioned hash join that
totally executes on FPGA (“FPGA-only”).

5. EVALUATION
In this section, we conduct experiments to evaluate the

efficiency of our join phase on FPGA. More specially, we
compare the performance of four possible designs of parti-
tioned hash join (partition phase on either CPU or FPGA
and join phase on either CPU or FPGA) on HARP platform.

5.1 Experimental Setup
Hardware platforms Our experiments are conducted

on the HARP v2 (consisting of the Xeon E5-2600 v4 CPU
and the Intel Arria 10 FPGA) with OpenCL 16.0.2.222 which
is specified for HARP v2. We also evaluate the efficiency of
our design of the join phase on a discrete platform, Tera-
sic DE5-Net board (named DE5) which includes an Intel
Stratix V FPGA and 4GB private memory, with OpenCL
16.1.0.196.

Workloads To make a fair comparison, we use the same
workloads from the previous study [16], including Workload
A (|R| = 128 × 106, |S| = 128 × 106) and Workload B (|R|
= 16 × 220, |S| = 256 × 220). The tuples are of the form
〈key, value〉 where both fields are 4 bytes each and randomly
generated.

Comparison As a sanity check, we compare our so-
lution with the state-of-the-art implementation on multi-
core CPU architecture [1] (named CPU-only), and the work
from [16] (named FPCJ), which offloads the partition phase
to the FPGA side, and executes the join phase on the CPU
side. Considering the FPCJ is previously implemented on

HARP v1, to make a fair comparison, we use the model pro-
posed in their paper to calculate the performance on HARP
v2. There are two partition modes in FPCJ depending on
the output format: Histogram Building Mode (HIST) and
Padding Mode (PAD). PAD scans input relations for once
and HIST for twice. For uniform inputs, PAD outperforms
HIST. However, HIST is robust for skew, whereas PAD is
not. We compare our solution to the performance of FPCJ
for both modes on HARP v2. We also present the potential
performance of the bandwidth-optimal design of partitioned
hash joins on FPGA (named FPGA-only, discussed in Sec-
tion 4.3).

We set the radix bits of partition phase to 12 for FPCJ
and CPU-only solutions since it provides the best end-to-
end performance on Workload A and B. The partition size
of our solution is 512×210 tuples as it is the largest partition
the BRAM can hold. The performance is calculated by the
sum of the partition time from FPCJ and the time of the
join phase from our design. All the 28 threads are used
when CPU processing. The throughput in terms of tuples
per second and absolute execution time are used as metrics
of performance.

5.2 Efficiency of Join Phase
We first evaluate the efficiency of our join on FPGA with

different tuple sizes. We fix the frequency of implementa-
tions to 200MHz in this evaluation and assume that the
partitions are already stored in global memory. The full
memory bandwidth of FPGA is utilized to read the input
tuples, which is 512-bit per cycle thus it is 12.5GB/s band-
width for reads. The M and N are also set accordingly. M
depends on the number of tuples it can read in one cycle
and N=2M . Thus, M equals to 8, 4, 2 and 1 and N equals
to 16, 8, 4 and 2 for tuple sizes of 8, 16, 32 and 64 bytes,
respectively.

Figure 5 shows the measured throughputs of different tu-
ple sizes. The throughputs are very close to the theoretical
estimation, and the achieved memory bandwidths are al-
most equivalent to the given memory bandwidth of FPGA.
One exception occurs with tuple size of 8B. That is because,
when we implement 16 datapaths on HARP for tuple size of
8B, the Initiation Interval (II) [13] of the Builder increases
from 2 to 9, which means building one tuple requires 9 cy-
cles. Eventually, the version with 8 datapaths results the
best performance for tuple size of 8B. Hence, the build stage
can only process 4 tuples per cycle and achieves only 75% of
theoretically estimated bandwidth. To further investigate
this exception, we implement 16 datapaths on DE5 plat-
form which has a smaller FPGA. The performance is also
attached to Figure 5 and marked with ∗. As the Arria 10
FPGA on HARP has more resources than DE5’s Stratix V
(shown in Table 2), ideally the FPGA on HARP should be
able to support 16 datapaths. And we also find the resources
of HARP are underutilized (shown in Table 2), but the II is
very high with 16 datapaths. Thus, we suspect the problem
is caused by the issues in the OpenCL SDK since the version
of OpenCL SDK for HARP is still an experimental version.
Note that, the OpenCL SDK version for HARP cannot be
used for DE5 thus we cannot further confirm our suspicions,
and the computation is done by the logic resources on FPGA
leaving DSPs unused.

In conclusion, our join phase on FPGA can fully utilize
the memory bandwidth, but the performance on HARP with
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Figure 5: Throughput of join on FPGA and memory uti-
lization with varying the tuple size on Workload A.

Table 2: Resource utilization (in the form of (ratio)/total
resources available) of HARP and DE5.

#D.P.(Plat.) BRAM Logic DSP
2 (HARP) (55%)/2,713 (25%)/427,200 (0%)/1,518
4 (HARP) (62%)/2,713 (54%)/427,200 (0%)/1,518
8 (HARP) (67%)/2,713 (50%)/427,200 (0%)/1,518
16 (HARP) (65%)/2,713 (61%)/427,200 (0%)/1,518
16 (DE5) (91%)/2,560 (75%)/234,720 (0%)/256

the tuple size of 8B is constrained due to the implementation
of the OpenCL SDK. We hope that the future OpenCL for
HARP could provide better synthesis results with smaller
resource consumption and higher frequency.

5.3 End-to-End Performance Comparison
The results of different solutions on Workload A and Work-

load B are presented in Figure 6. We make the following
observations based on these results. First, our solution is
the most efficient one under the current hardware, which
has up to 38% improvement over CPU-only and 70% over
FPCJ (HIST). Second, the partition time is significantly
reduced when increasing the size of partition from size of
cache in CPU to size of BRAM in FPGA. Third, the parti-
tion on FPGA with HIST cannot outperform that on CPU
corresponding to our analysis. Fourth, the join on FPGA
is much slower than join on CPU since the performance is
constrained by the memory bandwidth of the FPGA, as an-
alyzed before.

We also study the effects of skew on state-of-the-art so-
lutions following [16]. More specifically, we generate the re-
lation S with Zipf distribution law (Zipf factor z from 0.25
to 1.75, with the stride of 0.25). The performance is shown
in Figure 7. As the FPCJ cannot handle the skew bigger
than 0.25 with PAD, HIST is used for partition [16]. Our
solution is always the best one among all the evaluated skew
factors and our join on FPGA is more robust to skew factors
compared to FPCJ.

6. ANALYSIS FOR FUTURE HARDWARE
The coupled CPU-FPGA architectures are still evolving.

In the research community, there have been studies [8, 12]
on analyzing the future trends of CPU-FPGA architectures.
In industry, we have witnessed the significant improvement
of HARP v2 over HARP v1. Thus, we can foresee the
future improvements of CPU-FPGA coupled architectures,
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Figure 6: End to end performance comparison with state-
of-the-art works on workload A and workload B.
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Figure 7: End to end performance comparison with increas-
ing Zipf factor on Workload B.

which potentially resolve the bottleneck of hash joins fur-
ther. Specifically, we consider the following trends:

• Memory bandwidth for FPGA will grow by taking advan-
tage of the improved frequency of FPGA and number of
memory channels [21] as well as the utilization of HBM
(High Bandwidth Memory) [6, 14].

• The size of the on-chip RAMs can be even bigger accord-
ing to its development over the last decade [21]. For exam-
ple, Xilinx UltraScale+ devices [26] can have total 62.5MB
on-chip RAMs.

• The OpenCL SDK for FPGA can be much stronger pro-
viding better timing results and resource utilization.

To understand the impact of those changes, we have per-
formed a back-of-envelope analysis of these trends on the
compared solutions. We also assume the datapaths can be
implemented efficiently with future OpenCL SDKs.

Figure 8 shows the comparison as the FPGA bandwidth
increases to that of the CPU, our proposed approach outper-
forms CPU-only solution significantly. But due to the full
utilization of memory bandwidth, the FPGA-only solution
is the best when FPGA achieves the same bandwidth of the
CPU. It can be 3.1× faster than the CPU-only solution.

We also evaluate the impact of the size of on-chip RAMs
in our design by increasing the partition size while assuming
the memory bandwidth of FPGA is comparable to CPU’s
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Figure 9: Impact with increasing the partition size.

(68GB/s), as shown in Figure 9a. Increasing partition size
does not bring benefit on Workload A since the partition
phase on CPU is nearly bandwidth optimal with those rela-
tion sizes. The results on Workload A are similar to Work-
load B. We further use a bigger workload named Workload C
(|R| = 10×226, |S| = 10×226). Figure 9b shows that perfor-
mance of partition phase on CPU can be further improved
for larger relations (Workload C). Thus, increasing the size
of on-chip RAMs is beneficial for larger input relations.

7. CONCLUSION AND DISCUSSION
In this paper, we explored the hash join implementations

on current coupled CPU-FPGA architecture. Through anal-
ysis with the roofline model, we compared the potential per-
formance of different task placement of the phases in hash
joins. We then developed a bandwidth-optimal join phase
on the FPGA for partitioned hash join. This yielded a
new task placement (partition on CPU and join on FPGA),
which outperforms existing solutions by over 30% on the
current HARP architecture. It also motivated us to develop
a bandwidth-optimal FPGA-only solution that runs both
partition and join on the FPGA which is more suited for
future hardware with higher memory bandwidth.

We have identified the following important aspects for fu-
ture database systems on coupled CPU-FPGA architectures.
First, sufficient memory bandwidth for FPGA is critical for
bandwidth bounded operations such as hash joins, and we
designed such a bandwidth-optimal design for the FPGA.
This design will become more competitive on future architec-

tures with higher memory bandwidth. Second, self-tuning or
automated design for database systems is necessary. Parti-
tioned hash joins have various knobs that are sensitive to in-
put relations as well as hardware evolution. Third, although
our design that takes advantages of both CPU and FPGA
outperforms existing solutions, we had expected a more sig-
nificant performance improvement from FPGA. Neverthe-
less, whether such architectures will become common or not
in database systems remains to be seen. Other factors such
as cost and energy efficiency as well as more significant hard-
ware and software performance improvements must be con-
sidered.
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