
Sypse: Privacy-first Data Management through
Pseudonymization and Partitioning

Amol Deshpande, amol@umd.edu
University of Maryland, College Park, MD, USA

ABSTRACT
Data privacy and ethical/responsible use of personal information
are becoming increasingly important, in part because of new reg-
ulations like GDPR, CCPA, etc., and in part because of growing
public distrust in companies’ handling of personal data. However,
operationalizing privacy-by-design principles is difficult, especially
given that current data management systems are designed primarily
to make it easier and efficient to store, process, access, and share vast
amounts of data. In this paper, we present a vision for transpar-
ently rearchitecting database systems by combining pseudonymiza-
tion, synthetic data, and data partitioning to achieve three privacy
goals: (1) reduce the impact of breaches by separating detailed per-
sonal information from personally identifying information (PII)
and scrambling it, (2) make it easy to comply with a deletion re-
quest (“right to be forgotten”) through overwrites of portions of the
data, and (3) reduce the need to access PII for developers or engi-
neers. We present a general architecture as well as several potential
strategies for achieving the goals, and some initial experimental
results comparing the performance of the different strategies. We
end with a discussion of some of the major research challenges
moving forward.
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1 INTRODUCTION
Data privacy and responsible data stewardship, after being an af-
terthought in the rush to capitalize on the promise of Big Data,
are rapidly growing in importance. Regulations like the European
General Data Protection Regulation (GDPR), California Consumer
Protection Act (CCPA), Brazil’s Lei Geral de Proteção de Dados
(LGPD), etc., require organizations to be more transparent about
their data collection and usage practices; more regulations along
the similar line have either recently passed (e.g., CCPA 2.0) or are
in the process of being enacted (cf. [7, 15, 25, 26] for a more detailed
exposition of the regulations). At the same time, increased public
awareness has led many companies to take a closer look at their
data practices to avoid long-term reputational harms. However, a
major impediment to implementing better data practices is that,
current data management systems and ecosystems are fundamen-
tally designed to make it easy and efficient to collect, process, and
analyze vast amounts of data in a centralized fashion [27]. Although
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there has been much work in recent years on techniques like dif-
ferential privacy and encrypted databases, those have not found
wide adoption and further, their primary target is untrusted en-
vironments or users. We believe that operational databases and
data warehouses in trusted environments, which are much more
prevalent, also need to be redesigned and re-architected from the
ground up to embed privacy-by-design principles and to enforce
better data hygiene. It is also necessary that any such redesign not
cause a major disruption to the day-to-day operations of software
engineers or analysts, otherwise it is unlikely to be widely adopted.

In this paper, we present such a redesign of a standard relational
database system, called Sypse, that uses “pseudonymization”, data
partitioning, and synthetic data, to achieve several key privacy
goals without undue burden on the users.

Pseudonymization refers to de-identifying data by stripping
personally identifying fields like name, so that the resulting data
cannot be tied to a specific individual without additional informa-
tion. Unlike properly “anonymized” data, pseudonymized data is
typically still considered “personal” data1 since it is usually possible
to re-identify the individuals through use of auxiliary data [6, 19].
However, pseudonymization is widely seen as a practical way to
reduce the impact of data breaches, and to make it easier to share
data internally [5, 11, 20]2. Pseudonymization also offers a practical
solution to the challenges in deleting information in response to
an individual’s request “to be forgotten”. For many practical and
business reasons, it is usually not possible to actually delete ev-
ery single piece of information associated with the individual. A
preferred approach instead is to overwrite a portion (or all) of
the data for the individual, so that it is difficult or impossible
to re-associate the information to that individual. The amount of
information that needs to be overwritten depends on the type of
the data, business requirements, and legal interpretations, but it is
usually a small fraction of all the data for the individual, typically
the direct identifiers. This approach is not only easier to implement,
but also maintains much of the utility of the data for analytics
and other purposes like model training. Pseudonymization can dra-
matically reduce the amount of data that needs to be overwritten,
especially if used liberally to not only de-identify the data but also
break connections between data items as we will discuss later.

The second core idea underlying Sypse is data partitioning to
minimize impact of data breaches and to simplify process-
ing of the deletion requests. Monolithic centralized databases
are often desirable and are a norm today because of ease of man-
agement and querying. Such databases are typically backed up as

1This does depend on the regulation; GDPR typically treats such data as personal data,
whereas CCPA, HIPAA, etc., appear to exempt de-identified data from the regulation.
2“The application of pseudonymisation to personal data can reduce the risks to the data
subjects concerned and help controllers and processors to meet their data-protection
obligations”; EU GDPR Recital 28.
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a unit, and may be duplicated as a unit for debugging, resolving
support issues, or performance analysis. Even with very good data
practices, this significantly increases the impact of a data breach
(which are increasing in frequency despite cybersecurity advances).
Backups also pose a significant challenge to handling an individ-
ual’s request to delete their personal data; it is near impossible
to identify and scrub the personal data of the individual from all
copies of the database.

Finally, unlike other approaches (e.g., encryption) where the
utility of the data may be low to non-existent in absence of the
keys, Sypse uses carefully generated synthetic data so that the
database can still be useful even if some data is pseudonymized
or hidden. In many scenarios, the available information may be
sufficient to perform debugging or support or performance analysis
tasks, but without such synthetic data, applications running on top
of the databases are unlikely to continue to function properly.

Sypse is designed as a stateless layer that sits atop tradi-
tional databases and transparently partitions the data into two
or more partitions so that personally identifying information is
separated from the detailed personal information. In addition, the
primary and foreign keys are also scrambled to achieve additional
protection against re-identification. We envision that Sypse will
continuously analyze the schema and the data to automatically
make decisions about how to partition the data, while allowing the
users to override those decisions at any point. This will allow Sypse
to provide protections by default without any input from the users.
Sypse naturally supports multiple levels of access, and as discussed
above, has a design goal that queries should always succeed. All of
these design goals are intended to reduce the friction in deploying
Sypse; in fact, we hope that Sypse can serve as a drop-in replace-
ment for an existing database. However, there are many research
challenges that need to be successfully addressed to realize that
vision; in particular, there are significant performance implications
of the data scrambling and partitioning that need to be mitigated.

Outline: We begin with describing the Sypse architecture in more
depth and motivate the key design decisions we made. We then
sketch a variety of partitioning strategies that all achieve the stated
privacy goals but have very different performance characteristics.
We present a preliminary experimental validation of the key ideas,
and end with a discussion of research challenges moving forward.

2 RELATEDWORK
There has beenmuchwork on related topics like privacy-preserving
querying and datamining, statistical notions of privacy (k-anonymity,
l-diversity, differential privacy, etc.), secure or encrypted databases,
secure multi-party computation, and verifiable databases. The ap-
proach we take here addresses a different set of concerns, and can
be seen as complementary to most of that work.

Differential privacy enables statistical analysis of data without
revealing information about specific individuals, and there has been
an intense amount of work on using that core concept for privacy-
preserving machine learning, generation of synthetic data, and so
on [8, 13, 23]. There is also recent work on expanding the types of
SQL queries that can be handled through differential privacy [12,
14]. However, differential privacy, by itself, doesn’t directly support
any of the goals we outlined above, since the original database with
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Figure 1: High-level Sypse Architecture w/ 2 Partitions

the personal information is still available to the trusted users and
applications. However, we can significantly increase the utility of
the synthetic data used in our approach through a more systematic
differential privacy-based approach.

Secure/encrypted databases target a scenario where the data-
base is hosted by an untrusted server (e.g., in the cloud) and we
wish to support queries over that data while minimizing informa-
tion revealed to the untrusted server. Broadly, this can be done
through the use of encryption techniques that support computa-
tions (e.g., Homomorphic Encryption) [3, 10, 18, 22], or through
use of trusted hardware like Intel SGX [2, 24]. There is also increas-
ing work on using secure multi-party communication to support
federated data analysis across organizations without sharing the
actual data [4, 9, 29], and on verifiable computations [1, 30]. Our
approach is designed for a trusted environment, and our goal is
to avoid inadvertent leakage of data and make it easy to support
data and access minimization. The ideas we explore here, including
partitioning of data and use of pseudonymization and synthetic
data, can be combined with those approaches to provide stricter
guarantees.

In recent years, there have been several efforts aimed at redesign-
ing data management systems, analogous to our work here, in light
of GDPR and other privacy regulations. Schwarzkopf et al., [25]
propose creating per-user data shards for fine-granularity access
and compliance management. Kraska et al., [15] explore several
approaches to handle requests to be forgotten and other challenges
in supporting GDPR; they also propose the use of surrogate keys
to support lazy deletion of personal data (our approach goes fur-
ther beyond by, in effect, adding surrogate keys throughout the
database). GDPRBench [26] proposes a new benchmark for eval-
uating databases against GDPR requirements. ScrambleDB [16]
also makes heavy use of pseudonymization, however, it targets a
distributed use case and doesn’t provide solutions to the three prob-
lems mentioned above. Sieve [21] presents approaches to enable
fine-grained access control in support of privacy regulations. Most
of these projects are currently in preliminary stages making it hard
to do a direct comparison, but to our knowledge, none of the prior
work has undertaken a systematic evaluation of data partitioning
and pseudonymization to achieve the privacy goals.
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3 ARCHITECTURE
The core idea underlying Sypse is to partition the data into two
ormore partitions, while introducing pseudonymous identi-
fiers and synthetic data to allow differentiated access to the
data. Figure 1 shows the high-level architecture of Sypse as a layer
on top of a standard relational database system, where the data is
split into two partitions, and two access levels are supported. For
either access level, the same schema is presented to the user, and any
SQL queries can be executed against that schema. However, for the
limited access level, the queries will be run against pseudonymized
or synthetic data only (we discuss data utility later in the section).
Updates are currently only permitted under full access; however,
in theory, updates to the non-PII data could be supported under
limited access. Note that, in the general case, we may have more
partitions and more access levels, and those two, in general, are
independent of each other (e.g., you may have more than 2 access
levels with just two partitions).

In the rest of the paper, we assume that the data is split into
two databases as shown in the figure, that we will term Detail
Data(base) and PII Data(base) for simplicity.

The data partitioning obeys the following design principles:
● Any personally identifying information (PII) and any con-
nection information that is needed to group/aggregate detail
data and/or connect detail data to PII is concentrated in the
PII Database. We discuss what constitutes PII in more detail
below.
● All information that can be treated as non-PII information is
maintained in the Detail database.We re-emphasize that this
information still needs to be treated carefully since
it is only “pseudonymized” and not “anonymized”. In
particular, this database does not satisfy any of the sta-
tistical privacy requirements like differential privacy,
and thus the access controls on it cannot be relaxed.

The key components of Sypse are:
(a) DDL Engine, responsible for intercepting any schema up-

date statements, and appropriately creating the tables in the
underlying databases;

(b) Query Processing Engine, that executes the user queries
by using the tables from the underlying databases as appro-
priate for the access level; and

(c) Transaction Engine, for handling the updates to the data-
base by appropriately routing the updates to the right tables
and generating synthetic or pseudonymized data as required.

As we will discuss later, for performance reasons, the query pro-
cessing and transaction engines will likely need to use in-memory
caches to avoid expensive joins; such caches would typically be built
during initialization. Furthermore, a key requirement of Sypse is
that the underlying databases are administratively separated,
have different access controls, and are backed up indepen-
dently, to reduce the possibility of multiple of those being breached
simultaneously. This may be achieved, e.g., through geographic
separation or use of virtual private clouds. This adds further perfor-
mance considerations because of increased distributed transactions
and higher query execution overheads; however, all of these are
issues that the database community has developed techniques to
mitigate over the years.
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Figure 2: Example Annotated Schema

3.1 Personal Data vs PII vs De-identified Data
Before diving deeper into discussing how data should be split across
the two databases, it is necessary to better understand what we
mean by personal data (PI) vs personally identifying data (PII),
and what kinds of information we need to pseudonymize or hide.
We use a familiar TPC-H-like example (Figure 2) for this purpose,
augmented with an additional table.

● First, data fields like name, address, custkey, IP Address, etc.,
can be directly tied to a specific individual (or to a small sub-
set), especially given the abundance of auxiliary information
easily available now-a-days (see NIST Guidance for a more
detailed discussion of PII [17]). Such fields should be moved
to the PII Database and replaced with pseudonymous identi-
fiers (also called surrogate keys [15]) to separate them from
the other data fields. Any groups of data fields that together
are sufficiently unique should also be treated similarly.
● Geolocation or biometric information also tends to be easy
to re-identify and should be treated similarly.
● Groups information: Even if customer PII is pseudonymized,
analyzing the collection of orders made by a single customer
(i.e., all orders with the same custkey together) leads to a loss
of privacy, including possible re-identification. Hence, we
may wish to break up these groups so that multiple orders
cannot be tied to the same individual using Detail Database
alone. We note that presence of near-keys (i.e., approximate
functional dependencies) can also lead to a loss of privacy
and those may need to be explicitly handled as well.
● Finally, depending on the level of pseudonymization desired,
we may wish to explicitly break the connections between
tables (this may be unnecessary if groups are already broken
up). For example, we may wish to break the connection
between the two customer tables in the example to remove
the possibility of combining the fields across those to re-
identify individuals. How far this should be done depends on
the sensitivity of the data – intuitively speaking, the “farther”
a connection is from the PII data, less the need for it to be
broken up.

In our initial prototype, we assume that we are provided with an
annotated schema where the data fields, foreign key references, and
groups are designated with the desired guarantees, so that we can
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focus on the implementation and validation of the approach. We en-
vision that this will be done largely automatically and transparently
– identifying sensitive and PII data fields is relatively straightfor-
ward, but group/connection information requires more analysis
because of a lack of schema discipline in practice.

We re-emphasize that the goal here is not to achieve true anonymity,
but rather to enable flexibly adding pseudonymization so that the
potential for inadvertent misuse is reduced, and do this while reducing
the friction typically encountered in operationalizing such approaches.

We begin with a brief discussion of the privacy guarantees and
trade-offs and then present three strategies in the next section.

3.2 Privacy Guarantees
The privacy guarantees provided by Sypse depend on the specific
decisions that are made regarding the columns and connections
to be hidden. Overall the guarantees will be significantly weaker
than differential privacy, but on the other hand, Sypse imposes
no constraints on the types or numbers of queries that can be
performed.

More specifically, for someone with access to both the databases,
there is clearly no privacy protection (beyond what might be im-
plemented in the database itself). If someone only has access to
the Detail database, they cannot directly learn any of the PII infor-
mation or correlate information across tables or within a table as
per the decisions made in the annotated schema. However, since
much of the non-PII data is still visible in the Detail database, there
is potential for combining that with auxiliary information to re-
identify individuals (e.g., if one knew that an individual visited a
specific store on a specific date, the orders by that consumer may
be identifiable). On the other hand, if someone only has access to
the PII Database, much of the detailed information is hidden from
them, but there is obviously a significant loss of privacy.

3.3 Trade-offs
There are many ways to design partitioning strategies that can
support the privacy goals above; one of our goals with this project
is to evaluate the trade-offs in a systematic manner.

First, different strategies may have significantly different char-
acteristics with respect to query and transaction performance.
Joins involving real data, where data across the two databases must
be combined, are especially problematic – the desire to keep the
PII Database small naturally makes it difficult to evaluate joins
efficiently. Similarly, a single transaction may have to involve two
or more different databases. Even if the databases are co-located
on the same machine, there may be process or context boundaries
that need to be spanned. Clearly a fraction of the transaction work-
load is localized to one or the other database (e.g., address updates
only affect the PII database, whereas updating parts only affects the
Detail database). However, other transactions (e.g., adding a new
order) may require updates to both databases. Ideally we’d like to
minimize the fraction of the workfload where this is needed.

Second, the utility of the detail dataset by itself is a key con-
cern that will impact adoption. A large class of queries or analysis
tasks can potentially be performed successfully without access to
the PII information. This includes statistical analysis of the distri-
butions of non-PII data fields, many machine learning and data

mining tasks, support or debugging tasks (against production data),
and possibly performance analysis. However, the design decisions
made during the partitioning phase will dictate what fraction of
the workload can be supported on the Detail Database alone.

Third, the overall increase in the storage footprint as well as the
size of PII database are key considerations. Since the PII Database
is more sensitive, we would like its size to be as small as possible, so
that access control and backups are more manageable. For example,
it may be acceptable for the Detail database backups to be offloaded
to tape storage, but ideally the PII database backups are not stored
on tape because of the difficulties of deleting data there. More
stringent access controls, richer auditing, and even review processes
to approve access requests, may be used for the PII Database.

Finally, an important consideration is how difficult and expensive
it is to forget an individual. We assume that it is sufficient to
delete the information in the PII Database to forget an individual;
as we discussed earlier, this is widely considered to be sufficient
in practice. This means that the pseudonymized data associated
with that individual in the Detail database, will still be maintained;
thus the partitioning strategy needs to be designed and configured
appropriately to ensure that the remaining, pseudonymized data
is difficult or impossible to trace back to the individual. We note
that our approach provides the users with full control on what data
is kept in the PII database, and how much the rest of the data is
pseudonymized. In theory, every single data atom about a person
could be dissociated from other data atoms to achieve extreme
pseudonymization.

4 PARTITIONING STRATEGIES
In this section, we sketch a few different strategies that can be used
to achieve the goals above, and discuss their pros and cons with
respect to the desiderata above.

4.1 Strategy 1: Duplicated Tables and Columns
The simplest strategy that satisfies the goals above is to copy out a
subset of the columns into the PII database, and replace them with
synthetic data. This includes any columns that contain PII or sensi-
tive data, and any foreign key and grouping columns designated for
pseudonymization. Figure 3(ii) shows this for a simple three-table
schema. Specifically:
● Any table containing PII is created in both databases – the
table in the Detail database contains all the columns but with
the PII fields replaced with synthetic data, whereas the PII
database table contains only the PII columns along with the
primary key. If the primary key is marked as PII, then the PII
database table also contains synthetically generated keys (as
shown in the example). In our initial prototype, we generate
the synthetic data randomly, but ideally it matches the real
data types and distribution as closely as possible to increase
the utility of the Detail database by itself.
● If an FK association is to be broken up (e.g., order to cus-
tomer), then the corresponding FK column is modified in the
Detail database to point to a random tuple in the referenced
relation. If we still wish to maintain the grouping of orders
by custkey, then this pseudonymization is done consistently
(i.e., a given custkey is replaced with a randomly generated



Sypse: Privacy-first Data Management through Pseudonymization and Partitioning CIDR’21, January 10-13, 2021, Chaminade, CA, USA

OrderKey CustKey ...

o_1 1 ...

o_2 1 ...

o_3 2 ...

CustKey Name ...

1 xyz ...

2 abc ...

3 ... ...

OrderKey LineNo ...

o_1 1 ...

o_1 2 ...

o_1 3 ...

o_2 1 ...

o_2 2 ...

o_3 1 ...

o_3 2 ...

o_3 3 ...

Custkey Name ...

83 n2e8e ...

1049 nf571 ...

6 ... ...

f302
6c19
3b1d
f355
24b5
41d9
9043
d86b

(i) Original Data

(ii) Strategy 1: Pseudonymization through synthetic keys

(iii) Strategy 2: Customer-level Encryption (Encrypted 
columns can be separated out)

OrderKey CustKey ...

o_34 427 ...

o_722 10 ...

o_8291 89 ...

OrderKey LineNo ...

o_62 1 ...

o_561 1 ...

o_1466 2 ...

o_3 1 ...

o_246 2 ...

o_753 1 ...

o_24 2 ...

o_144 3 ...

CustKey Name ... CustKey_
Syn

1 xyz ... 83

2 abc ... 1049

3 ... ... 6

OrderKey OrderKey_
Syn

o_1 o_34

o_2 o_722

o_3 o_8291

OrderKey LineNo OrderKey_Sync LineNo_Sync

o_1 1 o_62 1

o_1 2 o_561 1

o_1 3 o_1466 2

CustKey Name ...

83 n2e8e ...

1049 nf571 ...

6 ... ...

OrderKey CustKey ... OKey_enc

o_34 427 ... e(K1, o_1)

o_722 10 ... ...

o_8291 89 ... ...

OrderKey LineNo ... OKey_LN_Enc

o_62 1 ... e(K1, (o_1, 1))

o_561 1 ... e(K1, (o_1, 2))

o_1466 2 ... ...

CustKey Name ... CustKey_Syn Encryption_Key

1 xyz ... 83 K1

2 abc ... 1049 K2

3 ... ... 6 K3

(iv) Strategy 3: Customer-level Encryption w/ Pseudorandom 
Hash Sequences

CustKey Name ...

83 n2e8e ...

1049 nf571 ...

6 ... ...

OrderKey CustKey ... OKey_enc OHash

o_34 427 ... e(K1, o_1) pro1(1)

o_722 10 ... ... pro1(2)

o_8291 89 ... ... pro2(1)

OrderKey LineNo ... OKey_LN_Enc LHash

o_62 1 ... e(K1, (o_1, 1)) prl1(1)

o_561 1 ... e(K1, (o_1, 2)) prl1(2)

o_1466 2 ... ... prl1(3)

CustKey Name ... CustKey_Syn Encryption_Key #O #L

1 xyz ... 83 K1 3 10

2 abc ... 1049 K2 2 15

3 ... ... 6 K3 5 8

Detail Database

PII Database

Detail Database

PII Database

Detail Database

PII Database

Figure 3: Example showing the three strategies and the tables created; pro1(1) refers to the first value in the pseudorandom
sequence pro with 1 as the seed.

custkey throughout orders). A two-column table will need to
be added to the PII Database to maintain the real mapping.
● Similarly, if a grouping association is to be scrambled, then
the corresponding columns are copied out into the PII data-
base, and replaced with synthetic data in the Detail database.
This may entail adding additional rows to the tables depend-
ing on the other choices being made. For instance, in the
example shown above, say we wished to break the grouping
of orders based on custkey, but we do not wish to break the
association between orders and customers. In that case, every
customer tuple will need to be duplicated as many times as
the number of orders associated with it.

We note that the Detail database contains approximate func-
tional dependencies and temporal correlations (e.g., different lineit-
ems for a given order have ship dates that are temporally close to
each other). Most of these issues can be addressed with additional
pseudonymization and more aggressive use of synthetic data (and
possibly duplication of data along the lines of oblivious RAM), at
the expense of decreased utility. We envision a user interface that
surfaces such potential leakage avenues to the users so they can
make practical decisions about what they are comfortable with.
As observed by many researchers, there is “no free lunch in data
privacy” [13].
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Analysis: This strategy is relatively simple to implement and use.
● (+) Generally speaking, querying and analyzing real data is
relatively efficient here. In most cases, additional joins are
required to “reconnect” the tuples, but themapping tables are
small (2-column in many cases), and we can draw upon the
techniques developed in the query optimization literature to
optimize those. As an example, a simple aggregate query that
requires joining three tables customers, orders, and lineitem,
will now require joining 5 of the tables shown in Figure
3(ii) (all but the customer table in Detail database). Some of
these joins can be avoided by adding extra columns to the
PII Database tables – we plan to explore this in more detail
in future work.
● (-) Most transactions require updates to both databases. For
example, adding a new order requires updating both orders
tables (to add in the corresponding mappings).
● (-) The PII Database size increases proportionally to the De-
tail database, because of the mapping tables. This negatively
impacts one of the primary performance goals of reducing
the PII Database size to simplify tracking of backups.
● (-) Forgetting a customer requires removing information from
the customer table in the PII Database, and also modifying
the other two PII Database tables so that the grouping infor-
mation is removed, i.e., so that we can not correlate different
orders or lineitems for the same customer.

Variations:We note that there is a large search space of variations
that achieve the same level of pseudonymization with different
performance trade-offs (e.g., some of the joins can be avoided by
adding more columns to the PII Database tables). Understanding
this search space better, and picking the best option for a given
annotated schema is a rich area for further research.

Strategy 2: Encrypted Columns:Here, we encrypt all the PII and
connecting columns and add these to the same tables, and maintain
the encryption keys in the PII Database. One extreme here is to use a
single encryption key for the entire database; however, in addition
to the issues discussed below, it also has the disadvantage that
forgetting a person is difficult and requires updates throughout the
database and backups; further, compromise of the single encryption
key leaks the entire database. Instead, we evaluate an option where
per customer encryption keys are used, and maintained in the PII
database indexed by the customer key.

Specifically, most of the PII data fields, FKs, and grouping columns
are encrypted with customer-specific encryption keys generated
when the customer tuples are inserted. We use symmetric encryp-
tion in our prototype implementation. The PII Database only con-
tains a lookup table to find the encryption key for a given custkey,
and the PII fields from the customer table (although the customer
PII fields can be similarly encrypted and maintained in the Detail
database itself, maintaining them in the PII database is more effi-
cient and doesn’t significantly increase the size of the PII Database,
which remains proportional to the size of the customer table).

Analysis: Although relatively simple to implement and with a
rich history of prior work on related topics [22], this approach has
several practical issues with respect to the privacy goals we aim to
satisfy.

● (-) Joins involving real data are fundamentally very difficult
– for a given encrypted order or lineitem, we need to iter-
ate through all the encryption keys to identify the correct
one (joins over synthetic data can be done as normal). Any
additional hints provided to simplify this search in the De-
tail database reduce the pseudonymization guarantees. For
instance, if we were to maintain a pointer to the right en-
cryption key for an encrypted value in the Detail Database
itself, that can be used to associate different data items for
the same customer. On the other hand, if we were to keep
these pointers in the PII Database, the approach doesn’t pro-
vide any real advantages over Strategy 1. Although there has
been much work on joins over encrypted data, that work
is in an untrusted setting and does not (to our knowledge)
work with per-customer keys.
● (+) Forgetting a customer is very easy – we just need to
delete the encryption key and the rest of the PII fields corre-
sponding to the customer.
● (+) The size of the PII Database is also much smaller in this
case (proportional to the number of customers), making it
easier to manage and track the backups.

Variations: There are a number of variations of this basic approach,
that differ in where and how the encryption is performed, and what
data is maintained in the PII Database to address the performance
issues. We plan to explore those issues in more depth in future work,
especially in settings where multiple levels of access are desired.

Strategy 3: Pseudorandom Sequences: This approach attempts
to strike a balance between the above two by still keeping the PII
Database small, but making joins more efficient. We do it by us-
ing per-customer deterministic pseudorandom sequences (that
can be regenerated on demand) to make it much more efficient to
find the encryption key for a given encrypted data item. Specifically,
as in Strategy 2, the Detail database is similarly encrypted, with
synthetic columns added in to allow join queries to return results
w/o access to the PII Database. All the PII and foreign key fields that
need to be hidden are encrypted with a customer-specific encryp-
tion key that is maintained in the PII Database. However, unlike
Strategy 2, with each order tuple, we also add a new column that
contains a value from a pseudorandom sequence deterministically
generated with custkey as the seed. Similarly, with each lineitem tu-
ple, we add a new column using a separate pseudorandom sequence
generated with custkey as the seed. Then, in the PII Database, along
with maintaining the encryption key for each customer, we also
keep track of the length of the two pseudorandom sequences.

The main benefit of using a pseudorandom sequence is that,
without the seed, it is impossible (cryptographically speaking) to
correlate, say, two different orders for the same customer. But, as
we discuss below, given the seed, joins involving real data become
much more efficient.

Analysis: This approach is more complex to implement than either
of the above, but as we discuss in our preliminary evaluation, it
offers a nice balance of the trade-offs.
● (+) Joins involving real data are significantly faster here. At
runtime, the information maintained in the PII Database is
used to create the relevant pseudorandom sequences, which
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can then be “joined” with the Detail Database tables to match
the encryption keys with the encrypted data. An added bene-
fit is that some joins can be skipped. For instance, for a query
that joins the three tables but only projects on, say c_name
and l_shipdate, there is no need to consult the orders table
at all, which is only needed to connect the customers with
their lineitems.
● (+) Forgetting a customer simply requires deleting the corre-
sponding record from the PII Database.
● (+) The PII Database is somewhat larger than Strategy 2, but
still much smaller than Strategy 1.
● (-) Inserts involve more steps since the pseudorandom num-
bers also need to be generated.

5 PRELIMINARY EXPERIMENTS
We present some very preliminary results from a prototype that we
are building on top of PostgreSQL. The goal of this prototype is to
validate the key ideas and better understand the different tradeoffs.
We attempt to push as much of the computation as possible to
the underlying database system. Although this is easy to do for
insert/delete/update operations, for any queries across the two
databases, much of the computation is done in memory within the
wrapper. As we see, this has significant performance implications.
Our goal is to work towards an implementation entirely within
PostgreSQL after the key ideas are validated.

We use the small subset of TPC-H relations (SF = 0.1) used
throughout this paper, i.e., Customer, Orders, and Lineitem. We
keep the entire set of attributes from TPC-H except for FKs that
refer to other relations. For strategy 2, we use the Fernet Symmetric
Encryption package to encrypt the columns with randomly gener-
ated per-customer keys. For strategy 3, we also use the MD-5 hash
function to generate the per-customer pseudorandom sequences.

We report results for 4 operations, all over real data: (a) Insert
a new customer; (b) Insert a new order; (c) Forget a customer; and
(d) a query that joins the three relations and projects the result on
l_shipdate, c_name (as noted earlier, for all of the strategies, any
queries run under limited access are executed just against the Detail
Database directly, and do not suffer any performance penalty). For
the microbenchmarks, we report the median across 100 or 1000
operations, and for the query, we report the median across 10 runs.
All the experiments were done on a quad-core laptop.

Table 1 shows the results for four operations as well as the
database sizes, for the three strategies above and the baseline of not
using any of these strategies. We note that the numbers of the three
strategies have minimal optimizations; in particular, no caches are
being used, and any outside database operations are performed
in Python, an interpreted language. Especially for inserts, bulk of
the time is in choosing unused surrogate keys so that referential
integrity constraints are not violated.

As we can see, the PII Database size for any of the strategies
is significantly lower, and this benefit would be much higher if
there were more than 3 tables in the database. For the TPC-H
Schema, many of the remaining tables like part, supplier, etc., don’t
contain personal data and would not contribute anything to the PII
Database, while increasing the overall Database size. As expected,
PII Database size is the smallest for Strategy 2 and Strategy 3 since

Baseline Strategy 1 Strategy 2 Strategy3
Total Database Size 163 MB 212 MB 309 MB 260 MB
PII Database Size 163 MB 42.7 MB 5.7 MB 6.1 MB
Insert Customer 0.359 ms 10 ms 0.733 ms 9 ms
Insert Order 0.394 ms 98 ms 120 ms 116 ms

Forget Customer 181 ms 179 ms 0.37 ms 0.39 ms
Select Query 0.862 s 7.84 s est. 34 hours 2.822 s

Table 1: Preliminary Results
we only need to maintain the per-customer keys in that partition
(and the lengths of pseudorandom sequences for Strategy 3). The
slightly larger overall Database size for Strategy 2 over Strategy 3 is
because one column in orders and lineitem tables (corresponding to
real customer key) is stored as a encrypted value in Strategy 2 and
as a hash value in Strategy 3 (the former, in our implementation,
requires more bytes).

The performance of insert and delete operations matches our
expectations – in particular, deletes are much faster for Strategies
2 and 3 compared to the Baseline or Strategy 1. Since personal data
footprint typically spans more than 3 tables, the performance gap
would be proportionally higher as the number of tables increases;
for both Strategies 2 and 3, the cost would remain flat, but would
go up significantly for the other two strategies.

Finally, the numbers for the select query show the extreme
penalty for Strategy 2 which requires cross-products. Strategy 3
surprisingly outperforms Strategy 1 here – this is because Strategy
1 requires a large number of joins, whereas Strategy 3 only requires
one join and wins out despite the overhead of reconstructing the
pseudorandom sequences.

6 RESEARCH CHALLENGES
There are many research challenges in building privacy-first data-
base systems like Sypse. We enumerate a few specific research
challenges that we are currently investigating.

Automated Schema Analysis: For Sypse to be widely adopted in
practice, many of the steps need to be automated and fully trans-
parent to the users of the system. We envision that the decisions
about which fields to pseudonymize, which connections to break,
etc., are all made automatically through a continuous analysis of
the database schema and the data within it (with the ability for
the users to see and alter those decisions at any time). That way,
a baseline privacy protection is always offered as a best practice,
whether or not the users are aware of it. Given the lack of schema
discipline in practice [28], this is challenging to do. In particular,
decisions about personally identifying information, foreign keys
(which are rarely noted down), and approximate functional depen-
dencies may require analyzing the actual data and reconstructing
the underlying entity-relationship structure. There is significant
literature on these topics that we can build upon.

Multiple Personal Entities: A database typically contains multi-
ple distinct personal entities. For example, a TPC-H-like database
may contain a separate employees relation; personal data associated
with those will need to be pseudonymized independently. Under-
standing the different types of entities in a database, and how they
relate to each other is a rich area for further work (e.g., what hap-
pens to a data item that is associated with one customer and one
employee if the customer data is to be forgotten, is unclear).
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Systematic Evaluation of > 2 Partitions: Increased number of
partitions of the data will lead to better protection against breaches
or unauthorized accesses. It is however a significant challenge to
generalize the core approach above to support a larger number of
partitions in a flexible, data-dependent manner. Even two partitions
leads to, as we discussed, a large number of partitioning strategies.
Understanding and narrowing the search space to design effective
strategies for more than 2 databases is a major research challenge.

Performance Issues: Our preliminary results, while confirming
that the approach is feasible, also point out many performance
issues. We need to develop techniques for more efficient genera-
tion of synthetic data, better join algorithms and query planning
techniques, more efficient multi-site transactions, and also caching
strategies that don’t compromise the privacy guarantees.

Hierarchy of Privileges: The specific architecture we discussed
above assumed two privilege levels. However, it may make sense
to have more than two for different use cases. For instance, we may
have a privilege level in between those two that allows grouping of
orders without revealing the PII information. This can be supported
through access control on the PII Database; however, there may be
alternative approaches that don’t require access to the PII Database
to run these queries.

Adaptability to Regulations:With rapidly evolving regulations
and, more importantly, legal interpretations of those regulations,
the decisions that are made may need to be changed. We need to
design strategies that support modifying the decisions being made
flexibly and efficiently.

7 CONCLUSIONS
In light of the increasing desire to understand and regulate how
personal data is collected, used, and shared, we believe the data
management community has a crucial role to play in redesigning the
data management systems from the ground up to support privacy
by design and default. We presented our vision of a redesigned
relational database management system that transparently uses
pseudonymization, data partitioning, and synthetic data generation,
to support the goals of data minimization, access minimization, and
consumer rights. Our goal is for this system to serve as a drop-in
replacement to existing relational database deployments, but there
are still many hard research challenges in fully realizing that vision.
We believe many other aspects of how data management systems
are architected and built can and need to be similarly revisited to
better protect privacy.
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