
Data Cleaning in the Era of Data Science:
Challenges and Opportunities

El Kindi Rezig
elkindi@csail.mit.edu

MIT CSAIL

There is a decades-long literature on data cleaning [1].
However, existing systems are wired to address scenarios as
follows: We have a dirty dataset D and a tool T to clean it.
We run T on D and get a clean instance of D. While this sce-
nario was acceptable when data pipelines were mostly fixed
(e.g., ETL), it falls short when it comes to data science appli-
cations. Nowadays, data scientists don’t have fixed pipelines
and they constantly experiment with new ones. This means
that manually tuning one pipeline and expecting it to work
for all applications does not hold anymore.

In modern data science applications, the typical setting
is: (1) we have a set of operators that cooperate to produce
an output (e.g., ML model); and (2) data scientists build
pipelines iteratively, and it might take hundreds of iterations
to produce a final pipeline. From this setting, we note the
following challenges:
One pipeline does not fit all: The assumption of having
only one or a fixed number of pipelines that cater to all the
users’ needs is no longer relevant, i.e., data scientists experi-
ment with multiple pipelines for multiple goals. This makes
designing a data cleaning pipeline a significant burden.
Monoethnicity of current data cleaning tools: Data
scientists would need to use monolethic tools that were meant
to work in isolation of other downstream operators. This
makes selecting, and composing the right tools labor-intensive
(e.g., how do the systems talk to each other? What type of
tuning is needed for each one of them?). As a result, it
is typical for data scientists to skip experimenting with ex-
isting data cleaning systems, and manually write their own
data cleaning routines instead.
Data errors are subjective: In the data cleaning liter-
ature, we often find a classification of errors (e.g., outliers).
However, we have seen that most errors data scientists run
into are ad-hoc and do not fit the traditional classification
of data errors. For example, one operator standardizes raw
company names into their Legal Entity Identifier represen-
tation, but some raw values are left behind.

We have been addressing some of the aforementioned chal-
lenges in [2, 3]. And we have ongoing projects that deal with

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

the following directions:
Zero-assumption about data errors : We would like
to let the user explore what an error is. In many cases, users
do not recognize a data error until they see one. So we need
to enable scenario-oriented querying of the input as well as
the intermediate data in a data pipeline. For instance, say
D1 and D5 are datasets produced by two different pipeline
operators, an example scenario could be: What happens to
the final average of Salary in D5 if I change an employee’s
location from NY to MA in D1?).
Visualization is a requirement, not a luxury: There
is almost no research on how to visualize datasets for the
purpose of error identification. For example, while working
with MGH scientists, we had 350M 2-second segments of
electrical brain activity data (EEG). The goal was to train
a classifier that predicts, given a 2-second EEG segment, if it
is indicative of a seizure. The training data had some noisy
segments (e.g., signals whose voltage is too low). Visualizing
the signals according to their voltage was key to locate the
noisy fragments of the data.
The user does not know databases or SQL: Data
scientists come from different technical backgrounds, so as-
suming they know databsaes or SQL is not a good idea. This
is why we are developing new declarative languages for the
sole purpose of data debugging[2] to make it easier for users
to develop data cleaning pipelines.
Scalability: Running industrial data pipelines is expen-
sive, it took us three days to train the EEG clssifier on
a cluster of cloud machines. Since data cleaning often re-
quires quadratic operations, it would be crucial to optimize
this process (e.g., through caching) since we know pipeline
development is highly iterative.

The talk will feature a rich walk-through of data cleaning
scenarios we ran into with our industry collaborators and the
key takeaways to inform future data cleaning efforts that can
be usable by today’s data scientists.

References
[1] I. F. Ilyas and X. Chu. Data Cleaning. ACM, New York,

NY, USA, 2019.
[2] E. K. Rezig, A. Brahmaroutu, N. Tatbul, M. Ouzzani,

N. Tang, S. Madden, and M. Stonebraker. Debugging
large-scale data science pipeline using dagger. Proc.
VLDB Endow., 2020.

[3] E. K. Rezig, L. Cao, G. Simonini, M. Schoemans,
S. Madden, N. Tang, M. Ouzzani, and M. Stonebraker.
Dagger: A data (not code) debugger. In CIDR 2020,
10th Conference on Innovative Data Systems Research,
Amsterdam, The Netherlands, January 12-15, 2020, On-
line Proceedings. www.cidrdb.org, 2020.


