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ABSTRACT
Computational Storage Devices (CSDs), which are storage
devices including general-purpose, special-purpose, and/or re-
configurable processing units, are now becoming commercially
available from different vendors. CSDs are capable of running
software that usually runs on the host CPU – but on the stor-
age device, where the data reside. Thus, a server with one or
more CSDs may improve the overall performance and energy
consumption of software dealing with a large amount of data.

With the aim of fostering CSD’s research and adoption, this
position paper argues that commercially available CSDs are
still missing a wealth of functionalities that should be carefully
considered for their widespread deployment in production data
centers. De facto, existing CSDs ignore (heterogeneous) resource
management issues, do not fully consider security nor multi-user,
nor data consistency, nor usability. Herein, we discuss some of
the open research questions, and to what degree several well-
known programming models may help solving them – considering
also the design of the hardware and software interfaces.

1 Introduction
Computational Storage (CS) is a type of near data process-
ing [16] architecture that enables data to be processed within
a storage device in lieu of being transported to the host central
processing unit (CPU) [12]. Figure 1 generalizes several CS
architectures investigated by SNIA [11].

CS architectures introduce numerous advantages: a) unload-
ing the host CPUs – thus, a cheaper CPU can be installed,
or the CPU can run other tasks; b) decreasing data transfers,
and increasing performance – only essential data need to be
transferred from the storage to the CPU, general- or special-
purpose processing elements or reconfigurable units on the CS
device(s) may process data instead of the CPU, even in parallel;
c) reducing energy consumption – a storage device on PCIe
cannot consume more than 25W in total [41], thus processing
units on computational storage devices (CSDs) consume just a
fraction of it, versus the power consumption of a server-grade
host CPU, which floats around 100W; d) preserving data-center
infrastructure expenditure – i.e., scaling data-center performance
without requiring investments in faster networks.

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

While research on in-storage processing on HDDs [12, 34]
and SSDs [37, 31, 29, 42] has been carried on since the 1990’s
and 2010’s, respectively, only recently CS platforms become
commercially viable with a few companies already selling SSDs
with CS capabilities – e.g., Samsung [9], NGD [6], and Scale-
Flux [10]. Despite CSDs’ market appearance, these devices are
cumbersome to program and reason with, which may hinder
their wide adoption. In fact, there is no software nor hardware
support for heterogeneous resource management in CSD, nor
security, consistency and general usability consideration.

Based on the authors experience working on several academic
and industry CS prototypes in the latest years, this paper is
an attempt at reviewing the state-of-the-art, listing the most
pressing open research questions with CSD, and analyzing the
suitability of different programming models in answering such
questions – without forgetting about the hardware/software
interface that is still not CSD ready. This work focuses on a
single direct-attached CSD, with storage and compute units
resident on the same device. However, we believe the same
findings would apply widely, such as to smart disk array con-
trollers. Additionally, the work generically looks at CSD with
general-purpose CPUs, special-purpose CPUs, as well as CSD
with re-configurable hardware (FPGA). Hence, we refer to all
of those as “processing units” in the rest of the paper.

Briefly, our conclusion is that hardware and software for CSD
is not ready yet, and more have to be done at the hardware and
software level to fully leverage the technology at scale.

2 Background and Motivation
Computational storage reduces the input and output transaction
interconnect load through mitigating the volume of data that
must be transferred between the storage and compute planes.
As a result, it stands to better serve modern workloads, such
as high-volume big data analytics or AI tasks with faster perfor-
mance [27], to improve data center infrastructure utilization [29],
together with many other benefits. We discuss several below.

A primary benefit of computational storage is faster and more
energy-efficient data processing. Computational storage architec-
tures offload work usually processed by host compute elements –
CPU and eventual accelerators, to storage devices. Without CS,
for example in the data analytics context, a request made by the
host compute elements requires that all data from a storage de-
vice be transferred to it. The host compute elements must then
thin down the data prior to performing their designated task. In
a CS approach, the storage device takes an initial step of qualify-
ing data based on its relevance following an host request – before
moving the data to the main compute tier to be processed. Thus,
possibly reducing the amount of data to be moved and processed



FPGA/
CPU

R
A

M
R

A
M

R
A

MSSD 
ctrl

RAM
Flash

R
A

MSSD 
ctrl

RAM
Flash

CPU

RAM
RAM

Host

Pe
ri

p
h

er
a

l I
nt

er
co

n
n

ec
t

SSD

SSD

Accelerator

FP
G

A
/

C
P

U

R
A

M
R

A
M

R
A

MSSD 
ctrl

RAM
Flash

FPGA/
CPU R

A
M

R
A

M

CPU

RAM
RAM

Host

P
er

ip
h

er
a

l I
nt

er
co

n
n

ec
t

SSD

Accelerator
FPGA/

CPU

SSD 
ctrl

RAM
Flash

RAM
Flash

R
A

M
R

A
MCPU

RAM
RAM

Host

P
er

ip
h

er
a

l I
nt

er
co

n
n

ec
t

SmartSSD

(a)                                                                                    (b)                                     (c)

Figure 1: A few architectures of computational storage devices considered in the SNIA CS SIG [43]. (a) An FPGA and/or
a CPU (with DRAM, but without storage media) sits along with an SSD on a peripheral interconnect; (b) An FPGA and/or
a CPU is bundled together within an SSD (including SSD controller, RAM and storage media); (c) An FPGA and/or a CPU
(with DRAM, but without storage media) on a peripheral interconnect connects to one or more SSD via another interconnect.

by the host. The reduced host compute instructions per work-
load means that the host CPUs, and eventual accelerators, have
more processing power available to support other workloads.

Another benefit of computational storage is that it makes a
shared storage environment more beneficial to the most perfor-
mance-hungry workloads. Typically, a direct-attached storage
approach is used to serve these workloads to avoid storage
network latency, but also to increase throughput by spreading
the data across many devices. However, this often results in
resource underutilization, and also introduces further delay due
to the need of searching multiple devices for the relevant data.
In contrast, CS allows applications to be executed into each
storage device, at the same time. This provides a level of parallel
processing to enable a microservice-like approach to running
those applications across all the individual devices. Such ability
to process the data simultaneously greatly reduces the time to
locate the data and provides the host the results needed.

Computational storage can also help leveraging the existing
network infrastructure for much longer, as well as to truly scale
next-generation networks. Because computational capabilities
enable the storage to work on a larger data set first, it leverages
higher I/O capabilities of modern SSDs and avoids performance
being restricted by a network. As a result, the network in-
terconnect is less critical with computational storage. Thus,
computational storage stands to add value by enabling multi-
ple applications’ performance to be accelerated on the same
infrastructure, while at the same time optimizing utilization of
infrastructure resources across the stack.

2.1 State of Hardware and Software
Most SSDs have dedicated processing and memory elements –
i.e., embedded multicore CPU or FPGA, and DRAM, other than
flash memory. Those are used to execute read, write, and erase
commands on user data, as well as flash management functions.

With available computing resources on an SSD, several projects
[31, 42, 29, 12, 38, 25, 35, 14, 28, 46, 36, 39, 45, 44, 24, 35, 13, 23]
explored opportunities to run user-defined data-intensive com-
pute tasks, such as database operations, in the SSD device
itself. While performance improvements and energy savings
were observed, several challenges prevented the broad usage and
adoption of computational SSDs. First, the processing capabili-
ties available were limited by design: low-performance embedded
processors, or resource constrained FPGAs, and the high-latency
to the in-storage DRAM require extra careful programming to
run user-defined code to avoid performance limitations. Second,
a flexible and generic interface and programming model to easily
execute on an SSD user-defined code written in a high-level

programming language (such as C/C++) were never defined.
Additionally, the programming model also needs to support
the concurrent execution of various in-storage applications with
multiple threads to make it an efficient platform for complex
user applications. Nevertheless, interfaces at different layers of
the hardware and software have to be defined on the host and
CSD to make a platform actually usable. Third, none considered
how to handle multiple users.

Such works have been carried on a multitude of different hard-
ware and software. To the best of our knowledge, as of today
there are just two CSD development boards openly available:
the OpenSSD [1] from Hanyang University (implementing the
architecture in Figure 1.b), and the DFC [26] developed by a
collaboration of DellEMC and NXP (implementing the archi-
tecture in Figure 1.c). Both feature a multicore ARM general
purpose-processor, accelerators, and re-configurable hardware,
other than a sort of flash media and DRAM. Despite open-
source, they are based on old standards and are not supported
anymore. On the other hand, storage vendors use their own SSD
prototypes [31, 38, 15] and FPGA boards have been used for
research [42, 46]. Simulation environments from the academic
community exist as well [30, 8, 15], but lack support.

Very recently, CSDs become available on the market, includ-
ing NGD in-situ processing SSD [6] that features multiple 64bit
ARM cores, ScaleFlux CSD [10] and Samsung SmartSSD [9]
based on FPGA (implementing the architecture in Figure 1.b).
Other products, such as Eideticom NoLoad Computation Stor-
age Processor [5], implement storage and compute on different
PCIe boards, as depicted in Figure 1.c, enabled by p2p DMA
and NVMe’s CMB [21]. These products triggered SNIA to work-
ing on a proposal to extend the NVMe protocol for CSD [11] –
which at the moment is work in progress. Hence, we believe that
something should be done soon in order to make computational
storage devices more compelling to the masses. Notably, mainly
due to companies IP matters, current CSD products provide
very limited customizability, and therefore, cannot be easily
used for research purposes, such as interface or programming
model exploration.

3 Open Research Questions

We believe that showing improved performance and energy reduc-
tions is not enough to persuade the widespread adoption of CSD.
Hence, herein we present a variety of open research questions
identified within existing CS technologies, involving a) resource
management, b) security, c) data consistency, and d) usability.



3.1 Resource Management
A server with one or more CSDs is per-se a single system. But
from the software point of view, since each (group of identical)
processing units, on the motherboard or on any CSD, runs its
own software stack, such server looks like a distributed system.
Resource management in single systems as well as in distributed
systems is fundamental to provide efficient and fair usage of
hardware resources, including processing units, memory, and
storage. This, for example, implies that at any given time no
single resource is overloaded nor applications are starving for
resources. Similarly, a single user shouldn’t monopolize the
usage of all resources. Resource management policies may be
needed to balance the workload among compute resources in
order to meet performance and power goals. However, this is
lacking in emerging CS architectures and in related works.
Questions. a) Where to take resource management decision?

On the host CPU, on a CSD, or on both? b) When there is
replication among CSDs, which replica maps a certain compu-
tation? c) How to maintain workload and energy consumption
information across available processing units on the host and the
CSDs?– especially, with the aim of taking resource management
decisions? d) What to do when CSDs are overloaded? Should
the overloaded CSD notify the host or other CSDs, and then
what? e) How to provide fairness of resources (such as CPU cy-
cles, FPGA real-estate, memory/flash space, and flash-channel
traffics) among different users? f) How to map data to multiple
CSDs, and/or to different flash channels inside a CSD? g) For
applications that do use a single CSD, what is the break-even
point between running on the host CPU and on the CSD? (Is
this workload dependent?)

3.2 Security
When a single SSD stores data from different users it is funda-
mental to deny users to access each other’s data. With today’s
SSDs, there are two different approaches for controlling data
access. The first is to use a file system – each file has an owner,
etc. The second is to use either hardware virtualization (SRIOV)
or NVMe namespaces [7], in order to assign different parts of the
storage to different owners. Despite the existence of protection
mechanisms, the code running on the CSD’s processing unit
(CPU, accelerator, FPGA) has potentially access to all data
stored on the flash chips. When using a file system for access
control, it is fundamental to define secure mechanisms and tech-
niques to maintain the same concept of users for the software run-
ning in the CSD, as well as the software running on the host CPU.
This is due to the semantic gap between the storage device and
software running on the host CPU – the host CPU knows about
the file system, and users, but that is not always true for the stor-
age device. It is worth noting that users’ knowledge can be asym-
metric, in the sense that a CSD doesn’t need to know all users’
details as the host CPUs in most of the cases. The code running
on the CSD should access only what it is allowed to access.

Another problem is trusting the identity and integrity of the
reconfigurable hardware, software, and firmware on the CSD
itself. Assuming a method to only install proper firmware and
systems software exists, it is fundamental that only and exclu-
sively user-submitted code runs on the CSD other than that.
Moreover, user-submitted code should not alter the integrity of
the firmware and systems software on the CSD.
Questions. a) How to isolate multiple applications among

each other on a CSD? b) How to make them safe from side-
channel attacks, denial of service, etc? c) Diverse programming
models require different isolation techniques. For example, hard-

ware virtualization can be used to isolate different software stacks.
d) How much does software isolation cost? Does this cost over-
shadow the benefits? e) How to make sure the code running on
the CSD is legit? Not just at boot, but also during runtime?

3.3 Data Consistency
When data is read and written by multiple parties, consistency
problems may arise. For example, the same block of data can
be concurrently read by the host and CSD’s CPUs, and an
application running on one of these two modifies the block’s
content. After such modification, which is unilateral, each CPU
would operate on different data – while assuming the data is the
same. In fact, immediately after a CPU modifies the data, it
should inform the other. The same issue applies not just to file
content but also to file system meta-content. For example, when
the software running on the host CPU or on the CSD’s CPU
creates a new file, the creation must be notified to the other
CPU. The same extends to almost all file system operations.
Obviously, classic file systems for personal computer do not
address such issues. Furthermore, common disk interfaces (e.g.,
SATA, SAS, NVMe) are not prepared to manage such situations
as well — interfaces were built assuming a disk controller strictly
executes commands from the host CPU. Similarly, data may
be replicated or sharded among several disks. For consistency,
modifications on replicated or sharded data should happen in
parallel – the same applies to erasure-code or parity blocks [13].

Finally, a single CSD may fail during any operation, including
in-storage data processing. Replication, sharding, and par-
ity/erasure coding may definitely be used to tolerate failures
other than improving performance. Such techniques are likely
be implemented atop CSDs. However, to support that, CSD
may need to implement additional features , for example, to
communicate failures to the host CPU or other CSDs.
Questions. a) How to use the same file system on the host

and on a CSD, consistently? b) What about file system changes?
How to update the software on the host about file modifica-
tions on the CSD? c) Is a new file system needed? Can classic
file systems be extended to support that? Do distributed file
systems solve this problem already? If yes, what about perfor-
mance? d) How to extend current storage interfaces to provide
notifications for data changes into the CSD? Are notifications
needed at all? e) What about explicit transaction management?
f) What about hardware and software failures? g) What if there
is replication and a new file is added, how to deal with that?
h) How CSDs communicate between each other for replication
or any other operation that requires coordinated operations on
multiple drives? i) Does communication need to go via the host
CPU or should it go directly (e.g., via the P2P DMA/RDMA)
– which one is better?

3.4 Usability
To widen adoption, usability is certainly of fundamental impor-
tance. CSDs should be easy and quick to program, deploy, and
debug at any level of software (user-level or kernel-level).

Debugging applications running among the host and CSD’s
CPUs shouldn’t be a nightmare. For example, one of the most
complicated steps after the development of a distributed software
is the debugging – this is exactly because in those environments
programmers end up having multiple debuggers, or log traces
coming from different systems, which have to be synchronized
to be useful and identify the source of the problem. Debugging
in distributed systems may provide some hints.

A major matter is if a CSD should be considered as a to-
tally independent computer node, or as a part of a computer



node? We believe that it strongly depends on the available
hardware resources on the CSD – if the computational and
memory resources are comparable to the ones available the host,
users may be able to run the same workload atop the host and
CSDs. However, if the resources are not the same, CSDs should
be considered as storage-side accelerators – thus, a full-fledged
workload should be executed on the host CPU only. Based
on that, a decision on what workload(s) to run on the CSD
may be taken by the software running on the host CPU or by
a data-center scheduler. However, in the latter case, a CSD
should be reachable via network, which requires the CSD to be
built with a network interface hardware at an additional cost.
Questions. a) Beyond programmability, how to easily de-

ploy applications on CSDs? b) Can applications be mapped to
storage devices transparently? (i.e., Without the applications
requiring to know on what storage device to be run.) c) Which
information is needed for a resource manager from the appli-
cation to make the best placement decision? d) How to design
an easy to use API that minimizes application modifications?
Would a POSIX-like API be easily adopted?

4 Programming Model
Clearly, the programming models available to programmers
who want to run his/her application among the host and CSD
processing units largely affect the way the questions in Section
3 are answered. We believe that there is no “one-size-fit-all”
programming model that work for all kinds of applications, and
therefore a quantitative and qualitative analysis of each model
is sought. In this section, we discuss a few programming models,
and describe for each model how we envision the above research
questions would be answered, which is summarized in Table 1.

4.1 Dataflow
Within the dataflow model (e.g., [31, 32]), a sequence of trans-
formation operations is defined for each chunk of data in transit.
A transformation operation receives a chunk of data in input,
and outputs the transformed chunk of data. In general, “data
in transit” identifies blocks of data travelling between differ-
ent hardware and software layers, including not only blocks of
data transferred from flash chips to the CSD/host CPUs, but
also blocks of data flowing through the different kernel’s and
applications’ software layers.
When used with CSD. Mapping the dataflow programming

model into a CSD environment is straightforward: for each stor-
age command (i.e., disk block read or write), associate one or a
set of transformation operations, similarly to [19, 13, 40]. The
communication between the host and the CSD’s processing units
could be handled by extending standard interfaces (e.g., SATA,
SAS, NVMe). Extensions include new commands to download
transformation operations or modifications to the existent com-
mands to exchange per-session or global data between the host
and the CSD’s CPUs.

The dataflow model handles well most of the four concerns
listed in Section 3. The beauty of this programming model is
that operations can be defined at a fine granularity and executed
anywhere (the host CPU or CSD’s processing units), simplifying
resource management. Operations may be moved back to the
host for load balancing or can be replicated if data is repli-
cated, transparently. In addition, multiple operations can be
merged, split, as well as parallelized. When parallelized, access
to per-session or global data must be protected for consistency.
For security, a method to associate data with users must be
introduced. Finally, dataflow programs can be defined in any

language, although a language that provides some sort of formal
properties, such as termination and memory safety, is preferred.

Unfortunately, only a bunch of applications are implemented
within this programming model, which requires program rewrit-
ing when an application was written within the client-server or
shared memory model. Therefore, research on compiler tools
that automatically convert applications into dataflow is sought.

4.2 Client-Server
This includes applications developed and deployed within clus-
ters, such as the ones based on Message Passing Interface (MPI),
Remote Procedure Call (RPC), MapReduce, etc. The only re-
quirement for these applications is a network connection between
multiple compute nodes – TCP/IP, UDP, or RDMA are the most
common. Such applications are strictly partitioned in multiple
programs, each of which runs on a different processing node.
When used with CSD. Applications developed with this

programming model can be directly mapped into a CSD setup
without any modification – assuming the application can run in
the software environment provided by the CSD. This is achieved
by establishing a network channel between the host and CSD
CPUs, and/or amongst CSD CPUs [6]. However, native com-
piled applications may need to be recompiled to the instruction
set architecture (ISA) of the target CSD’s CPU (such as ARM).
Although not impossible, this process can be very convoluted.
In fact, it may require an entire toolchain, and the recompilation
of all libraries required by the program – this is because not
all libraries are available for all ISAs. Moreover, many of such
distributed applications are based on a very large software base,
involving several different libraries. This at runtime usually con-
sume a lot of memory (other than storage) limiting the actual
number of applications that can simultaneously run on the CSD,
and therefore resulting in degraded performance.

With the client-server model, the resource management gran-
ularity is at the program level — this is because only programs
can be moved between CPUs (assuming the same program is
available for all CPU ISAs present in the system). Algorithms
are embedded in the different programs building the applica-
tion; thus, a resource manager/scheduler cannot act at a finer
granularity, hindering automatic optimizations.

Security is provided at the application-level, and applications
can be eventually embedded in containers (OS-level virtualiza-
tion). Standard OS techniques can be used to enable CSD’s
application to only access data belonging to a specific user.

4.3 Shared Memory
The shared memory programming model is widely adopted on
multicore processors. It requires a form of (consistent) shared
memory between processing units. When hardware shared
memory is not available, software shared memory, or distributed
(virtual) shared memory (DSM), may be used [20, 33] . Another
assumption of the shared memory programming model is that
all CPUs are identical, or at least implement the same ISA.
When used with CSD. The host and CSD’s CPUs may not

have the same ISA. In fact, many of the existing deployments
are characterized by x86 CPUs on the host and ARM CPUs
for CSD. Academic projects, such as Popcorn Linux [22, 18]
and H-Container [17], enable applications developed for shared
memory multicores to run on heterogeneous ISA cores, trans-
parently – without any application modification. This includes
starting an application on the host CPU and then migrating all
its threads to CSDs.

In this model, resource management can be potentially done
at the finest granularity of an assembly instruction. In that way,



Resource Management Security Consistency Usability

Dataflow Automatic, very efficient Very good, with low
overhead

Controlled by resource
manager

Application dependent

Client-Server Quite inefficient Program-level Must be handled by
programmers

Very good (just reuse apps,
or at most recompile)

Shared Memory Automatic, very efficient Thread/program-level (but
also basic block)

Transparent Software con-
sistency, maybe expensive

Very good (just reuse apps)
but needs special system
software

Table 1: A qualitative summary and comparison of programming models vs. research questions described in Section 3.

the computation can swing between the host CSD’s CPUs at
any time, based on, for example, the compute-intensiveness and
where the data is.

The issue with this programming model is that when hard-
ware shared memory is not available, it should be provided
by software, which may be expensive. However, future PCIe
advancements may offer consistent shared memory among a
device’s CPU on PCIe and the host CPU [2, 3, 4]. In addition,
the shared memory programming model also needs to take care
about the consistency problem, and computation in this model
cannot be parallelized or optimized by an external resource
manager. Finally, security can be achieved via the approaches
available in classic operating systems (such as using file sys-
tems or hardware virtualization/NVMe namespaces descrbed
in Section 3.2), but further research is sought.

5 Storage Interface
In this section, we review the hardware and software interface
implications of each programming model. Currently there are
different types of storage interfaces that are widely adopted in
industry and research communities (e.g., block-based, file-based,
and object-based interfaces), but we believe our findings apply
to any of these interfaces.

5.1 Hardware Interface
The dataflow programming model requires limited storage
interface modifications. As discussed in Section 4.1, a transfor-
mation operation should just be assigned to a dataflow, and for
each data block of the dataflow the operation is called. There-
fore, the minimal requirement to today’s storage interfaces, such
as NVMe, is to provide additional commands to: 1) download
a program; 2) attach/detach a program to a dataflow; 3) de-
fine a dataflow; 4) debugging/logging. All such commands can
be implemented by simply extending the exiting NVMe proto-
col/interface as supporting legacy software. Note that with this
interface, developers don’t need to care about which software
stack is running on the CSD’s CPUs, e.g., it can be Linux, or
be a firmware.
Server-client programming models may also require lim-

ited storage interface modifications. As described in Section 4.2,
only a message-passing channel to emulate network communi-
cation is necessary – which can be implemented with sending
and receiving queues (similarly to RDMA, NVMe, etc). Such
change may extend the NVMe protocol/interface by adding a
new command set to it, which includes commands not only for
the message communication, but also for downloading, running,
and monitoring in-storage programs.
The shared memory programming model (Section 4.3)

is per-se the one that demands more changes to the current
storage interfaces when a performant implementation is needed,
i.e., no software DSM overheads. If that is not needed, the same
interface modifications required by the client-server program-

ming model are demanded. Such modifications are enough to
implement software DSM. Instead, when a performant imple-
mentation is needed, a sort of hardware shared memory should
be available among the host CPU and the CSD’s CPUs, pro-
vided by new coherent peripheral bus interconnects [2, 3, 4],
for example. Hardware shared memory does not have to be
consistent – the consistency can be provided via software.

5.2 Software Interface
An application written within the dataflow programming
model doesn’t require any specific software interface – in fact,
programs declare the input source as well as the output source
that is a stream of data from or to storage media. An application
developer is not directly exposed to any CSD-specific hardware
interface, and a runtime system shields programmers from these
technicalities.

When an application is written instead within the server-
client or shared memory programming model, it is ex-
pected to directly interface with the flash array when executing
on CSDs. Note that this necessary for performance. Hence, a
software interface to access the flash array should be defined. A
näıve solution is to abstract each different flash array’s channel
with a UNIX device. Thus, each user may be assigned with
a different channel. Despite a practical solution, which maps
quite well with the underlying hardware, and can be used for
protection/isolation, it is highly unlikely that different users are
assigned with different NAND channels for performance reasons
– this is because writing and reading several channels in parallel
gives high performance.

Moreover, an user accesses data on storage via files. Files are
a file system abstraction, usually provided by the host operating
system, which is not necessary known on the SSD. Therefore,
a more fine-grain solution is needed for protecting/isolating
the data of different users, which requires another abstraction
for programmers. The concept of stream, such as a list of
(non-sequential) flash blocks could be a solution, but existent
hardware doesn’t provide any related mechanism.

On the host side, the same CS hardware interface should
be usable by software at the user- and kernel-level. This is to
support traditional file system in kernel-space as well as mod-
ern storage software in user-space (e.g., SPDK). A “symmetric”
kernel/user interface is needed.

Finally, in order to support scenarios where the code cannot
be moved to the CSD, and therefore it should run on the host
operating system, a symmetric software interface should be
implementable on the host machine and on the CSD.

6 Concluding Remarks
In this paper, we briefly survey the state of the art of computa-
tional storage and we raised several open challenges that might
need to be considered to facilitate the adoption of the computa-
tional storage technology in both research and industry communi-



ties – existing computational storage hardware and software are
not ready to be used in production at scale. We then discussed
how the most widely-used programming models with hard-
ware/software interfaces can help solving such challenges. We be-
lieve that our discussions and lessons presented in this paper can
provide a higher degree of clarity about what’s likely to be needed
for the mass adoption of the computational storage technology.
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