
Hamming Tree: The Case for Memory-Aware
Bit Flipping Reduction for NVM Indexing
Saeed Kargar

skargar@ucsc.edu
UC Santa Cruz

Faisal Nawab
fnawab@ucsc.edu
UC Santa Cruz

ABSTRACT
Non-Volatile Memory (NVM) is improving the performance and
cost-efficiency of data management systems. However, they in-
troduce salient challenges that were not considered in traditional
memory architectures. In particular, write endurance in NVM is
significantly lower than other memory technologies which threat-
ens the practicality and longevity of NVM devices. In this paper,
we introduce Hamming Tree, an indexing structure that can be aug-
mented with existing database indexing technologies to increase
the write endurance of NVM. Hamming Tree proposes a new way
of increasing write endurance by directing write operations to
memory locations that would minimize the number of incurred
bit flips. This method is capable of significantly increasing the en-
durance of NVM compared to existing write endurance methods
that remain agnostic to the underlying memory such as local write
optimizations and write amplification techniques. Our evaluations
show that Hamming Tree can reduce bit flipping (hence increasing
write endurance) by up to %93 on both traditional and optimized
NVM indexing technologies with minimal changes to their indexing
structure.

1 INTRODUCTION
To overcome the limited write endurance in NVM, two major ap-
proaches were developed: 1) the write optimization techniques
developed by the storage community, which are based on a Read-
Before-Write (RBW) pattern [1, 2]; and 2) the write reduction tech-
niques, such as caching [6] and delayed merging [4], which are
developed by data management community. However, these exist-
ing methods miss a crucial opportunity to increase write endurance
significantly. This opportunity is to be memory-aware [5]. Prior
methods pick the memory location for a write operation arbitrarily
(new data items select an arbitrary location in memory and updates
to data items overwrite the previous location.) This misses the op-
portunity to judiciously pick a memory location that is similar to
the value to be written. When the new value and the value to be
overwritten are similar, this means that the number of bit flips is
going to be lower.

2 METHODOLOGY
In this work, we propose Hamming Tree, an auxiliary data structure
that can be augmented with existing indexes. Hamming Tree is a
data structure that organizes free memory locations based on their

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution and repro-
duction in any medium as well as allowing derivative works, provided that you at-
tribute the original work to the author(s) and CIDR 2021. 11th Annual Conference on
Innovative Data Systems Research (CIDR ’21). January 10-13, 2021, Chaminade, USA.

hamming distance. It can be built upon any existing tree-based data
structure—whether they are designed for NVM or not—to improve
their performance in terms of NVM write endurance. Hamming
Tree is augmented with a data indexing structure. The data indexing
structure handles the regular indexing of keys and values, and
Hamming Tree handles the mapping of free memory locations for
future writes and updates.

In this work, we assume a hybrid memory architecture consist-
ing of a DRAM component (for volatile main-memory operations)
and an NVM component (to persist data). In the hybrid memory
architecture, both components are placed on the same memory bus,
enabling mapping DRAM and NVM on a single physical address
space [3]. The overall design consists of a Hamming Tree in DRAM,
a pluggable data index that is used to index keys and values, and a
K/V data zone to store the K/V pairs, which both are on the NVM
device. Our implementation supports K/V operations such as get(),
put(), and delete().

Our evaluation shows that augmenting Hamming Tree to ex-
isting indexing structures, such as B+-tree, LSM-based persistent
K/V store, cache optimized NVM index, and write-friendly hashing
schemes, reduces bit flipping by up to 93% compared to both RBW
and write amplification methods on both synthetic and real-world
data sets.

3 CONCLUSION
In this paper, we introduce Hamming Tree, a simple tree-based
data structure that can be augmented with existing database to
improve the write endurance of NVMs. The main advantage of
Hamming Tree is that it is a pluggable method that has the potential
of bringing DRAM-optimized data structures, such as ones based
on LSM-Tree and B+-Tree, into the NVM realm without having to
worry about degrading the performance and write-endurance of
NVMs.

REFERENCES
[1] Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: A simple deterministic

technique to improve PRAM write performance, energy and endurance. InMICRO
2009. 347–357.

[2] David B Dgien et al. 2014. Compression architecture for bit-write reduction in
non-volatile memory technologies. In NANOARCH 2014. IEEE, 51–56.

[3] Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. 2009. PDRAM: A hybrid PRAM
and DRAM main memory system. In 2009 46th ACM/IEEE Design Automation
Conference. IEEE, 664–669.

[4] Sudarsun Kannan et al. 2018. Redesigning LSMs for nonvolatile memory with
NoveLSM. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18).
993–1005.

[5] Saeed Kargar, Heiner Litz, and Faisal Nawab. 2020. Predict and Write: Using
K-Means Clustering to Extend the Lifetime of NVM Storage. arXiv preprint
arXiv:2011.02556 (2020).

[6] Ismail Oukid et al. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent
B-tree for storage class memory. In Proceedings of the 2016 International Conference
on Management of Data. 371–386.


	Abstract
	1 Introduction
	2 Methodology
	3 Conclusion
	References

