
Semi-Supervised Data Cleaning with Raha and Baran

Mohammad Mahdavi
Technische Universität Berlin

mahdavilahijani@tu-berlin.de

Ziawasch Abedjan
Leibniz Universität Hannover

L3S Research Center
abedjan@dbs.uni-hannover.de

ABSTRACT
Data cleaning is a tedious data preparation task, which typ-
ically needs user supervision in the form of predefined con-
figurations, such as rules, parameters, or patterns. We have
recently developed two configuration-free systems, Raha and
Baran, to detect and correct data errors in a semi-supervised
manner. In this paper, we demonstrate how both systems
can be used within an end-to-end data cleaning pipeline.
Our demonstration shows how user supervision can be re-
duced to a negligible amount of example corrections using ef-
fective feature representation, label propagation, and trans-
fer learning methods. While each cleaning step, detection
and correction, faces substantially different challenges, we
have designed the corresponding systems based on the same
intuition. Both systems internally leverage an automatically
generatable set of base detectors and correctors and learn to
combine them using a few user labels. In practice, with a
small number of 20 user-annotated tuples, it is possible to
effectively identify and fix data quality problems inside a
dataset. Furthermore, both systems benefit from knowledge
of prior cleaning tasks. Using transfer learning, both sys-
tems can optimize the data cleaning task at hand in terms
of error detection runtime and error correction effectiveness.

1. INTRODUCTION
Data quality management has always been one of the

hardest tasks for automation. In fact, data cleaning is one
of the most important but time-consuming tasks for data
scientists [7]. The data cleaning task consists of two ma-
jor steps: (1) error detection and (2) error correction. The
goal of error detection is to identify data values that are
wrong/dirty [1]. The goal of error correction is to fix these
wrong values [19].

There has been already a large amount of research on end-
to-end data cleaning as well as some of its sub-problems.
Most traditional data cleaning systems follow the precon-
figuration paradigm, which requires the user to provide the
correct and complete set of rules [8, 3], parameters [23], or

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

both [19]. For example, a data cleaning system may need
data patterns, such as the date format ”dd.mm.yyyy”, or
statistical parameters, such as expected mean and standard
deviation. However, providing the correct and complete set
of rules and parameters upfront is a major impediment for
most non-expert users as they need to know both the dataset
and the data cleaning system very well to be able to config-
ure the systems properly [1, 15, 23].

Recently, we proposed the configuration-free paradigm for
data cleaning, which is more suitable for users who are do-
main experts but are not adept at generating configurations
for complex data cleaning systems. In particular, we pro-
posed our error detection system Raha [15] and its pendant
system Baran [14] for error correction. Both systems fol-
low the same unified idea: They internally aggregate a set
of base error detectors/correctors in a semi-supervised man-
ner. The user is only in the loop to annotate selected data
points, i.e., marking or fixing a few data errors. In other
words, the user does not need to provide any data- or tool-
dependent configurations.

Each of the two systems learns to generalize the user-
provided error detection/correction examples to the rest of
dataset, accordingly. For this purpose, each system requires
a different type of feature construction to describe and ex-
pose erroneous values. Since data errors are oftentimes dataset
and use-case dependent, not every base detector will be use-
ful for all possible datasets. In particular, the parameter
configurations of detectors, such as numerical parameters of
simple outlier detection techniques, depend on the charac-
teristics of the dataset at hand. In contrast to other error
detection aggregators [1, 21] that require the user to config-
ure the base detectors, Raha is designed to be oblivious of
the quality of the detectors as long as there is a sufficiently
large and diverse set of them available. Raha instead uses
the output of these detectors to cluster the values. With the
help of user examples, Raha then identifies clusters of dirty
values and propagates user labels to improve the classifica-
tion accuracy.

Baran, on the other hand, requires a feature vector to
encode a large set of possible correction candidates for the
detected data errors. In theory, every possible string can be
the correction of a data error. By leveraging the most acces-
sible error contexts, namely the value itself, its domain, and
correlating values in neighboring columns, Baran generates
a large set of potential corrections that are then effectively
filtered through human supervision.

Furthermore, both Raha and Baran are designed in a way
that they can benefit from transfer learning [17]. In fact,

both Raha and Baran can learn from previously cleaned
datasets to improve data cleaning performance and reduce
user involvement on the current dataset. Raha calculates
the similarity of the current dataset with previously cleaned
datasets to prune irrelevant error detectors for the dataset
at hand. This way, Raha reduces the overall data clean-
ing runtime without harming the effectiveness of the overall
detection process. Baran extracts value-based corrections
from any cleaned dataset to pretrain base correctors. These
pretrained correctors can later be fine-tuned on the dataset
at hand. The pretraining not only enables Baran to ob-
tain head-topic corrections, such as fixing “US” to “United
States”, without the help of user annotations, but also gener-
ates more correction evidence that improves the convergence
rate of the underlying learning algorithm.

While in the previous papers, we explained the theoreti-
cal aspects of our systems Raha [15] and Baran [14], in this
paper, we focus on the technical aspects of both systems
individually as well as an end-to-end data cleaning pipeline
that streamlines Raha and Baran. In particular, we demon-
strate the following aspects:

• We show how Raha and Baran generalize a few user-
annotated error/correction examples to the rest of dataset.
Our demo enables drill down into similar groups of
data errors, how they are clustered using a wide range
of error detectors, and how suggested corrections are
generated.

• We show how Raha and Baran use previously cleaned
datasets and transfer learning to improve the data
cleaning performance and reduce user involvement in
the data cleaning process.

• We show how different sampling techniques designed
for the particular systems affect the performance of the
end-to-end pipeline.

Our systems, Raha and Baran, are both available online1.
The repository also includes interactive Jupyter notebooks
as the user interface. Furthermore, we packaged and up-
loaded our systems on the Python Package Index (PyPI)2.
Our Python package can easily be installed and managed
via the pip package manager.

2. SYSTEM OVERVIEW
Figure 1 illustrates the architecture of our end-to-end data

cleaning system. Given a dirty dataset as input, the goal is
to detect and correct data errors and output the cleaned
dataset.

To this end, our pipeline leverages three auxiliary resources:
(1) the user feedback, (2) a data cleaning toolbox, and (3)
an optional repository of previously cleaned datasets. The
user feedback in the form of a few identified and fixed data
errors is the only required form of supervision in our data
cleaning pipeline. The data cleaning toolbox contains the
set of base error detectors/correctors. Optionally, the user
can further enrich this default set of error detector and cor-
rector algorithms with a set of dataset-specific algorithms.
The repository contains previously cleaned datasets, includ-
ing the error detector/corrector logs. This repository is an

1https://github.com/BigDaMa/raha
2https://pypi.org/project/raha

optional resource to boost the error detection and correc-
tion performance by learning from previous data cleaning
experiences.

Provided these data cleaning resources, our end-to-end
data cleaning pipeline consists of three main components:
(1) the error detection engine (i.e., Raha), (2) the error cor-
rection engine (i.e., Baran), and (3) the user interface.

2.1 The Error Detection Engine
A dirty dataset is first processed by Raha to detect its data

errors. Internally, Raha generates and runs a large number
of base error detectors (S = {s1, s2, . . . , s|S|}) on the dirty
dataset. These detectors represent the four main families
of traditional error detection techniques [1]. Raha applies
a systematic approach to generate various configurations of
the following error detection algorithms as base detectors.

1. Outlier detection algorithms [18] assess the correctness
of data values in terms of compatibility with the gen-
eral distribution of values that reside inside the corre-
sponding column. We leverage histogram and Gaus-
sian modelings [18] as two fundamental outlier detec-
tion algorithms that leverage the occurrence and mag-
nitude of data values, respectively. Raha automati-
cally generates a range of parameters for each of the
two algorithms.

2. Pattern violation detection algorithms [11] assess the
correctness of data values in terms of compatibility
with predefined data patterns. To be independent of
user-provided patterns, we generate various kinds of
character checkers based on the bag-of-characters rep-
resentation [20].

3. Rule violation detection algorithms [6] assess the cor-
rectness of data values based on their conformity to
integrity constraints. We include rule violation detec-
tion strategies that check inter-column dependencies,
such as functional dependencies (FDs), as the single-
column rules, such as value range and length, are im-
plicitly covered by the outlier and pattern violation
detection algorithms. Raha by default considers each
column to be dependent on every other column and
uses each of these FDs as a base detector.

4. Knowledge base violation detection algorithms [4] as-
sess the correctness of data values by cross-checking
them with data within a knowledge base, such as DB-
pedia [2]. We check the conformity of data values in-
side the dataset at hand to all the entity relationships
inside the DBpedia.

The number of detectors depends generally on the number
of columns, the distribution of characters inside a dataset,
and the size of the knowledge base. In practice, Raha gener-
ates thousands of base error detectors by configuring each er-
ror detection algorithm with a wide range of configurations.
For example for the Flights dataset, 4174 detectors will be
generated. This approach relieves the user from choosing
and configuring detection algorithms. Raha collects the out-
put of these detectors to featurize each data cell. The feature
vector of each data cell shows which detectors have marked
this particular data cell as a data error. The feature vector
of the data cell d[i, j] is the vector of all the outputs of error

https://github.com/BigDaMa/raha
https://pypi.org/project/raha

𝑎1 … 𝑎 𝐴

𝑡1

…

𝑡 𝑑

Dirty
Dataset

𝑎1 … 𝑎 𝐴

𝑡1

…

𝑡 𝑑

Cleaned
Dataset

Historical Data
Repository

Data Cleaning
Toolbox

Raha

Error Detection Engine

Baran

Error Correction Engine

Data
Errors

User Interface

Strategy 𝐬|𝑺|

Strategy 𝒔𝟏

Strategy 𝒔𝟐…

Cluster 1

Cluster 2

…

Cluster k

Column 1 … Column |𝐴|
Cluster 1

Cluster 2

…

Cluster k

…

Model 𝒎𝟏

Model 𝒎|𝑴|

𝐸 𝐶 𝑚1 𝑚2 … 𝑚|𝑀| 𝐿

𝑒1 𝑐1 0.75 0.0 0.12 ×

𝑒1 𝑐2 0.32 0.12 0.87 ✔

…

User

Classifier 1 Classifier |A|

…

Classifier 1 Classifier |A|

…

Figure 1: The architecture of the data cleaning pipeline consisting of the detection engine Raha and the
correction engine Baran.

detection strategies s ∈ S on this data cell. Formally,

v(d[i, j]) = [s(d[i, j]) | ∀s ∈ S], (1)

where

s(d[i, j]) =

{
1, iff s marks d[i, j] as a data error;

0, otherwise.

Therefore, data cells with similar data quality issues will
have similar feature vectors as they are marked by the same
detectors.

Next, Raha follows a clustering-based sampling and la-
beling process to train one classifier per data column. It
clusters data cells of each column based on the similarity of
their feature vectors. Raha samples a set of tuples that cov-
ers as many unlabeled clusters as possible and asks the user
to label data cells of these sampled tuples as dirty or clean.
Formally, Raha draws a tuple t∗ in each iteration based on
the softmax probability function

P (t) =
exp(

∑
g∈t exp(−Ng))∑

t′∈d exp(
∑

g∈t′ exp(−Ng))
, (2)

where Ng is the number of labeled data cells in the current
cluster of data cell g and exp is the exponential function with
base e. This scoring formula benefits tuples whose data cells
mostly belong to the clusters that have received fewer labels.

Raha propagates each user label to all values of the same
cluster to boost the number of labeled training data points.
Finally, Raha trains one classifier per dataset column to pre-
dict the final label of each value inside a column. The result
of Raha will be a Boolean matrix with the same dimensions
as the input dataset that contains the prediction 1 or 0,
i.e., erroneous or clean, for each data value of the original
dataset.

2.2 The Error Correction Engine
The task of Baran is to fix the previously detected data

errors. Similar to Raha, Baran relies on a set of base error
corrector models (M = {m1,m2, . . . ,m|M|}). Baran gener-
ates corrector models based on the available data error con-
text. For each data error, three types of context information
are typically available. Parts of a data error context can be
the value itself, its vicinity defined by the co-occurring val-
ues inside the same tuple, and its domain represented by all

values from the same column. Accordingly, we have three
types of corrector models.

1. Value-based error corrector models learn to fix data er-
rors e using only the characters of the erroneous value
itself [9]. A value-based model learns value transfor-
mations on two granularity levels: (1) exact match-
ing and (2) pattern matching. In exact matching, the
value-based error corrector model learns to transform
the erroneous value based on its exact value, e.g., re-
place “Holland” with “Netherlands”. In pattern match-
ing, the value-based model learns to transform the er-
roneous value based on its Unicode pattern. For exam-
ple, in all dates encoded as“<Nd><Nd><Po><Nd><Nd>

<Po><Nd><Nd><Nd><Nd>” replace “/” with “.”, i.e.,
replace “16/11/1990” with “16.11.1990”.

2. Vicinity-based error corrector models learn to fix data
errors based on column relationships. A vicinity-based
model proposes clean values of the active domain as
potential corrections based on their relationship with
clean data values of other columns. We consider every
one-attribute to one-attribute functional dependencies
as a vicinity-based model to generate correction can-
didates based on the left-hand-side values.

3. Domain-based error corrector models learn to fix data
errors using the existing values inside their columns. A
domain-based model proposes the most relevant clean
values from the active domain as potential corrections.
A domain-based model considers the more frequent
clean values inside a data column more likely correc-
tions for a data error in the same column.

Each error corrector model m proposes a potential correc-
tion c for each data error e. Baran generates a feature vector
for each pair of a data error and a correction candidate (e, c).
Each component of this feature vector is corresponding to
the confidence of one error corrector model m for replacing
data error e with correction candidate c. Formally,

v(e, c) = [P (c|em) | ∀m ∈M], (3)

where M is the set of all the error corrector models and
P (c|em) is the confidence of the model m in proposing the

correction candidate c to the data error e. When a fea-
ture vector contains mostly close-to-one probabilities (i.e.,
P (c|em) ≈ 1.0 for most of the models m ∈ M), it is more
likely that the correction candidate c is the actual correc-
tion of the data error e; Because, in this case, most error
corrector models with high confidence propose this correc-
tion candidate for this data error.

Then, Baran uses human supervision to obtain a small
number of correction examples. While it has its own sam-
pling technique to select tuples for labeling, in the end-to-
end pipeline, it simply uses the same tuples that have been
labeled during the detection phase. Baran incrementally up-
dates the error corrector models with these new correction
examples from the user. Similar to the detection step of
Raha, Baran trains one classifier per data column to predict
the actual correction of each data error from all the proposed
potential corrections.

2.3 Learning from Previously Cleaned Datasets
Both cleaning engines, Raha and Baran, can benefit from

the knowledge of previously cleaned datasets. But each ben-
efits in a different way.

Raha internally runs thousands of detectors leading to a
high runtime of the initial featurization phase. We designed
Raha this way to make the system fully configuration-free at
the cost of runtime. We did not want to rely on the user in
the selection process of detectors to make it also accessible
for a more general user audience. Naturally, some detectors
create much better features for the clustering algorithm of
Raha than others. In particular, some detectors might sim-
ply generate noisy features. Removing those would benefit
the runtime and may improve the effectiveness of the detec-
tion process. Since we do not know which of them are least
useful upfront and we do not want to rely on the user to make
this non-trivial decision, we accept to include them hoping
that the high feature-dimensionality will nullify their impact
on the overall detection performance. However, it is possi-
ble to filter some of the detectors based on their relevance
in prior cleaning tasks. In Raha, we perform a column-wise
similarity check with columns in previously cleaned datasets.
The similarity is based on automatically extractable features
that describe the content and structure of a column. After
the similarity calculation, a score is generated for each strat-
egy combining the column similarity and the F1 score of the
particular detector on the historical dataset. Then, the set
of detectors with the highest score are picked. Our exper-
iments reported in the Raha paper show that reducing the
set of detectors significantly reduces the runtime for feature
generation without hurting the clustering effectiveness [15].

The Baran engine benefits in a different way from pre-
viously cleaned datasets. In particular, Baran harvests all
observed cleaned values in the past to train value-based cor-
rectors. This way, Baran not only has the chance to obtain
out-of-dataset correction candidates but also collects correc-
tion evidence that helps the prediction model for choosing
the right corrections to converge faster. In our prototype,
we harvest corrections from updates in the Wikipedia revi-
sion history, which leads to millions of correction candidates
part of which will be relevant for a dataset at hand.

2.4 Packaging Structure
We have published the code for both systems on GitHub

and the Python Package Index (PyPI). Our Python package

Figure 2: An example error detection pipeline using
our Python package.

contains three separate classes for dataset, error detection,
and error correction. The dataset class has methods for
loading, normalizing, comparing, editing, and saving data
frames. The dataset class has also methods for creating
and evaluating cleaned data frames based on data clean-
ing results. The error detection and correction classes cover
Raha and Baran’s functionalities and implement methods
that take a dataset object as input. Using these methods,
the user can initialize the dataset, run base error detec-
tors/correctors, generate features, sample tuples, train clas-
sifiers, and apply them to predict data errors/corrections.

Figure 2 shows an example error detection pipeline built
with our Python package. We first import the raha

module. Next, we instantiate the Detection() class and
set the LABELING_BUDGET property of the app object to
20 tuples. We then create a dataset object calling the
initialize_dataset(dataset_dictionary) method, which
needs only the name and the path of the dirty dataset
as input. Next, we call the run_strategies(d), gener-

ate_features(d), and build_clusters(d) methods to fea-
turize data cells of the dataset and build clustering mod-
els. We then iteratively sample a tuple by calling the sam-

ple_tuple(d) method and ask the user to label the sampled
tuples via a user-defined labeling function. In our demo, we
show a manual labeling scenario. Then, the method propa-

gate_labels(d) propagates the user labels into the clusters
and trains the classifiers. Finally, predict_labels(d) can
be called to predict the correctness of each attribute value
in the dataset.

The modular design of the package provides usage flexi-
bility for the user as the user can easily orchestrate different
steps of the workflow by calling different functions.

In the next section, we describe how the user interface
of our prototype enables the user to inspect various steps
and resources of our pipeline, such as how values are clus-
tered, how the user can provide examples, and how transfer
learning affects the features of each classification task.

Figure 3: The interface of a rule-based data cleaning
system that follows the preconfiguration paradigm.

Figure 4: Raha suggests error detection strategies
using transfer learning.

3. DEMONSTRATION
Our demonstration objective is to highlight the distin-

guished aspects of our data cleaning pipeline. We start with
a rule-based data cleaning scenario and show the difficulties
in generating data cleaning rules. Then, we switch to our
configuration-free data cleaning pipeline and ask the user to
annotate examples.

Rule-based data cleaning. We load multiple datasets
for analysis, such as the Flights dataset. Then, we present
and discuss the set of available rules to detect and correct
data errors. Depending on the interaction possibilities, we
can ask the audience to provide more rules as denial con-
straints [3] or plain Python scripts. Figure 3 shows the user
interface, where the user can define a denial constraint for
the Flights dataset. We then run the cleaning approach and
measure the effectiveness for later comparison.

Configuration-free data cleaning. Using the same set of
datasets, we start our Raha-Baran pipeline first by showcas-
ing Raha. Right of the batch, the transfer learning compo-
nent of Raha calculates the similarity of the current dataset
with the previously cleaned datasets in our repository. We
show and discuss the similarities. Raha then proposes a set
of detectors that were effective on similar historical datasets.
We then demonstrate how to inspect the selected detectors
and how Raha chooses to use them based on their relevance
score. For example in Figure 4, the most promising detector
for the Flights dataset is an outlier detection (”OD”) algo-
rithm that marks outlier values based on a Gaussian distri-
bution with a 1.3 distance threshold. Raha proposes this
detector for the Flights dataset because this strategy was
highly effective on an anchor similar dataset, i.e., Beers.

Next, we let Raha run the selected detectors to featurize

the data cells of the dataset at hand. We show the effect
of filtering out ineffective strategies using historical data on
runtime optimization. We inspect data quality issues of data
cells using their feature vectors. Furthermore, we visualize
the similarity of data cells in terms of their data quality
issues.

From here on, the iterative error detection and correction
starts. In each iteration, Raha samples a tuple to be anno-
tated by the user. Figure 5 shows the user interface during
the data cleaning process. A tuple is highlighted for user
annotation and the user can mark its data errors (via check-
boxes) and provide a correction for them (via text fields).

We highlight low-level information that also supports the
user in the tuple annotation process. Raha visualizes the
clusters of data cells in each data column (Figure 6). Once
the user clicks on a data point, the user can drill down the re-
sults and see the detailed information related to that partic-
ular data cell, such as which error detection strategies have
marked this data cell as a data error. In error correction,
Baran extracts value-based corrections from general-purpose
revision data, such as the Wikipedia page revision history,
and pretrains the error corrector models. Therefore, during
the tuple annotation process, the pretrained error correc-
tor models can support the user by mentioning how often
a potential correction has been observed in the Wikipedia
page revision history. When the user provides a correction
or a value is corrected by Baran, its likelihood is measured
based on the confidence of supporting correctors, i.e., cor-
rectors that suggest the same correction. Furthermore, we
can inspect the prevalence of each particular correction in
the indexed Wikipedia page revision history.

For example in Figure 7, three error corrector models pro-
pose value “7:45 p.m.” as the correction of erroneous value
“7:45pm”. The most confident model (depicted as “Model
12”) is a substring adder that has learned to add substrings
“ ” and “.” to the erroneous values like “7:45pm” to fix their
formatting. This particular correction matches exactly to 3
corrections and matches due to a similar pattern to 142 cor-
rections in the Wikipedia logs. These statistics come from
the value-based error corrector models that have been pre-
trained on the Wikipedia page revision history, which serves
as a corpus with head-topic corrections.

Once the tuple is annotated, the backend error detection
and correction engines will be fine-tuned and the frontend
reports and visualizations will be updated accordingly. The
audience can also continuously monitor various indicators,
such as the data cleaning progress (Figure 8). This iterative
process continues until the user terminates the data clean-
ing process and stores the final cleaned dataset. The user
can check the data cleaning progress in the user dashboard
to decide whether the performance is already converged or
more user-annotated tuples are still needed.

We show the same pipeline with multiple variations, in
terms of datasets, sampling techniques, and modulariza-
tions. In particular, we also show perfect results from Raha
would impact the correction component and how far perfect
manual correction of the detection component will be from
the perfect cleaning score. Further, we also show the impact
of transfer learning on the specific components.

4. RELATED WORK
Error detection is the task of detecting data values that

are wrong [1]. Previous work leverage various techniques

Figure 5: The example-based user interface for configuration-free data cleaning.

Figure 6: These 2D projected clusters contain ei-
ther clean (green) or dirty (red) data cells for one
column. By clicking on a point, the user can inspect
the actual value and the error detection strategies
that marked this particular data cell as a data error.

Figure 7: The user can inspect the confidence of er-
ror corrector models for a particular correction and
the number of exactly/approximately matched cor-
rections from the Wikipedia page revision history.

Figure 8: The user dashboard that visualizes the
data cleaning progress.

and resources to detect data errors, such as data augmen-
tation [10], web tables [22], knowledge bases [5], denial con-
straints [8], and ensembling methods [1, 21, 13, 16]. Error
correction (also known as data repairing) is the task of fix-
ing the detected data errors [19]. Related work leverage sig-
nals, such as integrity rules [3, 8], external sources [5], active
learning [12, 24], statistical likelihood [23], or a combination
of rules and statistics [19].

Some of the aforementioned approaches have been also
demonstrated [24, 8, 5, 12, 25]. In this paper, we propose
to demonstrate an end-to-end pipeline that harbors our re-
cently published systems Raha [15] and Baran [14]. In par-
ticular, we give novel insights into an example-driven holistic
framework to incorporate stand-alone error detectors and
correctors and leverage transfer learning. While previous
demonstrations showed the internals of stand-alone systems,
our demonstration provides inspection into how machine
learning methods can be used to effectively aggregate and
combine thousands of detectors/correctors. Our interface
enables drill down into the performance of each baseline de-
tector/corrector and how they are generated to create fea-
ture vectors. Additionally, we visualize the effectiveness of
the generated feature vectors and show how transfer learn-
ing can improve the efficiency and effectiveness of our data
cleaning pipeline.

5. CONCLUSION
We propose to demonstrate our end-to-end data clean-

ing pipeline based on our data cleaning systems Raha and
Baran. Our configuration-free systems achieve high data
cleaning performance with negligible data annotation ef-
forts. Furthermore, our end-to-end data cleaning pipeline
benefits from transfer learning.

Acknowledgements
This project has been supported by the German Research
Foundation (DFG) under grant agreement 387872445. Fur-
thermore, we would like to thank Jeremy Bilic for his con-
tribution to the codebase.

6. REFERENCES
[1] Z. Abedjan, X. Chu, D. Deng, R. C. Fernandez, I. F. Ilyas,

M. Ouzzani, P. Papotti, M. Stonebraker, and N. Tang. Detecting
data errors: Where are we and what needs to be done? volume 9,
pages 993–1004, 2016.

[2] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and
Z. Ives. Dbpedia: A nucleus for a web of open data. In ISWC,
pages 722–735, 2007.

[3] X. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning:
Putting violations into context. In ICDE, pages 458–469, 2013.

[4] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang,
and Y. Ye. Katara: A data cleaning system powered by knowl-
edge bases and crowdsourcing. In SIGMOD, pages 1247–1261,
2015.

[5] X. Chu, J. Morcos, I. F. Ilyas, M. Ouzzani, P. Papotti, N. Tang,
and Y. Ye. Katara: reliable data cleaning with knowledge bases
and crowdsourcing. PVLDB, 8(12):1952–1955, 2015.

[6] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas,
M. Ouzzani, and N. Tang. Nadeef: a commodity data cleaning
system. In SIGMOD, pages 541–552, 2013.

[7] D. Deng, R. C. Fernandez, Z. Abedjan, S. Wang, M. Stonebraker,
A. K. Elmagarmid, I. F. Ilyas, S. Madden, M. Ouzzani, and
N. Tang. The data civilizer system. In CIDR, 2017.

[8] A. Ebaid, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, J.-A. Quiane-
Ruiz, N. Tang, and S. Yin. Nadeef: A generalized data cleaning
system. PVLDB, 6(12):1218–1221, 2013.

[9] S. Gulwani. Programming by examples: Applications, algo-
rithms, and ambiguity resolution. In IJCAR, pages 9–14, 2016.

[10] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas. Holode-
tect: Few-shot learning for error detection. In SIGMOD, pages
829–846, 2019.

[11] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts. In
SIGCHI, pages 3363–3372, 2011.

[12] S. Krishnan, M. J. Franklin, K. Goldberg, J. Wang, and E. Wu.
Activeclean: An interactive data cleaning framework for modern
machine learning. In SIGMOD, pages 2117–2120, 2016.

[13] M. Mahdavi and Z. Abedjan. Reds: Estimating the performance
of error detection strategies based on dirtiness profiles. In SS-
DBM, pages 193–196, 2019.

[14] M. Mahdavi and Z. Abedjan. Baran: Effective error correc-
tion via a unified context representation and transfer learning.
PVLDB, 13(11):1948–1961, 2020.

[15] M. Mahdavi, Z. Abedjan, R. Castro Fernandez, S. Mad-
den, M. Ouzzani, M. Stonebraker, and N. Tang. Raha: A
configuration-free error detection system. In SIGMOD, pages
865–882, 2019.

[16] F. Neutatz, M. Mahdavi, and Z. Abedjan. Ed2: A case for active
learning in error detection. In CIKM, pages 2249–2252, 2019.

[17] S. J. Pan and Q. Yang. A survey on transfer learning. volume 22,
pages 1345–1359, 2009.

[18] C. Pit-Claudel, Z. Mariet, R. Harding, and S. Madden. Out-
lier detection in heterogeneous datasets using automatic tuple
expansion. Technical Report MIT-CSAIL-TR-2016-002, CSAIL,
MIT, 2016.

[19] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré. Holoclean: Holistic
data repairs with probabilistic inference. volume 10, pages 1190–
1201, 2017.

[20] H. Schütze, C. D. Manning, and P. Raghavan. Introduction to
information retrieval. Cambridge University Press, 2008.

[21] L. Visengeriyeva and Z. Abedjan. Metadata-driven error detec-
tion. In SSDBM, pages 1–12, 2018.

[22] P. Wang and Y. He. Uni-detect: A unified approach to auto-
mated error detection in tables. In SIGMOD, pages 811–828,
2019.

[23] M. Yakout, L. Berti-Équille, and A. K. Elmagarmid. Don’t be
scared: use scalable automatic repairing with maximal likelihood
and bounded changes. In SIGMOD, pages 553–564, 2013.

[24] M. Yakout, A. K. Elmagarmid, J. Neville, and M. Ouzzani. Gdr:
a system for guided data repair. In SIGMOD, pages 1223–1226,
2010.

[25] Z. Yu and X. Chu. Piclean: A probabilistic and interactive data
cleaning system. In SIGMOD, pages 2021–2024, 2019.

	Introduction
	System Overview
	The Error Detection Engine
	The Error Correction Engine
	Learning from Previously Cleaned Datasets
	Packaging Structure

	Demonstration
	Related Work
	Conclusion
	References

