
Bridging the Chasm between Science and Reality

Martin Kersten, Panagiotis Koutsourakis, Niels Nes, Ying Zhang
MonetDB Solutions

Amsterdam, The Netherlands
<firstname>.<lastname>@monetdbsolutions.com

ABSTRACT
When a research-prototype of a database management system be-
comes a product in the market, then more insight is required from
the actual workloads to steer its industrial hardening. Unfortu-
nately, few customers are willing to share their database schema,
data samples, query load and execution traces for business and le-
gal reasons. The technical challenge then becomes, how to enable
customers to share their workloads in such a way that it will not
leak sensitive information, while still provide sufficient information
to allow DBMS researchers and developers to assess and improve
their technology.

In this paper, we report on ongoing research to address this chal-
lenge in the context of MonetDB1, as it is increasingly adopted in
the enterprise market. This paper sheds light on the importance of
a good profiling tool during system construction and the techniques
deployed to gain permission from customers’ legal departments to
share profiling traces captured on live production systems.

1. INTRODUCTION
With over a hundred relational database management systems

(DBMS) listed in the DB-Engines Ranking [6], one might think that
the space of solutions is well covered. However, the functionality,
performance, stability and maturity of these systems differ widely.
Many more DBMS prototypes and enhancements among the open-
source offerings are fighting for their places in this pack or geting
credits from the science community.

In all cases, DBMS researchers and developers are facing an in-
surmountable problem, namely what one should optimize for. It is
either impact of new hardware trends or the requirements posed by
new application domains. In all cases, the lifeline for decades has
been to fall back on standard (industrial) benchmarks, such as the
TPC benchmark suite, to showcase the innovations in perspective
to the competitions. A “short cut” is often taken through the al-
ready limited benchmark use cases to highlight only those aspects
covered by the proposed scientific innovation.

The game changes as soon as a system reaches the maturity

1https://www.monetdb.org

This article is published under a Creative Commons Attribution License
(http://creativecommons.org/licenses/by/3.0/), which permits distribution
and reproduction in any medium as well allowing derivative works, pro-
vided that you attribute the original work to the author(s) and CIDR 2021.
11th Annual Conference on Innovative Data Systems Research (CIDR ‘21)
January 10-13, 2021, Chaminade, USA.

level of being used as a product in the market. Then (industrial)
benchmarks are not necessarily the best representation of what is
required, as has often been elaborated upon in the major DBMS
conferences and, in particular, the ACM DBTest workshops series
[13, 4, 11]. For example, [15] reports on the transition of Hyper
into the eco-system of Tableau, in which databases are as small as
a few megabytes, users encode too much information in strings,
and most queries are simple.

The MonetDB team has also been facing similar challenges. We
would love it if a customer could share with us their schema, data
and queries to study. This would allow us to assess the impact of
the choices we make during the design and implementation of the
DBMS on their applications. Even further, we would like to have
the full knowledge of when and how concurrent database users in-
teract with the DBMS to understand a full production system. Ev-
idently, this is hardly ever possible for obvious business and legal
reasons.

This problem became more prominent when MonetDB has been
chosen as the backbone analytics engine by a cloud provider for the
enterprise market. The workload of thousands of applications run-
ning on MonetDB is shielded from our eyes while we are charged
to improve MonetDB further.

Instead of requesting samples of the workload of a production
system and vendor benchmarks, we focus on what is needed for our
analysis under the boundary condition that no sensitive information
about the application can be given. This analysis involves under-
standing what corners of the DBMS cause performance degrada-
tions, what statistical properties can be derived for improved algo-
rithmic choices, what is the memory footprint of a query including
its intermediates, do we exploit all possible parallelism, which con-
current transactions are we dealing with, etc.

The approach taken is based on the performance monitoring tool
Stethoscope [12], which can be attached at any moment in time to
a running MonetDB database server to capture details on what is
actually happening in the database kernel. The output is a detailed
trace of all queries being executed during the monitoring period,
including for each algebraic operator its system resource consump-
tion, the type and size of its input and output, the algorithm and
indices used, execution time, etc.

The Stethoscope traces help DBMS researchers to advance their
technology innovations, application developers and DBAs to make
more efficient use of the DBMS, and cloud providers to make bet-
ter decisions about resource provisioning. However, those traces
can contain sensitive data. When applied to production systems,
the research challenge is how to remove all sensitive data while re-
taining sufficient information to allow the Stethoscope users to gain
valuable insights.

The contribution of this paper is twofold. First, we present the



obfuscation technique “phase spaces” adopted in Stethoscope, with
which we have been able to both sufficiently blur the production
data such that the trace is approved to be shared with us by the
legal department of our customer, while retaining all the important
properties of the data and queries. Then, we discuss the results
of an in-depth analysis of the traces conducted using our other in-
house tool “Holmes”: how different is a real-life application than
the standard benchmarks, which lessons can we learn from these
traces, and which inspiration can we draw from them to guide the
further innovative development of an analytical DBMS.

The approach taken is incremental, seeking how we can bridge
the chasm between the database developers and the legal depart-
ment, who has to protect the sensitive data. Although the paper is
centered around MonetDB and its tools, it should inspire DBMS
researchers to think along this line in an early phase of their system
development. This is a major step beyond the query monitoring
information gathered in most database systems.

The paper is further organised as follows. In Section 2 we give
a quick overview of some inner working of the MonetDB DBMS
and its Stethoscope profiler. In Section 3, we describe the obfus-
cation techniques adopted in Stethoscope. In Section 4, we present
the results of an in-depth analysis of the Stethoscope traces ob-
tained from a live data warehouse application, which include both
our findings and future outlook. Finally, we discuss related work in
Section 5 before concluding in Section 6.

2. DATABASE PROFILING
The context of our work is the MonetDB database management

system[5, 9]. It is open-source, has been under active development
and deployment since 1993, and has been recognized for its inno-
vations [1, 14].

2.1 Query execution plans
MonetDB is a column-store like the ones we have seen emerging

over the last decade, with an emphasis on lean data structures, in-
memory processing, and exploitation of multi-core architectures.
However, it also takes an offbeat approach to query processing,
which is best illustrated with a small example. Consider the fol-
lowing query:

SELECT count(*) FROM gym.agenda
WHERE visit BETWEEN ‘2020-08-02’ AND ‘2020-08-05’
AND weight >100

When users request the execution plan for this query, they will
get something similar to what is shown in Figure 1. It is not an
annotated operator tree of an execution pipeline as found in many
database engines, but a program is written in the MonetDB Assem-
bler Language (MAL)2. This abstract machine language is inter-
preted and supported by thousands of highly optimized and spe-
cialized algorithms.

The execution plan of this SQL query is a series of MAL state-
ments, which can be divided into three main blocks. In the first
block, we locate the storage location of the columns (ln. 4–7).
Each MAL variable is annotated with its type (here we only show
a few for reasons of readability). The annotation :bat indicates
an array instead of a scalar value. The second block contains the
relational operators to compute the query (ln. 8–10). It is what
most database system will expose to the user. Finally, in the third
block, we construct the result set of the query (ln. 12). Each MAL
statement is executed by a single worker thread to completion. A
2https://www.monetdb.org/Documentation/Manuals/MonetDB/
MALreference

barrier...exit block (ln. 3–11) indicates statements that can
be executed in parallel in a dataflow manner. In Section 4.2 we will
discuss in more details how the partial results of parallel executions
are combined into the final result set.

The approach to materialize all intermediate results in MonetDB
comes at a cost. Often, the memory footprint is larger than an
equivalent Volcano-style interpreter [8]. The benefits, however,
outweigh this memory waste, because each relational operator will
be given the complete operands to work with. This way, we can
not only exploit the highly efficient positional array lookups but
also use the runtime properties of the arguments to pick the opti-
mal algorithm just-in-time, e.g. merge-join versus hash-join. This
approach simplifies the work of a query optimizer, because it does
not have to guess, instead it can inspect the actual arguments to
make a locally optimal decision.

MonetDB uses dynamically sized vectors to break up large tables
into chunks. Each chunk comfortably fits in memory and avoids re-
source competition. The net result is that a database portion is hor-
izontally split up dpending on the needs and resource availability at
no cost. It leads to better use of the multi-core platforms.

2.2 Profiling a database kernel
Profiling the performance of a database kernel is an essential step

in its development. A common approach is to keep track of the
queries being executed and a number of performance counters in
a (light-weight) system table. The DBMS users can inspect those
for post-execution analysis. A drawback of this approach is that a
query running amok will not be noticed until it has ceased to exist.

The key performance monitoring tool for MonetDB is Stetho-
scope 3. It works like the medical instrument that lends it, its name,
i.e. it can be attached at any moment to a running MonetDB server
to listen in on what is going on deep inside the system. One of the
benefits of Stethoscope is that it allows us to see if a query is run-
ning amok, e.g. because it causes the computation of unnecessarily
complex joins. The query can subsequently be safely aborted.

Once connected to a MonetDB server, Stethoscope will spit out
profiling events from the MAL interpreter over an IO stream. This
way, we can avoid the overhead incurred by keeping internal per-
formance tables up to date. Subsequent trace analysis is detached
from the DBMS kernel.

Two events are produced for each MAL instruction at its ‘start’
and ‘done’ times. Stethoscope has an overhead of ~30 microsec-
onds per instruction. As a columnar database, each MAL instruc-
tion operates on columns or large chunks. The MAL execution
trace generally has 10s to a few 100s of events. The profiling over-
head only occurs during the lifetime of stethoscope being active.
It can be attached for a short time on a regular or a need to know
basis.

Figure 2 illustrates a JSON object Stethoscope produced when
the aggr.count operator in Figure 1 is ‘done’ (ln 9)4. Lines
1–4 uniquely identify this JSON object, i.e. to which MonetDB
server version and session, which database user and which
MAL program it belongs. Lines 5–7 contain information of sys-
tem times and the worker thread. Lines 8–9 identify the operator
aggr.count, and its state and execution time in usec. Fi-
nally, the args array contains information about all input and out-
put variables of this function (ln. 10–20). For a :bat variable (i.e.
an array), we also know if it is persistent, sorted, dense, etc.

These traces are essential for gaining performance insights. We
can not only find the bottleneck instructions in a query, but also

3https://www.monetdb.org/blog/pystethoscope
4Full documentation: monetdb-pystethoscope.readthedocs.io



1 function user.s40():void;
2 querylog.define("select count(*) from gym.agenda

where visit between ‘2020-08-02’ and ‘2020-08-05’ and weight >100");
3 barrier X106 := language.dataflow();
4 X7 := sql.mvc();
5 X25:bat[:int] := sql.bind(X7, "gym", "agenda", "weight", 0);
6 X20:bat[:date] := sql.bind(X7, "gym", "agenda", "visit", 0);
7 C8:bat[:oid] := sql.tid(X7, "gym", "agenda");
8 C35:bat[:oid] := algebra.select(X20:bat[:date], C8:bat[:oid], "2020-08-02", "2020-08-05", true,true,false,true);
9 C41:bat[:oid] := algebra.thetaselect(X25:bat[:int], C35:bat[:oid], 100, ">");
10 X45:lng := aggr.count(C41:bat[:oid]);
11 exit X106;
12 sql.resultSet("gym.\%1", "\%1", "bigint", 64, 0, 7, X45);
13 end user.s40;

Figure 1: A simplified MAL execution plan of the example query in Section 2.1
.

1 {"version": "11.37.7",
2 "session": "b7ed4557-b202-4116-94d0-44163771b271",
3 "user": 3,
4 "program": "user.s40",
5 "clk": 1597681144673082,
6 "mclk": 2138257488,
7 "thread": 4, "pc": 17, "tag": 37150,
8 "module": "aggr", "function": "count",
9 "state": "done", "usec": 43,
10 "args": [
11 {"ret": 0, "var": "X45", "type": "lng",
12 "const": 0, "value": "11", "eol": 137, "used": 1,
13 "fixed": 1, "udf": 0},
14 {"arg": 1, "var": "C41",
15 "alias": "gym.agenda.weight", "type": "bat[:oid]",
16 "persistence": "transient", "sorted": 1,
17 "revsorted": 0, "nonil": 1, "nil": 0, "key": 1,
18 "file": "tmp_1112316", "bid": 300238, "count": 11,
19 "size": 88, "eol": 127, "used": 1, "fixed": 1,
20 "udf": 0} ]}

Figure 2: an example Stethoscope JSON object

deduce if the parallelism has been applied to the max. Ideally, we
would like customers to use Stethoscope and share the traces with
us for analysis. The catch is that traces can contain sensitive infor-
mation.

3. EXECUTION TRACE OBFUSCATION
The needs for data sharing and privacy often conflict [2]. A key

concern is that even snippets of information shared can be framed
to an individual or disclose confidential business data. Aside from
access control schemes, the predominant technique to tackle this
problem is based on data obfuscation by data masking, a.k.a. data
scrambling and data anonymization. It is the process of replacing
sensitive information copied from production databases to a test
system with realistic, but scrubbed, data based on masking rules.
It is also a concern when the user is free to formulate queries to
engage in a statistical tracker [7] to breach data security.

Data protection is also relevant for database system architects
beyond its evident strive for data privacy[3]. They need detailed
information about the query execution to understand what is hap-
pening and how the engine can be tweaked further. However, a
naive execution log may leak sensitive information.

A significant difference with data masking of result sets is that
1) the system architect has no access to the production system to
issue a statistical tracker query sequence, 2) the system architect is
not exposed to any result set what-so-ever, 3) the query arguments
in a trace is not necessarily part of the protected database, and 4)

the analysis is performed off-line using execution traces approved
by the DBA.

We started out using a simple masking strategy by replacing ev-
ery literal value in a MAL program with asterisks. This has the
advantage that no information from the database is leaked what-
soever, while it already allows us to gain valuable insights (See
Section 4).

However, one of the main drawbacks of this simplistic and highly
restrictive approach is that we lose sight of some critical informa-
tion for the understanding of the inner workings of MonetDB. Con-
sider an algorithmic choice that depends on the selectivity estima-
tion derived from the predicates of a query; in such cases, a masked
value does not reveal any useful information. Therefore, a more so-
phisticated approach is needed.

Hiding schema information When obfuscating a database, there
are two dimensions to consider: schema- and data- obfuscation.
For a given query, the combination of customer identity, schema
naming and column names are the first point to leak information.
They are also the easiest to mask. We can simply replace the
schema.table.column with randomly generated identifiers or words
picked from a dictionary to elicit readability.

Hiding operator arguments Obfuscation of the data values in a
trace is a little more involved because the obfuscated variant should
still reveal the domain properties. The approach taken is inspired by
phase spaces in mathematics and physics5. In physics, for example,
a phase space transformation maps Euclidean coordinates to some
other generalized coordinate system. Such a transformation makes
it possible to retain the structure of the problem at hand.

The key insight here is that we do not need the actual data, but
several properties that are computed by the engine at the execution
time. Essential properties are, e.g., the storage type, domain or-
der, sort order, number of unique values, min and max values and
the data distribution. Such phase space mappings can be readily
encoded in the Stethoscope to provide an acceptable level of mask-
ing.

4. CROSSING THE BRIDGE
MonetDB was built as an open-source research project and fo-

cused on developing technology for data analytics. An implicit as-
sumption in this research area is that most queries would be com-
plex and time- and resource-consuming. Moreover, the concurrent
workload is considered limited to just a few power users. So, how
different is this from the real-world?

5https://en.wikipedia.org/wiki/Phase_space



MonetDB version 11.37.8
Total number of queries 5573 (4851 r. / 722 w.)
Number of unique queries 498
No. times a query is reused 1646 (max)

294 (95th percentile)
Number of unique schemas 3
Number of unique tables 48
Number of unique columns 1835
No. times a column is reused 5167 (max)

73 (avg)
84 (95th percentile)

Query response times (msec) 0.06 (min)
253.25 (avg)

24452.27 (max)
50.96 (90th percentile)

1313.63 (95th percentile)
Footprint persistent data 25.2 (GB)
Footprint transient data 450 (GB)
Number of concurrent clients 603
Peak concurrent queries 24

Figure 3: General statistics of the customer application

Recently, we received some Stethoscope traces from one of our
customers. The trace considered here covers a 5-minute log of one
of their most active production systems using MonetDB. Next to
the traces, we have no information about the application other than
that it is a typical data warehouse application with bulk updates and
concurrent user queries.

Subsequently, we analysed the traces with an in-house tool, called
Holmes, to extract statistics and query patterns, run a simulation of
the queries to assess the impact of different scheduling strategies
on a multi-core machine, and locate common query patterns as the
basis for automated multi-query optimization. In short, an effective
tool in the hands of a DBMS architect.

In the remainder of this section, we report on our findings, a few
‘war’-stories and some lessons learned.

4.1 Looking through a magnifying glass
Running the traces through Holmes gives us some interesting

statistics of the application as shown in Figure 3.
Query mix The workload is a mix of 4851 read-only queries and
722 updates. The rule of thumb in DBMS research to focus on an
85-15 read/write mix seems to apply here.

Furthermore, the query response times show that most queries
are very short running, e.g. 90% of them took only ~50 millisec-
onds. This is somewhat surprising, and we will address it more in
Section 4.2.
Common queries In a data analytics production setting, the front-
end application is expected to support a limited number of query
patterns. This is confirmed by the “number of unique queries” in
Figure 3, i.e. only 489 out of >5.5K queries are unique. Conse-
quently, most of the 1.8K unique columns were reused many times
which increase the memory footprint.

This statistic strongly indicates that the recycler technique [10],
which caches partial intermediates to speed up processing signif-
icantly, and which we have successfully applied on an astronomy
data set in the past, can be beneficial in this type of commercial
applications as well.
Storage footprint Temporary tables and intermediates took roughly
20 times more space than the persistent data (i.e. “footprint tran-
sient data” vs “footprint persistent data”), which is a lot more than

we have expected. However, from the >600 users who were logged-
in in MonetDB during the monitoring period, there are only 24 con-
current queries at the maximum (i.e. “peak concurent queries”).
For a cloud provider, this information is extremely valuable for re-
source provisioning. We will come back to this topic in Section 4.3.

Operator statistics Developing a relational database kernel for an-
alytics is commonly driven by running the TPC-H benchmark. To
measure progress, we keep a summary of where the time spent on
solving all 22 queries. Figure 4(a) shows the top 10 most expensive
MAL instructions for SF-106 in the MonetDB Jun2020 release: the
number of times they are called, their total execution time in mi-
croseconds and the percentage of time they took in the execution
of the whole query set. Together, these operators consumed more
than 80% of the total execution time. The list is dominated by the
relational operators join, grouping and selection. For years, such
overviews have been pivotal in improving MonetDB with more effi-
cient operator implementations. It has brought international recog-
nitions to MonetDB as a leading open-source columnar DBMS [1,
14]. However, the big question is if this workload summary reflects
what the market is calling for.

Figure 4(b) shows the top 10 most expensive MAL instructions
in the Stethoscope traces on our client trace. The pregnant obser-
vation is that the distribution pattern of where the time was spent in
the MonetDB kernel is completely off from our TPC-H workload.
Overall, the reliance on the relational operators join, grouping and
project is way down the list.

The intersect operator is noteworthy. It is regularly used to
perform the intersection between two lists of OIDs, which represent
the positions of the tuples in a table. Under the hood, it is imple-
mented using a variant of the join algorithm. The “ttl. time” of
this operator here demonstrates a case missing in its implementa-
tion. We could also have noticed this in the TPC-H overview, but
it has been pushed below the radar by more expensive operators7.
Congrats to Holmes for finding this algorithmic glitch.

4.2 Uncover clues
Optimizer improvements The MonetDB optimizer consists of
two parts. The first part manipulates the SQL query tree and de-
rives a logical query plan. It only uses semantic rewriting rules
without any statistics derived from the database to arrive at a more
efficient plan to process.

The second part consists of a series of plan rewriters, inspired
by compiler technology and organised in a linear pipeline. Each
rewriter takes the resulting MAL plan from its predecessor as its
input and produces another MAL plan, in which the MAL plan
snippets are rephrased, e.g. constant expression evaluation and
common expression elimination. Together, the rewriters morph a
logical query plan into a physical execution plan. In this pipeline
two steps are important to consider: Mitosis and Mergetables.

The Mitosis rewriter locates the largest table referenced in the
query and applies a zero-cost horizontal partitioning to separate this
table into multiple logical merge tables. Then the subsequent rela-
tional operators are applied as much as possible on the partitions
in parallel. Each partition should fit comfortably in memory so
as not to cause contention over memory resources with concurrent
worker threads. After all parallel computations are finished, the re-
sult partitions are glued back together by mat.packIncrement,
a blocking operator.

6Operators in this list are fairly stable for other scale factors be-
cause the TPC-H data set scales nicely up and down.
7In TPC-H, the total cost of the intersect operator is even out-
side the top 20.



no. command #calls ttl. time (µs) percentage command #calls ttl. time (µs) percentage
1 algebra.join 249 16391781 26.23% mat.packIncrement 90684 919527662 52.07%
2 aggr.subavg 20 7698648 12.32% algebra.intersect 704 533178902 30.19%
3 batcalc.* 239 6022505 9.64% algebra.thetaselect 7539 88713655 5.02%
4 algebra.projectionpath 374 5146479 8.24% sql.delta 529 65079102 3.69%
5 algebra.projection 825 4929295 7.89% algebra.join 862 45180010 2.56%
6 aggr.subsum 93 3883472 6.21% algebra.select 206 30995947 1.76%
7 algebra.select 105 3258274 5.21% algebra.likeselect 313 26616183 1.51%
8 algebra.thetaselect 205 2737517 4.38% algebra.projection 41400 12314027 0.70%
9 group.groupdone 59 2042968 3.27% sql.projectdelta 181 11160017 0.63%

10 group.subgroupdone 36 1978706 3.17% sql.append 75961 6180143 0.35%
sum: 86.56% sum: 99.48%

(a) TPC-H (b) customer application

Figure 4: Top 10 most expensive relational operators of TPC-H vs. customer application

As an example, the MAL plan below (simplified for readability)
shows that Mitosis has split the column gym.agenda.weight
used by our example query in Section 2.1 into two partitions, each
containing 1000 tuples and starting from positions 0 and 1000, re-
spectively:

X162:= sql.bind(‘gym’,‘agenda’,‘weight’, 0, 1000 )
X163:= sql.bind(‘gym’,‘agenda’,‘weight’, 1000, 1000 )
X268:= mat.packIncrement(X162,X163)
...
C134:= algebra.thetaselect(X268, ‘>’, 14);

Then, when the Mergetables rewriter comes in, it should take
the partitioned table and pushes the thetaselect onto each par-
tition, and modify the mat.packIncrement statement to glue
together the results of the thetaselect-s instead. This should
lead to a rewritten MAL plan similar to the following:

X162:= sql.bind(‘gym’,‘agenda’,‘weight’, 0, 1000)
X163:= sql.bind(‘gym’,‘agenda’,‘weight’, 1000, 1000)
C200:= algebra.thetaselect(X162, ‘>’, 14);
C201:= algebra.thetaselect(X163, ‘>’, 14);
C268:= mat.packIncrement(C200,C201)

At this point, we have prepared a MAL plan for dataflow driven
parallel processing with two worker threads. Note that the speed-up
in the rewritten plan is twofold: the thetaselect-s are com-
puted in parallel and mat.packIncrement often has signifi-
cantly fewer data to process.

However, the analysis of the customer traces illustrates an ex-
orbitant processing time in mat.packIncrement. A drill down
into the MAL programs quickly revealed that the Mergetables rewriter
bailed out in the middle of the process, leaving behind a potentially
very expensive MAL plan, because it might unnecessarily first re-
construct a big persistent column and then apply selections on the
whole column. Holmes helped us to uncover an important clue to
achieve some considerable improvements.
Parallel processing The parallel processing of analytical queries
is the prime target for most database architects. Whether aimed
at a multi-core modern processor or a distribute cloud setting, it
should lead to a significant performance boost. The public TPC-H
benchmarks stress this point to the extreme.

MonetDB uses worker threads to process the queries in parallel.
The level of parallelism achieved strongly depends on the opportu-
nities offered by the queries. For a full-table scan, linear speed-up
with the number of cores can often be achieved. However, simple
queries and blocking operators in the plan jeopardize the potential
gain. In a multi-user system, the remaining resources can be used
for concurrent queries.

The reality check against the customer log was again surprising.
Although MonetDB was mainly put to work on the data analytics
queries for the customer, it appears that only 208 out of the 5.5K
queries (i.e. <5%) used parallel processing. What is going on here?

Further assessment confirmed that most of the queries are indeed
simple queries, such as point queries on small tables, and there-
fore, applying inter-parallel execution would not be beneficial. This
calls for a parallel code optimizer which would simplify the execu-
tion plan into a sequential pipeline, thus avoiding all the overhead
that comes with parallel task scheduling. Furthermore, in the cloud
market (since our customer is a cloud vendor), a parallel processing
analysis would be particularly useful for the resource provisioning
decisions often need to be made. Holmes showed that reality may
favor a workload quite the opposite to what its design is aimed at.
Copy-into stability The customer revealed that there is a front-end
application which regularly ships update batches. This is reflected
in the 258 COPY...FROM statements. A rumor was a perceived
update instability in this bulk-update process. The analysis of the
trace confirmed 27 outliers (of ~0.3 sec). It may well be explained
by resource fights over CPU cores caused by these updates, even
though the update sizes are less than 1000 tuples each. All cores
are assigned to work in parallel for analytical query processing.
However, a COPY...FROM operation also tries to grab all cores to
speed up the process. This resource contention is relatively easy to
fix. Holmes, thanks for reporting, we were a little too enthusiastic
in assigning CPU cores to tasks.

4.3 Future potentials
What-if scenarios Having a customer trace makes it relatively
easy to study some what-if scenarios, such as what is the impact
on query execution time of reducing the number of worker threads,
and what happens if we trim the high-water mark of memory con-
sumption.

This is facilitated by a simple simulator for the MAL interpreter.
The task scheduler can be replaced to study the effect of increas-
ing/reducing the number of worker threads. It can also be used
as an alternative for a cost-based optimizer because it has precise
reference data of the duration of the relational operators.

Holmes is going to speed-up innovations at the DBMS kernel
level by exposing information hitherto not accessible to us.
Resource summary The obfuscated trace can be used to infer a
‘storage schema’, which elicits all tables/columns with their prop-
erties such as type, size, uniqueness, sort order, and indices to sup-
port fast access. It will not reveal any actual content.

Since MonetDB materializes the intermediates, they consume
space as well. The storage schema provides a good indication of



the amount of RAM needed to keep the persistent tables in-memory
for the duration of a DBMS session. Especially in applications with
many complex queries to process, this can lead to a significant in-
crease in the storage footprint. The “footprint transient data” in
Figure 3 shows the maximum storage needed to keep intermediates
of all concurrent queries around in RAM or SSD. Both are valuable
hints for a cloud provider to consider their resource provisioning
and a target for database kernel developers.

5. RELATED WORK
This work is related to operating and database system monitor-

ing. Most database systems have a method to emit both the query
execution plan and its timing. The major difference from our ap-
proach is that it is often a graphical tool, which hides all informa-
tion except for the prime relational algebra operators, the cardinal-
ities involved, the algorithms chosen and the timing. The lack of
obfuscation means it can only be used by the DBA.

This work is also related to workload analysis. Workload analy-
sers have been around for a long time. They typically gather (long-
running) queries from a production system and simulate those against
variants of the database. Their main objective is to find a sweet spot
in query processing using auxiliary structures, such as indices and
materialized views. These workload analyzers are tools in the hand
of a DBA because they often do not obfuscate. It is not needed
to obfuscate because workload re-runs are the focus. In our case,
Stethoscope and Holmes are the tools in the hand of a performance
expert on MonetDB. They provide fine-grained information on the
actual relational operators involved.

The authors of Hyper have also stumbled on the problems sketched
in their papers [13, 15]. However, in their case, the application em-
phasis is on preparing data for visualisation, where techniques to
improve processing hundreds of GBs fell short when confronted
with simple queries over just several MBs of data. In their case,
the publicly available dashboards can be used to gain insight into
the real-world requirements. It has resulted in the Public-BI bench-
mark8. Our use-case is closer to a more traditional data warehouse
setting with hundreds of concurrent users and a widely diverse
database workload.

6. CONCLUSION
In this short paper, we addressed the challenge to obtain real-

world query execution traces from customers, while obeying their
strong desire to avoid leakage of sensitive data. We crossed the
chasm with a suspension bridge built from obfuscated kernel per-
formance trace events produced by MonetDB’s Stethoscope and
analysed with a home-brew tool Holmes. The initial runs shed light
on both the application behavior and its impact on the software. A
30% performance improvement on this workload with better re-
source provisioning seems a low hanging fruit harvested soon.

The important lesson learned again for DBMS architects is to
make sure the proper low-level performance tracers are available
from the outset. Real-world traces show corners of the system that
call for attention, both from a performance and system stability
point of view.

7. REFERENCES
[1] ACM Sigmode Systems award 2016.

www.sigmod.org/sigmod-awards/people/
martin-kersten-2016-sigmod-systems-award.

8https://github.com/cwida/public_bi_benchmark

[2] D. E. Bakken, R. Rarameswaran, D. M. Blough, A. A. Franz,
and T. J. Palmer. Data obfuscation: anonymity and
desensitization of usable data sets. IEEE Security Privacy,
2(6):34–41, 2004.

[3] K. Barker, M. Askari, M. Banerjee, K. Ghazinour,
B. Mackas, M. Majedi, S. Pun, and A. Williams. A data
privacy taxonomy. In A. P. Sexton, editor, Dataspace: The
Final Frontier, pages 42–54, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[4] A. Böhm and T. Rabl, editors. Proceedings of the 7th
International Workshop on Testing Database Systems,
DBTest@SIGMOD 2018, Houston, TX, USA, June 15, 2018.
ACM, 2018.

[5] P. A. Boncz, S. Manegold, and M. L. Kersten. Database
architecture evolution: Mammals flourished long before
dinosaurs became extinct. Proc. VLDB Endow.,
2(2):1648–1653, 2009.

[6] DB-Engines Ranking of Relational DBMS.
https://db-engines.com/en/ranking/relational+dbms.

[7] D. E. Denning and J. Schlörer. A fast procedure for finding a
tracker in a statistical database. ACM Trans. Database Syst.,
5(1):88–102, Mar. 1980.

[8] G. Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2):73–169, June 1993.

[9] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender,
and M. L. Kersten. Monetdb: Two decades of research in
column-oriented database architectures. IEEE Data Eng.
Bull., 35(1):40–45, 2012.

[10] M. Ivanova, M. Kersten, N. Nes, and R. Goncalves. An
Architecture for Recycling Intermediates in a Column-store.
In Proc. of the ACM SIGMOD, 2009.

[11] M. L. Kersten, P. Koutsourakis, and Y. Zhang. Finding the
pitfalls in query performance. In A. Böhm and T. Rabl,
editors, Proceedings of the 7th International Workshop on
Testing Database Systems, DBTest@SIGMOD 2018,
Houston, TX, USA, June 15, 2018, pages 3:1–3:6. ACM,
2018.

[12] PyStethoscope, a system monitor for MonetDB.
https://www.monetdb.org/blog/pystethoscope.

[13] P. Tözün and A. Böhm, editors. Proceedings of the 8th
International Workshop on Testing Database Systems,
DBTest@SIGMOD 2020, Portland, Oregon, June 19, 2020.
ACM, 2020.

[14] VLDB 10-year Best Paper Award 2009.
www.vldb.org/archives/website/2009/q=node%252F50.html.

[15] A. Vogelsgesang, M. Haubenschild, J. Finis, A. Kemper,
V. Leis, T. Mühlbauer, T. Neumann, and M. Then. Get real:
How benchmarks fail to represent the real world. In A. Böhm
and T. Rabl, editors, Proceedings of the 7th International
Workshop on Testing Database Systems, DBTest@SIGMOD
2018, Houston, TX, USA, June 15, 2018, pages 1:1–1:6.
ACM, 2018.


