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ABSTRACT
Research on alternate media technologies, like film, synthetic
DNA, and glass, for long-term data archival has received a
lot of attention recently due to the media obsolescence is-
sues faced by contemporary storage media like tape, Hard
Disk Drives (HDD), and Solid State Disks (SSD). While
researchers have developed novel layout and encoding tech-
niques for archiving databases on these new media types,
one key question remains unaddressed: How do we ensure
that the decoders developed today will be available and ex-
ecutable by a user who is restoring an archived database
several decades later in the future, on a computing platform
that potentially does not even exist today?

In this paper, we make the case for Universal Layout
Emulation (ULE), a new approach for future-proof, long-
term database archival that advocates archiving decoders
together with the data to ensure recovery. In order to do
so, ULE brings together concepts from Data Management
and Digital Preservation communities by using emulation for
archiving decoders. In order to show that ULE can be im-
plemented in practice, we present the design and evaluation
of Micr’Olonys, an end-to-end long-term database archival
system that can be used to archive databases using visual
analog media like film, microform, and archival paper.

Keywords
database archival, emulation, preservation

CCS Concepts
•Information systems→ Data management systems;
Information storage technologies; Storage architec-
tures;

1. INTRODUCTION
Driven by the promise of machine learning and data an-

alytics, enterprises routinely gather vast amounts of data
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from diverse data sources. Analysts have reported that en-
terprise data stored in databases, data warehouses, and data
lakes, is growing 40% annually and will account for 60% of
the 160 Zettabyte Global Datasphere by 2025 [14]. How-
ever, not all data is accessed uniformly. Studies have re-
ported that only 20% of data stored is performance-critical
and accessed frequently. The remaining 80% is cold and
accessed infrequently [11]. Historic data used for trend fore-
casting, archival data stored for meeting legal and regulatory
audits, and backup data accessed during failures, are exam-
ples of such cold data. Cold data has been identified as the
fastest growing data segment with a 60% annual growth rate,
and also as the segment with the longest lifetime (window
between creation and deletion date) with retention periods
lasting 50–60 years [18]. Thus, enterprises are in desperate
need of cost-effective options for long-term storage of cold
data.

Traditionally, DBMS have used a tiered storage hierar-
chy composed of a DRAM or SSD-based performance tier,
a HDD-based capacity tier, and a tape-based archival tier.
Thus, infrequently-accessed archival data was stored using
tape, as it has the lowest cost/GB among all commercially
available storage technologies. Unfortunately, tape suffers
from two fundamental limitations that complicate long-term
database archival. First, tape has a limited lifetime of 10 to
20 years. In contrast, enterprises routinely archive data for
over 50 years in order to meet legal and regulatory compli-
ance requirements [18]. Second, tape density improves at
an annual rate of 30% [8, 2], and tape vendors retain back-
wards compatibility only up to two generations. As a result
of these two limitations, using tape for long-term storage
mandates periodic, expensive data migration to deal with
device failures and technology upgrades. These limitations
make tape a less-than-ideal medium for long-term archival
of cold data in enterprise databases.

Recently, several new initiatives have emerged from both
industry and academia in an effort to develop new long-
term storage technologies that can overcome the limitations
of tape. Libraries and archives have long used analog me-
dia, like microfilm and archival paper, for protecting journals
and magazines across several decades [7]. For instance, LE-
500 rated microfilms and ISO 9706 rated archival paper are
designed to last 500 years or more when stored in proper
conditions. Recently, photographic media (film) has been
used for the preservation of the Declaration of Children’s
Rights document in collaboration with the UN in the Arc-
tic World Archive [13]. Researchers have also demonstrated
the use of synthetic DNA [4, 9, 3] and glass [1] as promis-



ing storage media with orders of magnitude higher density,
and thousands of years of longevity. While these initiatives
address the storage lifetime challenges associated with long-
term archival, enterprise DBMS also face another challenge
in archiving data–one related to format obsolescence.

All modern DBMS use proprietary layout formats for stor-
ing data. These layouts employ sophisticated compression,
partitioning, deduplication, and data organization techniques
to improve performance and reduce space utilization. As
layout formats evolve to provide new functionality, most
commercial DBMS maintain backwards compatibility to en-
sure that an upgrade to a newer DBMS version does not ren-
der a database stored in an older format unusable. However,
in the context of long-term preservation, data must be stored
in a layout format that is forwards compatible with all future
versions of DBMS software. Due to this reason, the state-of-
the-art approach for long-term database archival is to con-
vert data from a machine-readable, high-performance binary
layout to a human-readable, textual representation that uses
well-established, publicly-available standards like CSV and
XML [5, 10]. The typical approach is to use external tools
that communicate with the DBMS using well-established in-
terfaces, and “dump” a database into a generic text file that
is then archived using a long-term storage medium.

Unfortunately, this approach suffers from two major draw-
backs. First, the switch from binary to textual layout leads
to severe data bloat as it strips away the benefit of tech-
niques like compression and deduplication that the database
can apply using its knowledge of the schema. As databases
continue to be extended with support for more complex data
types and more data models, this approach also requires
continuously refining the definition of a “standard” archival
layout to accommodate new data types. This is less than
ideal especially when taken in the context of long-lasting
storage media, as data needs to be migrated from one stan-
dard to the next periodically, and a suite of archival tools
that provides compatibility across generations of standards
needs to be maintained across decades. Second, while the
switch to DBMS-agnostic layout solves the format problem
at the database level, it does not solve the problem at the
media level; the text file generated from a database dump
still has to be converted into a “physical” layout format suit-
able for the long-term storage media. For instance, stor-
ing a database on film requires encoding it from its digi-
tal form, which is a sequence of bits, into an analog form,
which is typically a sequence of barcodes. Similarly, storing
a database on DNA requires encoding bits into a sequence of
DNA strands. While researchers have developed novel me-
dia layout techniques for storing data on these new media
types, little attention has been paid to the fact that in order
to recover data back successfully, the layout decoders and
their parameters should also be archived together with the
data.

In this work, we present Micr’Olonys–an end-to-end, long-
term database archival solution that solves all the aforemen-
tioned problems by design. At the core of Micr’Olonys is
a new approach to archival we refer to as Universal Lay-
out Emulation (ULE). The central idea behind ULE is to
archive data together with the layout decoders necessary for
retrieving the data to ensure that data stored in a custom,
binary, compressed layout format can be retrieved using any
computing environment in the future. To do so, ULE uses
emulation to create a software processor with a custom In-

struction Set Architecture, and archives layout algorithms
by porting them to this ISA. Micr’Olonys implements ULE
by porting both database and media layout decoding algo-
rithms to DynaRisc, a custom 23-ISA software processor.
The instruction stream to be emulated, and the DynaRisc
emulator itself are stored together with the data. Using a
novel nested emulator design, Micr’Olonys makes it possible
for any user in the future to bootstrap the DynaRisc emula-
tor by writing less than 300 lines of code in any programming
language, runtime, or operating system that might not even
exist today. We show that empowered by ULE, Micr’Olonys
can perform long-term archival of databases across several
types of visual analog media including film, microform, and
archival paper.

2. ULE MOTIVATION
The problem of preserving software in such a way that

it can be executed several decades later on an unknown
computing platform is not unique to database archival. Li-
braries and museums have long faced this problem as they
need to permanently preserve an increasingly larger collec-
tion of born-digital software artefacts and documents that
have historic or cultural significance [15]. One state-of-the-
art approach used by researchers in Digital Preservation for
preserving software is to use emulation [16, 17]. Emulation
refers to the technique that enables a host system to run
software or use peripheral devices designed for a different
guest system. Emulators simulate the processor and asso-
ciated guest hardware entirely in software by interpreting
the instructions of the guest processor. Thus, emulators can
run unmodified software compiled for a guest processor ar-
chitecture on a host processor with a different architecture.
Emulation differs from virtualization whose goal is to pro-
vide mediated shared access to underlying hardware. Hy-
pervisors implement virtualization and provide virtual ma-
chines that can host unmodified guest OS and applications
with minimal overhead by directly executing the guest in-
structions on the host processor, and by exploiting proces-
sor specific virtualization extensions. Thus, virtualization
is fundamentally tied to the underlying host hardware. In
contrast to virtualization which extends the host processing
environment to the guest, emulation tries to faithfully re-
produce a guest processing environment on a different host.
Thus, emulators prioritize portability and compatibility over
performance. Due to these reasons, emulation is being ac-
tively used today for preserving historic software designed
for old, obsolete computing environments by emulating them
on modern processing environments.

One approach of using emulation for database archival is
to archive the DBMS software stack and store it together
with the data. At restoration time, an emulator can be used
to create the right hardware and software environment for
emulating the archived DBMS version in order to access the
data. Unfortunately, this approach is not feasible in prac-
tice as it suffers from several drawbacks. First, this approach
requires the entire DBMS software stack, including support-
ing libraries, runtimes and OS, to be meticulously archived
each time data is archived. This is no simple task given that
modern DBMS engines are complex pieces of software with
many dependencies. Second, archiving DBMS software also
implies that each restoration will emulate one specific older
version of the DBMS. Thus, the user now has to perform
manual synchronization between the archived versions and



the latest version. Third, this approach complicates licens-
ing as emulated older versions have to be potentially licensed
differently from non-emulated current versions. Fourth, and
perhaps most importantly, the use of emulation for archiv-
ing DBMS software simply shifts the problem, as it im-
plicitly assumes the existence of an emulator in the future
that can faithfully reproduce the computing environment for
the DBMS. As modern DBMS engines are advanced pieces
of software that often use processor specific extensions for
accelerating performance, they would require emulators to
continuously keep pace with advances in instruction set ex-
tensions like vector extensions for SIMD, transactional ex-
tensions for Hardware Transactional Memory, etcetera, for
every architecture supported by the DBMS. This is clearly
a non-trivial, non-scalable endeavor.

The ULE approach avoids these problems by not emu-
lating the DBMS software and instead, only emulating the
decoders necessary for retrieving data. Such an emulator
does not need to emulate a complex architecture like x86
as the goal of the emulator is not to faithfully reproduce
unmodified, existing x86 software. Rather, the goal is to
be able to simply archive the decoding logic for later execu-
tion. Thus, rather than designing an emulator for a given
architecture determined by software, we can write the de-
coding software to target a pre-designed emulator. Such an
emulator can simulate a much simpler RISC processor with
a limited instruction set that is sufficient for implementing
decoders. Note that the processor emulated no longer needs
to correspond to any real processor. Thus, the emulator here
functions in principle like an interpreter that reads instruc-
tions corresponding to the program and interprets them. We
refer to such a strategy as Universal Emulation to high-
light the hardware and architecture-agnostic nature of this
approach, and to distinguish it from traditional hardware
emulation. Universal Emulation was originally proposed as
an approach for long-term software preservation in digital
libraries [12] and has not been used for database archival.

Universal Emulation has several advantages for database
archival. First, the emulator itself is dramatically simple
compared to a traditional hardware emulator due to the
limited ISA of the virtual processor. Further, the ISA is
a fixed interface that will never be extended unlike cur-
rent processors that expose new functionality via ISA exten-
sions. On those grounds, there is no reason to continuously
maintain and port the emulator across years. In fact, de-
coders can be archived by simply archiving their instruction
stream together with a description of the fixed ISA they
are programmed against. During restoration, the ISA de-
scription can be used to implement the Universal Emulator
using any programming language, OS, or runtime, and the
decoder can be executed using the simulated virtual pro-
cessor. The second advantage of ULE is that it seamlessly
extends the current archival infrastructure. During archival,
layout encoders can compress the textual database archive
using database-specific binary layouts and transform them
for storage using media-specific layouts. During restoration,
the decoders are executed by the emulator to convert the
data back into a software-independent format. Thus, ULE
uses the same interfaces as traditional archiving for getting
data into and out of a DBMS. But, by using universal emu-
lation of decoders, ULE enables the use of structure-aware,
media-specific layouts for archiving databases efficiently us-
ing long-term storage media. Third, ULE obviates the need

Figure 1: A sample emblem generated by MOCoder from
digital data that can be printed to analog media.

for emulating a full DBMS. Thus, queries can be executed
at bare-metal performance without any overhead. There is
also no need to synchronize data across multiple versions.

3. Micr’Olonys DESIGN
Micr’Olonys is a ULE-based archival system we have de-

veloped for archiving databases using analog media, like
film, microform, and archival paper. In this section, we will
explain the design of the three fundamental building blocks
of Micr’Olonys, namely, DBCoder, the database layout en-
coder/decoder, MOCoder, the media layout encoder/decoder,
and Olonys, the nested universal emulator.

3.1 Encoding databases for analog media
DBCoder manages compression of archived databases from

their textual, software-independent format into a compressed
binary layout. Our current DBCoder supports a generic
compression scheme based on LZ77 and arithmetic coding
that can achieve compression performance close to 7-Zip’s
LZMA for compressing all database files into a single archive.
We are working on supporting more advanced database-
specific, compressed, columnar layout schemes as part of
on-going research. Irrespective of the layout used, DBCoder
is expected to produce a compressed bit stream for further
encoding by MOCoder, our media layout coder.

In order to store the compressed bit stream generated by
DBCoder using analog media, the bit stream should be con-
verted into visual signals and then printed as pictures. The
generated visual signals must be robust to a range of errors
that can be introduced during both filming (writing) and
scanning (reading). Retrieving digital data stored on film
can be jeopardized mainly in two ways. First, the film itself
can distort to a small extent over time and become damaged
in various ways with fading, hot spots, scratches, etcetera.
Second, film scanners are a possible factor of image degra-
dation as they use lenses which can change straight lines
into curves, usually near the edge of the field of view. More-
over, as with paper scanners, especially Automatic Docu-
ment Feeders, often, the mechanical motion in linear ar-
ray scanners will introduce small perturbations or unsteady
movements while scanning. Dust can also be a source of
degradation in microform, both on the film itself, on the
glass plates used to hold film while scanning, and also on
the surface being filmed which is usually a flat screen with
modern microform writers.

One possible approach to overcoming these problems is
to use two-dimensional barcodes, like QR codes and Data
Matrix to convert bit streams into barcodes. QR codes,
for instance, represent a sequence of bits as an ordered se-
quence of pixels in a square grid, with white and black pixels
representing bits 1 and 0. In addition to these data cells,
QR codes also contain a bidimensional clocking system that
takes the form of guiding marks placed at specific prede-



Arithmetic Logical Control/Data
ADC(carry) Rd, Rs AND Rd, Rs MOVE Rd, Rs
SBB(borrow) Rd, Rs OR Rd, Rs LDI Rd, #imm
SUB Rd, Rs XOR Rd, Rs LDM Rd, [Ds]
CMP Rd, Rs LSL/LSR/ASR Rd, Rs STM Rs, [Dd]
MUL Rd, Rs ROR Rd, Rs JUMP address

Table 1: DynaRisc instructions. Rd and Rs refer to destination and source data registers. [Dx] refers to source or destination
memory pointer register. #imm refers to an immediate value.

fined locations within the field of black and white dots to
compensate for distortions. In particular, a QR code always
contains 3 position patterns (at 3 corners of the QR code),
2 timing patterns (one for each dimension), and a varying
number of alignment patterns, depending on the size of the
QR code. These support the decoding algorithm that re-
covers data back from the QR code by keeping the data bits
synchronized with the black and white dots. However, QR
codes have been designed considering large-scale distortions,
such as an indirect viewing angle using a smartphone cam-
era. Barcodes designed for data archival, in contrast, must
be able to cope with low-scale distortions incurred by lenses
and unsteady movements of scanners. QR codes are also
designed based on the assumption that each dot that makes
up the QR code is captured using many pixels, that is, the
capture resolution is significantly higher than the QR code
resolution. Thus, QR codes and other 2D barcodes typically
store a few kilobytes of information at best, and are mainly
used as tags or placeholders for short textual information.
Archival barcodes, in contrast, should be designed to store
multi-megabyte data streams spread over many barcodes.

MOCoder is the media layout encoder used in Micr’Olonys
that performs the“physical”layout of bits across barcodes on
visual analog media. We refer to the barcodes generated by
MOCoder as emblems to distinguish them from traditional
2D barcodes. Similar to other 2D codes, MOCoder maps
bits to pixels. However, unlike other 2D codes, MOCoder
does not use a separate clocking system. Instead, it pairs
the bit signal and the clock signal in an approach similar
to Differential Manchester encoding used in floppy disks, to
generate a self-synchronizing data stream. This approach
ensures robust, local clock recovery without having to rely
on an independent reference clocking system that could it-
self be affected by a different level of distortion, as is the
case with other 2D barcode schemes. Further, the area that
represents data bits is surrounded in each emblem by a thick
black square and large-scale black and white dots that al-
low fast and robust initial detection of the emblem geometry
and type, and therefore to precisely position the decoding
algorithm on the data area in the scanned image as shown
in Figure 1.

On top of the physical, visual representation, MOCoder
also uses a Reed-Solomon code-based error correcting mech-
anism to deal with bit erasures that could be caused by me-
dia degradation or dust. In particular, MOCoder uses bidi-
mensional error correction with nested Reed-Solomon (RS)
codes. The inner RS code works on blocks of data, each
holding 223 bytes of user data and 32 redundancy bytes,
spread over the entire emblem. This intra-emblem mecha-
nism will automatically correct up to 7.2% damaged data
within a single emblem. The outer code, or inter-emblem
mechanism, protects against whole-emblem failures, by in-
cluding three parity emblems with each set of 17 data em-
blems. This results in the full bit-for-bit restoration of data

contained within a series of 20 emblems in which any three
are missing altogether.

3.2 Olonys: Universal Emulator
So far, we described the encoding components of DBCoder

and MOCoder that transform data from a textual format
to emblems. As these encoders are intended to be used
by enterprises today, they are written using a contempo-
rary programming language (C#) and designed to work on
a standard Windows computer. Unlike the encoding parts,
the decoding parts of DBCoder and MOCoder will be ex-
ecuted several decades in the future to convert data back
from emblems into the textual format. Olonys is the univer-
sal emulator in Micr’Olonys that is responsible for archiving
these decoders.

Olonys simulates a simplified, 16-bit, 23-ISA RISC soft-
ware processor, which we refer to as DynaRisc. Table 1 pro-
vides a sample of various arithmetic, logical, control trans-
fer and data movement instructions supported by DynaR-
isc. Further information about the register file, instruc-
tion/operand formats, and addressing modes are available
in a prior patent publication about Olonys [6]. The key
take away from Table 1 is that DynaRisc supports several
instructions that are also provided by modern processors.
Unlike the encoding part, the decoding part of DBCoder
and MOCoder are implemented in DynaRisc assembly. In
order to execute the decoders in the future, a user would
need to write an emulator that can, in effect, interpret each
instruction. Given the limited ISA, writing an emulator for
DynaRisc is a much simpler endeavor than writing, for in-
stance, an x86 emulator. However, in order to minimize the
amount of work that must be done in the future, and to
simplify the task of writing an emulator, Olonys adopts a
novel nested emulation strategy.

Instead of emulating just DynaRisc, Olonys internally em-
ulates two ISAs, DynaRisc and an even-simplified, four-ISA
software processor we refer to as VeRisc. The four instruc-
tions in the VeRisc ISA are (i) LD &address (load from
memory to general-purpose register R), (ii) ST &address
(store from register R to memory), (iii) SBB &address (sub-
tract from register R the value located at given address), and
(iv) AND &address (logical AND of register R with value
at given address). Using just these four VeRisc instructions,
we have built an emulator that can interpret the broader
DynaRisc ISA. A user now only has to write an emulator
for VeRisc, which is effectively implementing an interpreter
for just four basic instructions using any computing envi-
ronment. The VeRisc emulator running on a host computer
can then load the DynaRisc emulator written in VeRisc and
use it to instantiate the DynaRisc emulator, which, in turn,
can load the instruction stream of the decoders written in
DynaRisc and instantiate them. Thus, the nested emulation
strategy minimizes user effort at restoration time.

Another important design aspect of Olonys is the ap-
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Figure 2: Steps involved in ULE approach of encoding a database together with associated layout decoders using cinema film.

proach used for bootstrapping the nested emulator. As de-
scribed earlier, the decoder parts of both DBCoder and
MOCoder are implemented using DynaRisc so that Olonys
can emulate them, and Olonys internally uses a DynaR-
isc emulator implemented using VeRisc for executing these
decoders. Thus, in order to adhere to the ULE philoso-
phy of storing decoders with the data, we have to store (i)
the binary instruction streams of the two decoders, (ii) the
binary instruction stream of the DynaRisc emulator, and
(iii) description of the VeRisc emulator together with the
archived database on analog media. As described earlier,
the database itself will be stored in the form of emblems
that are generated by MOCoder. Interestingly, we can also
convert the DynaRisc instruction stream of DBCoder into
emblems and store it similarly to data. This allows for high-
density storage of database layout decoding algorithms. Un-
like DBCoder, although MOCoder is also programmed using
DynaRisc, it cannot be stored as emblems, as it itself is the
media layout decoder responsible for decoding and reverse
translating emblems into binary. Similarly, the DynaRisc
emulator can also not be stored as emblems as the emu-
lator is needed to execute MOCoder before emblems can
be converted back into binary data. For this reason, we
convert the binary, VeRisc instruction stream corresponding
to MOCoder and DynaRisc emulators into a list of textual
characters using a text encoding where letters A to P are
used to encode hexadecimal values 0xF to 0x0 respectively.
This list of characters is stored together with a plain-text
description of the VeRisc emulation algorithm that includes
the text-decoding logic necessary for converting back the
characters into binary values. The result of this procedure
is that the entire software stack necessary for decoding data
in the future is converted into a short, seven-page docu-
ment that contains four pages of algorithm pseudocode, and
three pages of alphabetic characters, that can be written to
analog media with the DBCoder emblems and the database
emblems. We refer to this document as the Bootstrap.

3.3 Micr’Olonys: Putting it all together
So far, we described the internals of the three major ULE

components in Micr’Olonys. In this section, we will provide
an end-to-end usage overview and describe the interaction
between various components.
Archival. Figure 2 shows the internal steps involved in
archiving a database using Micr’Olonys. In the first step,
existing database tools are used to extract data out of a
database for archival. In the second step, DBCoder is used
to convert this data into a compact binary form. The third
step shown in Figure 2 takes the binary data from DBCoder
and uses MOCoder to convert it into emblems. The output
from MOCoder is a series of high-resolution images that we
refer to as data emblems. So far, we have described the
steps involved in archiving the data. The second column in
Figure 2 shows the steps involved in archiving the decoders.
The fourth step in the overall procedure is writing the decod-
ing parts of DBCoder and MOCoder using DynaRisc. The
result of this step are instructions corresponding to these
decoders. In the fifth step, the DBCoder DynaRisc instruc-
tion stream is passed to MOCoder to generate a new set of
emblems, which we refer to as system emblems, to distin-
guish them from data emblems. Thus, the DBCoder is itself
stored as emblems on analog media.

The sixth step is the archival of MOCoder and the DynaR-
isc emulator. As described earlier, the DynaRisc instructions
of MOCoder and VeRisc instructions of the DynaRisc em-
ulator are converted into a list of letters. These letters are
appended to a simple, plain-text pseudocode of the VeRisc
emulator to form the Bootstrap. Finally, in the seventh
step, the data and system emblems together with the Boot-
strap text are physically “written” to the analog media via
microfilming (for microfilm), shooting (for cinema film), or
printing (for archival paper). Figure 2 shows a real cinema
film that was generated using this approach. While we have
described all the steps in Figure 2, it is important to note
that archival is very simple from the user’s point of view.
The programming of decoders using DynaRisc and genera-
tion of the Bootstrap text is a one-time procedure that is
performed in advance by the Olonys developers without any
user involvement.
Restoration. Figure 3 shows the steps involved in restoring
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the database using Micr’Olonys. The first step in restor-
ing the data is scanning the microform to generate high-
resolution images corresponding to each frame. The user
extracts the three pages of alphabetical characters that cor-
respond to the instruction streams of the DynaRisc emula-
tor and MOCoder from the images. Any OCR program can
be used to automate this task. Similarly, the user converts
the images containing emblems into a linear flat array of
pixel intensities as described in the Bootstrap. Any stan-
dard image handling libraries can be used for automating
this task. With image preprocessing done, in the second
step, the user implements the VeRisc emulator using the al-
gorithm pseudocode in the Bootstrap. It is important to
note here that we make no assumptions about the underly-
ing hardware or software environment on which the emulator
will run. The pseudocode is less than 500 lines of code that
can be implemented by anyone with a basic programming
background. The user then executes the code, thereby emu-
lating a basic, four-instruction virtual machine. In the third
step, the Bootstrap code reads the alphabetical characters,
decodes them, and instantiates a new DynaRisc emulator as
an application inside the VeRisc environment, and executes
MOCoder within the DynaRisc emulator. In the fourth step,
the system emblems are then read, decoded by MOCoder,
and used to load DBCoder. In the fifth step, the remaining
data emblems are then read, and decoded by MOCoder first
and then by DBCoder to output the ASCII database archive
files. Finally, in the sixth and final step, the user loads the
standardized data into any future DBMS using then-current
tools and interfaces.

Notice that unlike archival, all the steps during restora-
tion are performed by the user without our involvement.
Micr’Olonys is deliberately designed in such a way that the
most complex step, the implementation of the VeRisc em-
ulator, is as simple as possible so that the user will still be
able to recover the data even if the creators of the system
are no longer alive. The Bootstrap provides technical in-
structions to precisely guide the user through the process of
setting up the environment necessary for decoding data.

4. EVALUATION
To demonstrate the feasibility of ULE, we performed sev-

eral end-to-end experiments where we used Micr’Olonys to
archive and restore data using analog media. In this section,
we provide details about our experiments that show that the
ULE approach can be realized in practice, and analog media
can indeed be integrated into the database storage hierarchy.
Paper archive. For our first experiment, we used the
industry-standard TPC-H benchmark to generate a test dataset.
We loaded the data into a PostgreSQL database and used
pg dump to generate the database archive in the text-based
SQL format. We configured the TPC-H scale factor to pro-
duce an archive file that was roughly 1MB in size (1.2MB).
We used Micr’Olonys to encode this archive into 26 emblems
that were directly printed to A4 paper at 600 dpi using a
network-attached Canon ImageRunner Advance 6255i Laser
printer. Thus, we achieved a density of 50KB per page. Re-
placing our A4 paper with an archival-grade one would be
the only change required for archiving a database to perma-
nent paper. The combined encoding and printing process
took 6 minutes on a low-end Windows laptop equipped with
Intel Core i7-6500U CPU clocked at 2.5GHz, and 16GB of
DRAM. In order to test our decoding process with a differ-
ent computing platform locally, we used the same equipment
to scan the emblems back as 26 pdf files. We then imple-
mented the VeRisc emulator in C++ and executed it on a
Linux server equipped with an Intel Core i9-10920X CPU
clocked at 3.5 GHz. The decoding process successfully re-
stored back the SQL archive file in 3 minutes and 20 seconds.
We would like to explicitly point out here that the goal of
Micr’Olonys is not to enable high-performance data restora-
tion as the data archived using Micr’Olonys will be retrieved
after several decades. Thus, time-to-restore is not a metric
that needs to be optimized in our use case, and we do not
expect a latency of several minutes or hours to be a limiting
factor.
Microfilm archive. In order to show that Micr’Olonys also
works with microform, we targeted a 16mm microfilm as
the archival media for our second experiment. We used the



EPM/Kodak IMAGELINK 9600 Archive Writer1 for “writ-
ing” to microfilm. With this equipment, each frame written
to film is a 3888 (width) x 5498 (length) pixel black and
white (bitonal) TIFF image. With such a system, Micr’Olonys
is capable of storing 1.3GB in a single 66 meter reel. Due to
time and budget constraints, we were able to use Micr’Olonys
to only encode a 102KB TIFF image (the Olonys logo), in-
stead of the 1MB PostgreSQL database. The image was
encoded into 3 emblems by Micr’Olonys, and these emblems
were written together with the Bootstrap to the 16mm mi-
crofilm. A standard microfilm reader2 was used to scan back
the emblems. The produced scans were also bitonal with a
high resolution of about 5000 x 7000 pixels. We used our
VeRisc emulator to convert the emblems back to the source
image without any errors.
Cinema film archive. A similar experiment was con-
ducted with 35mm black and white cinema film shown in
Figure 2. The same Olonys logo was “shot” as 3 emblems
in 3 full-aperture frames (equivalent to the 4/3 image ratio)
with a resolution of 2048 x 1556 pixels (2K) using the Arri-
laser digital film recorder. The frames were then scanned in
grayscale 4K resolution (4096 x 3120 pixels) using a Scan-
ity Immersion from DFT. Both shooting and scanning use
the specific DPX image format used for raw cinema frames.
Compared to microfilm scanners, we found cinema film scan-
ners to produce sharper, low-distortion images. We used
our VeRisc emulator to convert these emblems back to the
source image successfully. While we are pursuing large-scale
database archival experiments as a part of on-going research,
we believe that our preliminary results with the 102KB im-
age demonstrate clearly that Micr’Olonys can work with any
visual analog backend.
Portability and user friendliness. The aforementioned
experiments demonstrated that the ULE approach can be re-
alized in practice, and Micr’Olonys can successfully archive
data to analog media. However, in order to ensure that a
user in the distant future can implement the VeRisc emula-
tor on a computing platform that is unknown today, we also
undertook two additional tasks. First, we requested peo-
ple with diverse technical backgrounds, including first-year
undergraduate students (at Lycée Bonaparte, Toulon), engi-
neers at a partner institute (CNES), and researcher staff at
EURECOM, to implement the VeRisc emulator in any lan-
guage and system of their choice. Thus, the emulator was
implemented on Windows and Linux in several programming
languages including JavaScript, Python, C++, and C#. In
all cases, we found that our “users” were able to implement
a fully functional emulator without any prior knowledge of
the system in under a week. Second, we have also ported
the Olonys universal emulator to several computing plat-
forms that use various microprocessors, including Raspberry
Pi and GameBoy Advance (ARM), TI-85 calculator (Z80),
Atari Falcon (68030), and Palm PDA (68000). In doing so,
we ensured that there were no architecture-specific aspects
in Olonys that would hinder its implementation on future
platforms.

1https://www.epminc.com/products/microfilm-
equipment/imagelink-9600/
2https://history.denverlibrary.org/news/wait-minute-you-
still-use-microfilm

5. CONCLUSION
With the growing adoption of data-driven decision mak-

ing, enterprises are increasingly facing the need to archive
data over long time periods to meet legal and regulatory
compliance requirements. In this paper, we introduced Uni-
versal Layout Emulation as a new approach for long-term
database archival that uses universal emulation for archiv-
ing layout decoders together with the data. In order to
show that ULE can be realized in practice, we presented
Micr’Olonys, an end-to-end long-term data archival system
based on ULE. Using an experimental evaluation, we demon-
strated that Micr’Olonys is portable, easy to use, and can
be used to archive databases using analog media.

In future work, we plan to extend Micr’Olonys on sev-
eral fronts. First, we are working on adding support for
compressed, columnar layout encoding schemes in DBCoder
that are well-known to provide an order of magnitude re-
duction to storage utilization over the generic compression
support available today. Second, despite its longevity, ana-
log media might not be suited for extremely large databases
due to density issues. For example, Micr’Olonys can store
1.3GB in a 66m microfilm reel. This implies that one would
need 800 reels for Terabyte-sized data lakes, and hundreds
of thousands of reels for Petabyte-sized data lakes. Thus,
while microfilm might be a feasible solution for small or
medium-sized archives, it is unsuitable for extremely large
archives. DNA, in contrast has a theoretical density of 1EB
per mm3. Thus, one avenue of future work we are pursuing
is extending Micr’Olonys to be used in conjunction with a
DNA-based database archive [3]. As DNA is not a visual
medium like microfilm, the approach described in this pa-
per cannot be directly applied. Instead, the idea is to setup
analog media and DNA in a tiered fashion to archive digital
data, with DNA storing the data and analog media storing
the decoders.
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