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ABSTRACT
Geo-distributed DBMSes often do not support strictly-serializable
transactions at all, or limit transactions to only a single region.
Those that offer this support force the programmer to either give
up low-latency regional writes or use a restricted programming
model. We show that these compromises are no longer necessary
in modern datacenters for workloads with regional locality, thanks
to advances in low-latency datacenter networks and DBMS designs.
We present Chablis, a scalable, geo-distributed, multi-versioned
transactional key-value store. Chablis provides a general interface
supporting range and point reads, as well as writes within multi-
step strictly-serializable ACID transactions. It offers fast (i.e., low
latency) read-write transactions accessing data homed in a single
region, and global strictly serializable lock-free snapshot reads.

1 INTRODUCTION
Many applications need geo-distributed databases in order to achieve
high availability in the face of regional failure, and to serve low-
latency reads to clients that are themselves distributed geographi-
cally across multiple regions [26, 28]. Many workloads have locality
in their access patterns [26, 28], where each data item has a natural
home region and is almost always accessed only within that region,
so it is crucial that local access to the data in its home region is fast.
Nonetheless, it is sometimes necessary to read data from multiple
regions in a single logical operation, and programmers want strong
isolation and consistency for these transactions. Such multi-region
queries take a long time to execute, partly due to the long latencies
involved in network round-trips, but often also because of the ana-
lytical nature of read-only queries. Therefore, it is ideal to run these
queries in a lock-free snapshot manner to avoid blocking other
transactions.

Strict serializability (also known as external consistency [8]) is
considered the gold standard of database isolation and consistency
semantics [10]. It includes the combination of the following two
properties [27]: (a) serializability: every execution is equivalent

This paper appeared at CIDR 2024. This is an updated version clarifying an issue in
Section 5.3.
This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution, provided that you
attribute the original work to the authors and CIDR 2024. 14th Annual Conference on
Innovative Data Systems Research (CIDR ’24). January 14-17, 2024, Chaminade, USA

to some serial ordering of committed transactions, and (b) lineariz-
ability: if a transaction A commits before a transaction B starts,
then A should precede B in the equivalent serial ordering.

Unfortunately, offering strong semantics like strict serializability
in a geo-distributed setting has many well-known challenges [9,
13, 14, 20, 26], leading many popular systems to either disallow
multi-region transactions completely [6], or offer weaker semantics
instead [3, 19, 20, 22]. However, these weaker semantics expose
anomalies to programmers making it harder to develop applica-
tions [4, 8, 26], and could lead to security vulnerabilities [29]. As
a result, developer demand for strict serializability increased; e.g.,
Google’s Spanner [8] is widely used both within Google and as a
cloud offering, and has inspired many open source products [1, 28].

Existing geo-distributed systems that offer strong semantics [8,
16, 23–26, 30–32] compromise either in speed or generality. Many
systems [16, 24, 31] incur at least one cross-region round-trip for
everywrite, which slows all writes in the system. Spanner [8] guar-
antees correctness of readers by introducing a delay for writers
during the commit protocol until the clock uncertainty interval has
passed, which again slows down all writes in the system. Addition-
ally, it uses specialized hardware 1 to achieve clock synchronization
guarantees that are necessary for its strict serializability support.
On the other end, Slog [26] and Detock [25] offer low-latency for lo-
cal writes as well as high throughput and the ability to handle high
contention even for cross-region writes. However, they rely on de-
terministic execution which requires restricting the programming
model and makes them unable to support a general SQL interface.

We take a different approach, inspired by our recent work on
Chardonnay [10]. Chardonnay shows that single-datacenter trans-
actions can be fast and general, thanks to advances in low latency
networking and storage. It uses epoch-based versioning to support
strictly-serializable lock-free snapshot reads in a single datacenter.
Low-latency, high-throughput datacenter RPCs (e.g., eRPC [15])
allow all committing transactions in Chardonnay to cheaply read a
counter, called the epoch, that serves as a global serialization point.

Our main contribution in this paper is showing how to extend
this technique to incorporate a global epoch that advances more
slowly, but without impacting single-region transactions. The key
idea is to decouple maintaining and advancing the epoch from
publishing and reading the epoch. Thus, instead of a single service
that replicates the epoch counter and serves reads to clients, our
design has two. One is a regional publisher that exists in all regions

1Systems like CockroachDB [28] offer weaker consistency to avoid this dependency.

www.cidrdb.org


and allows transactions to read the epoch using fast datacenter
RPCs so their commit protocol latency is not affected. The second
one is global; it maintains and advances the epoch then updates
all the regional publishers, which is a slower process that does not
impact committing transactions at all. This introduces challenges
in ensuring epoch synchronization across all regions, which are
addressed in the snapshot read protocol (§5).

To show the practicality of the technique, we implemented it
in Chablis, a geo-distributed multi-version transactional key-value
store. Chablis is fast: it preserves low-latency and high throughput
for transactions that access data in a single region, and supports
global multi-region strictly serializable snapshot reads that are lock-
free. It also offers quite a general interface, supporting point and
range reads, as well as writes, within classical multi-step strictly
serializable ACID transactions.

To the best of our knowledge, Chablis is the first geo-distributed
transactional system that is both fast and general: it offers geo-
distributed strict serializiability with fast regional transactions
while presenting an unrestricted programming model and requiring
no special platform support, such as specialized clock hardware or
assumptions about maximum clock skew. Our results show com-
parable strong snapshot read latency to Cloud Spanner [2], while
having an order of magnitude faster regional writes.

2 BACKGROUND ON CHARDONNAY
We now provide a brief overview of Chardonnay, with the minimal
amount of detail to explain how we built Chablis on top of it. For a
more detailed description please refer to the Chardonnay paper [10].

2.1 Components
Chardonnay has three major components, all of which are deployed
in the same datacenter :

(1) Local Epoch Service. Responsible for maintaining and up-
dating a single, monotonically-increasing counter called the
epoch. The epoch service exposes only one RPC to its clients,
which returns the latest epoch. Reading the epoch serves as a
serialization point for all committing transactions. The epoch
is used to assign transaction timestamps at commit time. The
epoch is only read, not incremented, by each transaction.

(2) KV Service. The core service that stores the users’ key-
value data. It uses a replicated shared-nothing range-sharded
architecture similar to othermodern System R*-style systems
[1, 8, 28].

(3) Transaction State Store. Responsible for authoritatively
storing the transaction coordinator state in a replicated,
highly-available manner so that client failures do not cause
transaction blocking.

Figure 1 illustrates how the components interact during the life-
time of a transaction. The basic flow of a read-write transaction
is almost the same as in a classic shared-nothing System R*-style
system, except we add step 3b to read the epoch in parallel to the
Prepare phase. Chardonnay uses Two-Phase Locking (2PL) [11]
for concurrency control, and Two-Phase Commit (2PC) [17] to en-
sure atomicity of distributed transactions. Chablis uses the same
protocols.

Figure 1: Transaction Lifetime in Chardonnay.

2.2 Local Epoch Service
The epoch service is a Multi-Paxos replicated state machine main-
taining a single counter, the epoch. One replica is designated leader.
It increments the epoch at a fixed configurable time interval (e.g., 5
ms) by appending an entry to the Paxos log so it is durably repli-
cated. It exposes one RPC, read-epoch, which returns the value of
the epoch. The system maintains the invariant:
Monotonic Epoch Invariant: If a read-epoch call returns a value e,
then all subsequent read-epoch calls must return a value greater
than or equal to e.

We cannot rely on simply reading the value from the leader
replica, since a leader might lose its status without realizing it for a
while. Instead, we consider the epoch updated when it is applied
to the state of a majority of replicas, not just when it is appended
to the log. The client sends read RPCs to all replicas and considers
the current epoch value to be the one returned by a majority of the
replicas. If no value has a majority, the client retries the read.

Chardonnay uses the high-performance eRPC library [15] for all
communications. A single core can support tens of thousands of
clients and serve millions of eRPC calls per second [15]. The client
library batches multiple read-epoch calls from multiple concurrent
transactions into a single RPC. Since each RPC does very little work
(reads a word from main memory that is usually cached), so we
expect that the epoch service is never a bottleneck in practice. The
Chardonnay paper [10] also describes how to scale it up if desired.

2.3 KV Service
The key universe is partitioned into disjoint contiguous subsets
called ranges. Each range is assigned to a number of range servers
(e.g., three) and is comprised of a database and a Write-Ahead
Log (WAL), implemented via Paxos. One of the range replicas is
designated as a leader, which holds a leader lease. It maintains a lock
table to implement 2PL, using existing range locking techniques [18,
21]. All reads and writes go through the leader.

2.3.1 Leader Selection and Disjointedness. Each range should have
a designated leader replica that holds the leader lease. The leader
selection is piggybacked on the Paxos log implementation, i.e., a
replica attempting to acquire the leader lease does so by appending
a lease acquisition entry to the Paxos log. This log entry includes,
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Figure 2: Simplified Chablis Client API

among other information, the identity of the replica that is the lease
holder, an epoch interval entitling the replica to leadership status
as long as the epoch (maintained by the epoch service) falls within
this interval. When a leader is renewing its lease or a new leader
is taking over, they read the epoch from the local epoch service
and set the upper interval ahead of the current value (by 100 in
our prototype); it is important that the upper end is not too far
ahead of the epoch, because this would effectively prevent other
replicas from taking over if the leader goes down, until the true
epoch catches up.

To prevent two replicas from acquiring leases with overlapping
epoch intervals, a lease acquisition entry by a replica includes a
copy of the lease believed to be the most recent. Other replicas
will reject a replica’s attempt to get the lease if they are aware of a
more recent lease having been granted. This guarantees that at any
point in time there is at most one leader for any range, and that
only one range leader can successfully prepare transactions for an
epoch. We call this the Leader Disjointedness invariant. In §4.2
we explain how we use it to validate transaction locks, and later in
§5 we describe its role in the correctness of our lock-free snapshot
reads in both Chardonnay and Chablis.

3 CHALLENGE
Chardonnay makes each transaction read the (monotonically in-
creasing) epoch after it finished execution, during running the com-
mit protocol. This is a global synchronization point and establishes a
global ordering of transactions equivalent to the epoch ordering, i.e.
a transaction that reads an epoch value e is ordered before a trans-
action that reads an epoch value e+1. Chardonnay leverages this
property to support lock-free strongly consistent snapshot reads.
Given that, one might thank that we can just distribute Chardon-
nay’s KV service geographically across multiple regions, assign
each data to a home region, and satisfy the requirement of fast
regional writes along with globally strictly serializable lock-free
snapshot reads. Unfortunately, this does not work as desired be-
cause of the local epoch service. Each committing transaction in
Chardonnay reads the local epoch from a majority of the epoch
service replicas. Thus, in a geo-distributed setup, at least some of
the regions will have to incur the cross-region latency during 2PC
in order to read the epoch.

Figure 3: Two region Chablis deployment.

The key contribution of Chablis is addressing this issue, by in-
troducing a new (global) epoch service, which will be described in
the next section.

4 CHABLIS OVERVIEW
Chablis has three components, illustrated in Figure 3:

(1) Client Library. Applications link this library to access
Chablis. It is the 2PC coordinator, and provides APIs (Figure
2) for executing transactions.

(2) Regional Chardonnay deployments. One Chardonnay
cluster in each region where the system operates.

(3) Global Epoch Service. A globally-replicated service that
exists in all regions (§4.1). This is similar to the epoch service
in each regional Chardonnay, except it maintains one global
epoch across all regions.

Each record (i.e., key-value store) is homed to a single region
(i.e., Chardonnay cluster), and the client library knows how to
determine the home region for each key. The Chardonnay clusters
largely operate independently from one another. All writes for a
record are sent to its home region. For simplicity, we also send
all reads for a key to its home region. A straightforward future
extension would be to set up non-voting Paxos replicas [28] in
other regions that can serve older snapshots.

4.1 Global Epoch Service
The global epoch service is similar to the local epoch services that
exist in each Chardonnay region. It also maintains a single counter
(the global epoch), and exposes only one RPC to its clients, read-
global-epoch. The main differences are that the global epoch typi-
cally advances at a slower cadence than the local epochs, and it is
not read directly by clients during 2PC. Instead, Chablis introduces
intermediary epoch publishers between the epoch service and its
clients. One epoch publisher exists in every region. Each publisher
maintains a single counter (the epoch) and is Paxos replicated for
high availability, much like the epoch service itself. However, the
publishers do not advance the counter themselves. Instead, when
the epoch is advanced by the global epoch service, it issues RPCs to
each publisher to advance their epoch value. The epoch service does
not advance the epoch again before it updates all the publishers
(each of which is replicated for high availability). Thus, the state
of each publisher replica can only be in one of the following two
states: either (a) equal to the global epoch, or (b) one behind the
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global epoch, if the global epoch service is still in the middle of the
process of updating the publishers.

Chablis clients read the global epoch from their region’s local
publisher, and use the same procedure to read the epoch from that
publisher exactly as it would from a local epoch service. This design
requires a slightly weaker epoch invariant, since a client might read
a global epoch value that is one less than the true epoch. Hence,
the system maintains the invariant:
Global Epoch Invariant: If a read-global-epoch call returns a value
e, then all subsequent read-global-epoch calls must return a value
greater than or equal to e-1.

In §5, we explain how Chablis clients can achieve linearizability
of snapshot reads given this weaker invariant.

4.2 Single-Region Read-Write Transactions
Figure 4 illustrates the basic flow of a single read-write transaction
that only accesses data within a single region (and therefore a single
Chardonnay cluster). The flow is almost the same as in a classic
shared-nothing system, except we add steps 3b and 3c to read the
local and global epochs in parallel to the Prepare phase. Note that
despite having to read the global epoch, the client only needs to
read from its local publisher in exactly the same way as it reads the
local epoch, so this does not increase the latency of 2PC.

The Chablis client provides an interface for users to access the
database, and also acts as the 2PC coordinator in Chablis. After
the transaction finishes execution, the client reads the local and
global epochs in parallel to issuing Prepare RPCs to participant
range leaders. Each leader that accepts the Prepare request responds
with a Prepared message that includes the local epoch interval of
its lease. The client then checks that the local epoch it read falls
within the lease’s epoch interval of every participant, and if not,
aborts the transaction. This is necessary to maintain the leader
disjointedness invariant. If all the participants prepare successfully
and the lease validations pass, the client then calls the transaction
state store to record the transaction’s commit durably. The Commit
record includes the participant ranges and the value of the epoch.
Finally, the client calls the participant range leaders to notify them
of the commit so they can record it locally and release all the locks.
Transactions in Chablis must wait until the transaction Commit is
recorded before releasing any locks (including read locks), for the
correctness of snapshot reads (§5).

4.3 Multi-Region Read-Write Transactions
Chablis supports read-write transactions that accesses data in mul-
tiple regions, albeit with increased latency and contention due to
wide-area round-trips. Such a transaction executes in the same
manner as a single-region transaction, except that the client needs
to involve KV-service ranges from the different regions in 2PC, and
needs to read the local epoch for each involved region in step 3b.
As we mentioned earlier, Chablis targets workloads with locality in
data access, so we assume that multi-region read-write transactions
are used sparingly, perhaps for some small tables that are updated
infrequently but are read frequently in all regions.

Transactions reading data frommultiple regions but only writing
data in a single region have the option of using snapshot isolation

Figure 4: Single-Region Transaction Lifetime in Chablis.

instead, executing their reads using the snapshot read algorithm
described in §5.

5 SNAPSHOT READ
This section describes Chablis’s multi-versioning and snapshot read
protocols. Queries have to be declared as read-only from the start;
a transaction that starts normally without this declaration but only
performs reads is treated as a read-write transaction by the system.

5.1 Global Record Versioning
Each user record has a key k and one or more versions stored in the
Chardonnay database. The key for each version is the pair ⟨k, VID⟩,
where VID (version ID) is determined as follows. Its prefix is the
value of the global epoch of the transaction (see next paragraph on
how that is determined). A counter (starting from 1) is appended
to the epoch to distinguish writes by different transactions in the
same epoch. A transaction chooses a single suffix that makes its
VID greater than that of the existing VIDs in its write set. Deletes
need to have versions as well, so they appear as tombstones.

In contrast to versioning based on local epoch in Chardonnay,
global epoch versioning cannot just rely on the value read in parallel
to the Prepare phase (i.e., step 3c in Figure 4), since that value could
be one less than the true epoch as we discussed in §4.1. Instead,
each range leader also keeps track in its memory of the highest
value of the global epoch it has seen, and returns it to the client
with its Prepare reply. The client sets the transaction’s epoch to be
the maximum of the value from step 3c and the values returned
by the range leaders. Leaders do not need to persist the highest
global epoch value they have seen; before a new leader takes over
it just waits for the global epoch to advance once and resets to
that value. Clients also keep track of the highest epoch they have
seen, to ensure the epoch remains strictly monotonically increasing
within a single session.

5.2 Multi-Region Read Algorithm
Global Epoch Ordering Property: The transaction ordering en-
forced by Chablis’s strict 2PL is equivalent to one in which for all
pairs of committed transactions, 𝑇1 with a global epoch 𝑒1, and 𝑇2
with a global epoch 𝑒2, if 𝑒1 < 𝑒2, then 𝑇1 precedes 𝑇2.
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Proof Sketch: We show that if 𝑒1 < 𝑒2, then 𝑇1 cannot have a
dependency or anti-dependency on 𝑇2. Given that, we can show
that the transaction dependency DAG has no edges that go from a
transaction with a higher to a lower epoch.

We proceed by contradiction by assuming this is false. This im-
plies that there is (transitively) a read-write or write-write conflict
between 𝑇1 and 𝑇2, and 𝑇2 was ordered first. Therefore, 𝑇2 released
a lock L and sometime later 𝑇1 acquired L. Transactions in Chablis
do not release any locks until they commit. At the time when 𝑇2
released L, the range leader that granted L must have recorded the
value of the global epoch to 𝑒2, as we discussed in §5.1. Thus, the
value of the epoch at the time of 𝑇1 commit has to be greater than
or equal to 𝑒2. But 𝑒1 < 𝑒2, a contradiction. □

The global epoch ordering property ensures that global epoch
boundaries are consistent points in the serial order and appropriate
for serializable snapshot reads. That is, a transaction can get a
consistent snapshot as of the beginning of the current epoch 𝑒𝑐 by
ensuring it observes the effects of all committed transactions that
have a lower epoch. Suppose all the transactions with an epoch 𝑒 <
𝑒𝑐 have committed. Reading a user key k as of the start of epoch 𝑒𝑐
translates to reading the value of key ⟨k, VID⟩ such that VID is the
largest value less than ⟨𝑒𝑐 , 0⟩ in the database. Hence, the snapshot
read algorithm would simply work by reading the epoch 𝑒𝑐 , then
reading the appropriate key versions.

Procedure StartTX():
𝑒𝑐 ← 𝑟𝑒𝑎𝑑_𝑔𝑙𝑜𝑏𝑎𝑙_𝑒𝑝𝑜𝑐ℎ();
wait for global epoch to advance once;
return 𝑒𝑐 ;

// ReadKey Executes on the leader of the range

// containing k

Procedure ReadKey(𝑘 , 𝑒𝑐 , 𝑙𝑅):
if 𝑙𝑅 is nil then

𝑙𝑅 ← 𝑟𝑒𝑎𝑑_𝑙𝑜𝑐𝑎𝑙_𝑒𝑝𝑜𝑐ℎ();
end
if 𝑙𝑅 above leader lease epoch interval then

abort;
end
wait for write lock on 𝑘 to be released;
𝑣 ← 𝑟𝑒𝑎𝑑_𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑘, 𝑒𝑐 );
return 𝑣 ;

Algorithm 1:Multi-Region Snapshot Read Procedure

The main challenge is ensuring that the snapshot is complete,
i.e., no more transactions will be committing with an epoch below
𝑒𝑐 . By waiting for the global epoch at its epoch publisher to advance
once2 (i.e., become 𝑒𝑐 + 1) before starting the read, we can guarantee
that any transaction that has not started to prepare will have an
epoch of at least 𝑒𝑐 , by the global epoch invariant.

The problem is prepared (or preparing) transactions that are
not yet known to have committed after establishing the snapshot’s
global epoch 𝑒𝑐 . Fortunately, any such transaction that could pos-
sibly commit writes must already be holding write locks at their

2Alternatively, the read could be executed at 𝑒𝑐 -1 instead of waiting.

respective current range leaders. More formally, any transaction T
with a global epoch below 𝑒𝑐 that could commit a write to a key k
that is homed in region R must be holding a write-lock on k at the
regional Chardonnay range leader in R (proof in the Chardonnay
paper [10]). Suppose the current local epoch in R is 𝑙𝑅 . It must be
that locks are held on the leader whose lease’s epoch range contains
𝑙𝑅 (and by the leader disjointedness invariant, there can be at most
one such replica), and any subsequent leader replica. Thus, the read
algorithm reads the current local epoch 𝑙𝑅 (once per transaction)
for all regions R it accesses after reading the global epoch value
𝑒𝑐 . It ensures that 𝑙𝑅 is below the upper end of the leader’s epoch
interval, and waits for the current holders of write locks (if any) on
its read set to release these locks before executing the reads. The
read is not attempting to acquire locks, so it does not contend with
read-write transactions. Algorithm 1 shows the read procedure.

5.3 Multi-Region Snapshot Read Consistency
Algorithm 1 as described so far guarantees serializability, but the
snapshot could be stale because a transaction T would not observe
the effects of transactions in epoch 𝑒𝑐 that committed before T
started. If desired, ensuring strong consistency (i.e., observing the
effects of all transactions that committed before T started) is easy
at the cost of some latency: After T starts, it reads the current
value of the global epoch 𝑒𝑐 directly from the global epoch service
instead of the local publisher. Then, it waits for the epoch at the
local publisher of each region it is reading from to become 𝑒𝑐+1,
and then executes the read as of the start of 𝑒𝑐+1. Note that the
step of waiting for the epoch to advance overlaps the RPCs to
the remote regions. With this modification, the snapshot reads
provide single-key linearizability [28], which is weaker than strict
serializability. This is because, given two transactions 𝑇1 and 𝑇2
running on different clients and with non-overlapping key sets, it
is possible that 𝑇1 commits before 𝑇2 starts but 𝑇1 gets an epoch
𝑒𝑐+1 while 𝑇2 gets an epoch 𝑒𝑐 , due to the weakened global epoch
invariant. In such a case, the snapshot would include 𝑇2 but not 𝑇1,
violating linearizability. This is unlikely to be an issue in practice,
but we discuss how to handle this in §5.3.1.

If the system is serving a large number of multi-region strongly
consistent snapshot reads, it might be desirable to avoid frequent
cross-region RPCs. This is possible at the cost of additional latency:
after T starts, it can read the epoch from its local publisher, then
wait for the epoch to advance twice, and then use the new epoch
in Algorithm 1.

5.3.1 Linearizable Snapshots. When running a snapshot as of the
start of epoch 𝑒𝑐+1, linearizability can be violated only if the snap-
shot’s read set includes some members whose snapshot version is
exactly at the epoch 𝑒𝑐 , and other members that were updated in
epoch 𝑒𝑐+1. Since reads execute at the range leaders, we always
know the latest version of a record (or range) at the time of the
read. To ensure linearizability, the algorithm performs the follow-
ing additional check: If the read set includes some members whose
snapshot version is 𝑒𝑐 , and other members whose latest version is
equal to or greater than 𝑒𝑐+1, it aborts and retries by advancing its
epoch.

This should work well under low contention, but there is no ter-
mination guarantee if the readset keeps getting updated frequently

5



by newer transactions. One option is falling back to executing as
a locking transaction. But that would require locking the readset
while executing high latency multi-region reads under high con-
tention, which contradicts Chablis’ goals.

Note that if there are no transactions in an epoch 𝑒𝑐 , a linearizable
snapshot read as of the beginning of epoch 𝑒𝑐+1 is guaranteed to
succeed. Hence, the system can be configured to avoid committing
transactions in epochs that are a multiple of a configurable value
k, by waiting for the epoch to advance to the next epoch before
releasing locks. The value of k controls the tradeoff between how
often read-write transactions need to wait during commit vs. the
upper bound on how many times a snapshot read needs to retry.
This is analogous to Spanner’s commit algorithm that waits out the
TrueTime uncertainty interval, except it is amortized across many
epochs instead of done for every read-write transaction.

5.4 Single-Region Snapshots
Chablis can be configured such that single-region snapshot reads ex-
clusively use versions based on the local epoch and utilize Chardon-
nay’s snapshot reads which are described in Section 6 of [10]. This
significantly reduces the latency of single-region snapshot reads, at
the expense of storing each version twice. In such a configuration,
a snapshot read is assumed to be single-region by default (unless
declared otherwise), until it tries to access data in a remote region
in which case it will be restarted as a multi-region query.

5.5 Handling Regional Failure
Chablis is a CP system in the CAP theorem [12] sense. Modern
datacenter networks make arbitrary partitions exceedingly rare [5]
so in practice the system also achieves high availability. However,
dealing with an entire region going down is one of the main reasons
why users use geo-distribution. The global epoch service requires
updating the epoch in all regional publishers before advancing
again. If a region is down, this would block updating the global
epoch. While read-write transactions and regional snapshot reads
can proceed, the global snapshot would get very stale. The local
publishers will stop serving the stale epoch if they do not get an
update from the global epoch service, so transactions will stop
committing in the failed region (in case machines are active but
cut from the rest of the world). In such a situation, an operator
can configure the global epoch service to exclude the failed region
from its set of publishers so that the rest of the system can continue
operating until the region recovers, in which case in can be added
again to the set of publishers.

6 EVALUATION
We evaluate Chablis’ ability to preserve low-latency for single-
region transactions, while performing global strongly-consistent
snapshot reads.

6.1 Setup
We run our experiments on Microsoft Azure. Our experimental
setup has two Chardonnay deployments, one in the us-east1 re-
gion and one in the us-west1 region. Each of these regions has a
global epoch service publisher. The global epoch service itself is

Read Write
P50 (µs) 214 199

Table 1: YCSB Regional Latency Results.

deployed in the us-central1 region so that its maximum latency to
both publishers is minimized.

Within each region, the Chardonnay KV service shard leaders
use Standard_L8s_v2 Azure VMs, which provide 8 vCPU cores and
64GB of memory and support accelerated networking necessary
for eRPC. We advance the local epochs every 10ms. There are two
shards in each region. The entire database fits in the DRAM cache.
We also disable Chardonnay’s dry runs as they are not relevant for
our experiment.

The global epoch does not advance on a fixed timer interval.
Instead, the epoch service continuously advances the epoch as fast
as it can by issuing parallel calls to the epoch publishers in both
regions, waiting until they complete, then advancing again in a
loop. Hence, the global epoch interval is determined by the network
latency to the furthest region.

6.2 Experiment
We run YCSB-A [7] with 50% point reads and 50% point writes
with uniform random distribution. Each Chardonnay region has
one client with 5 threads, which runs on a dedicated VM. Each
client issues YCSB transactions only to the shards co-located with
it; hence the YCSB transactions are all single-region. The YCSB
reads are not declared as snapshot queries so they execute using
locks, not using the snapshot algorithm. Additionally, the client in
the us-west1 region periodically executes a multi-region strongly
consistent snapshot read query that reads one key in each region.
We chose us-west1 because it has a higher latency to the us-central1
region, so it presents the worst case. We run the experiment for 10
minutes.

6.2.1 Results. First, we measure the global epoch update intervals.
The median is ∼47ms, and the P99 is ∼76ms. The mean update
duration for the epoch is under 55ms. Second, we measure the
latency of multi-region snapshots. On average the query has to wait
∼82ms in the initial stage reading the global epoch and waiting
for the epoch to advance, and in total takes an average of ∼107ms.
Finally, we measure the latency of the YCSB transactions. The
results are shown in Table 1

6.2.2 Comparison to Cloud Spanner. Cloud Spanner [2] is a man-
aged service offered by Google Cloud Platform (GCP). GCP does
not have the same regional layout as Azure, so we use the nam3
configuration as it is the closest to ours. It has replicas in us-east1,
us-east4, and us-central1 regions, a read only replica in us-west1,
and the primary replica in us-east4. We find that strong (i.e., lin-
earizable) reads from the the central region have a median latency
of ∼39ms, while strong reads from us-west1 have a median latency
of ∼65ms. Thus, Cloud Spanner strong read latency is lower than,
but comparable to, Chablis (which does not require special hard-
ware synchronized clocks). On the other hand, all writes in Cloud
Spanner, even for a single-region deployment, have latency of many
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milliseconds, which is an order of magnitude slower than Chablis
(see Table 1). The comparison is not strictly apples-to-apples, since
Cloud Spanner is not using fast RPCs and log storage unlike Chablis.
However, we believe it would still be a lot slower in that case due
to having to wait out clock uncertainty during commit.

7 CONCLUSIONS
We presented Chablis, a scale-out, geo-distributed, transactional,
general purpose key-value store. Chablis takes advantage of fast
datacenter RPCs and epoch-based versioning to support global
strictly serializable lock-free snapshot reads without impacting
single-region transactions, relying on specialized clock hardware
or making assumptions about maximum clock skew. This makes
Chablis the first geo-distributed transactional system that is both
fast and general, showing that the compromise between speed and
generality is not necessary in modern datacenters with fast RPCs.
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